某型电动舵机减速器的研究设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空事业的迅猛发展,无人驾驶飞机(UAV)的出现引起世界各国高度重视。其中,小型无人机因为在军事应用和民用中具有独特优势,已成为热门研究领域。电动舵机是控制小型无人机的核心部件,其结构小型化、轻型化和输出大扭矩是小型无人机技术发展的重要趋势之一。
     本课题是要针对电动舵机在小型无人机上的应用特点研制一台小体积、大速比、大扭矩、高精度、高效率和长寿命的配套减速装置。本文通过传动方案设计、结构设计、精度分析、计算机仿真和绘制工程图纸来完成这项设计工作。
     传动装置的体积重量、减速比、效率、寿命和输出扭矩这几项参数要同时满足前述的高要求往往比较困难。根据电动舵机减速器的要求对几种拟采用的传动型式进行速比和效率的分析,最后确定以第一级直齿锥齿轮传动和第二级3K(II)型行星传动的组合作为减速器的传动方案。对传动方案进行了设计,并通过VB编程对其传动的参数进行计算。
     因为电动舵机实质上是一个位置伺服系统,减速器的回差会直接影响整个系统的稳定性和灵敏度。本文详细分析了回差的来源,分别通过最大值法和统计概率方法定量的计算回差,了解各种误差对传动精度的影响程度,通过合理的精度分配更加有效地控制回差。
     减速器的结构设计包括材料的选择、处理工艺和强度、刚度计算等。在结构设计的基础上,用Pro/E建立减速器的虚拟样机,应用机构仿真模块对减速器进行干涉检查和运动仿真。根据干涉检查结果调整减速器的结构,通过运动仿真结果验证结构设计的正确性。用ANSYS软件对减速器主要部件的强度和模态进行有限元分析,对行星传动的各啮合副进行静力学有限元分析。根据仿真结果调整减速器的结构,使设计达到优化。
     最后基于上述内容,确定减速器结构的所有参数,绘制减速器的全套工程图纸,完成电动舵机减速器的设计。
Unmanned aerial vehicle (UAV) has attracted worldwide attention with the rapid development of aviation. And Micro UAV has been a hot field, thanks to its unique advantages and extensive applications in military and civil use. The electric steering engine is a core of components which control Micro UAV. Smaller volume, smaller weight and stronger torque output is the development trend of the electric steering engine.
     This paper focus on developing a gear decelerator, which has many features such as small size, big transmission ratio, stronger torque, high precision, high efficiency and longevity.
     To design this type of decelerator which can meet these stringent requirements at the same time is very difficult. Several proposed patterns of transmission were analyzed on transmission ratio and efficiency in order to choose an appropriate type. Because of higher transmission ratio and smaller volume, bevel gear transmission combined with 3K(II) type of planetary transmission is chosen as the final solution. This paper also programmed to calculate parameters of gear transmission with Visual Basic.
     Because of electric steering engine is essentially a servo system, the backlash of decelerator will directly affect stabilization and sensitivity of the servo system. This paper did a detailed analysis of factors that affecting backlash and calculated the backlash by maximum value method and statistical method respectively. Furthermore, Finding out how various factors affect the precision of transmission according to calculations, and controlling the backlash more effectively by reasonable distribution of precision.
     The structural design of gear decelerator includes the choice of material, technology for processing, calculation of intensity and rigidity. Based on the structural design, establish a virtual prototype decelerator in Pro/E. And interference checking and kinematics simulation of the virtual prototype decelerator will be completed in Mechanism simulation module of the Pro/E. Adjusting the structure of decelerator according to results of interference checking. Through results of kinematics Simulation, verifying calculation of planetary-gear transmission. Using ANSYS software, the main components of gear decelerator were analyzed on strength and modal. Besides, the meshing of the planetary gear vice was analyzed. The result of finite element analysis will be compared with theory in order to optimize the structure of gear decelerator.
     Finally, based on all of above, determine all of the parameters of decelerator. Complete the design of decelerator with drawing a full set of drawings.
引文
[1]周小庆.电动舵机控制器的设计与实现[D].杭州:浙江大学控制理论与控制工程硕士学位论文,2010:1-5.
    [2] Katrina H. 2000 and Beyond—an UAV Forecast[J]. Unmanned Vehicles, 1999(11):24-31.
    [3] Robinson T. Robot Wars[J]. Aerospace International, 2001, 64(7):12-17.
    [4] Mak C C. A Discussion of a Modular Unmanned Demonstration Air Vehicles[R]. AGARD CP-600:2000.
    [5] John A T. The Air Force is Pursuing Uninhabited Combat Air Vehicles in a Big Way[J]. Air Force Magazine, 2001, 84(8):64.
    [6] Jones M C A. Unmanned Aerial Vehicles(UAVS)-an Assessment of Historical Operations and Future Possibilities[R]. AU/ACSC/0203D/97-03, 1997.
    [7]崔秀敏,王维军,方振平.小型无人机发展现状及其相关问题分析[J].飞行力学,2005,23(1):14-18.
    [8]党芬,王敏芬,汪银辉.无人机发展现状及趋势[J].地面防空武器,2005(3):48-54.
    [9]秦博,王蕾.无人机发展综述[J].飞航导弹,2002(8):4-10.
    [10]崔麦会,黄晓娟,景小飞. 21世纪军用无人机的发展趋势[J].航空科学技术,2002:26-29.
    [11]王军林,解付强,刘玉浩.导弹电动舵机的研究现状及发展趋势[J].飞航导弹,2002(3):42-46.
    [12]雷金奎,崔景武.一种无人机伺服舵机的设计[J].微特电机,2003(2):45-46.
    [13]李跃忠.电动舵机的集成设计与控制[D].北京:北京交通大学机械与电子控制硕士学位论文,2006:10-15.
    [14]张展,张弘松,张晓维等.行星差动传动装置[M].北京:机械工业出版社,2009:8-9.
    [15]李钊刚.国内外工业齿轮减速器技术的新发展——迎接WTO的挑战与机遇(一)[J].机械传动, 2001, 25(4):54-58.
    [16]张麟治,张正祥,吴水萍.小模数精密齿轮传动设计[M].北京:机械工业出版社,1985:1-6.
    [17] George W. Michalec著,楠波,成电合译.精密齿轮传动装置—理论与实践[M].北京:国防工业出版社,1978:9-16.
    [18] C. M. Musser. The Harmonic Drive Breakthrough in Mechanical Drive Design[J]. Machine Design, 1960, 32(8):160-170.
    [19]饶振纲.行星传动机构设计(第二版)[M].北京:国防工业出版社,1994.
    [20]沈允文,叶庆泰.谐波齿轮传动的理论与设计[M].北京:机械工业出版社,1985.
    [21] R.W. Daniels. New Drive Should Enhance Missilery[J]. Missile and Rockets, 1961(3):22-33.
    [22] Mass. Harmonic Drive[J]. Mechanical Power Transmissions. Internal.Div. United Shoe Mach. Corp. Boston.1986:113-115.
    [23] F.D.Berkopec, J.C.Sturman, R.W.Standhouse. Solar Array Drive System[J]. JPL TM33-777, 1976(5):35-40.
    [24] E. Shmitz, M.Ramey. Initial Experiments on the End-point Control of 2-DOF Long-reach Elastic Manipulator[J].SPIE, 1991, 1612:245-256.
    [25] F.A.James, R.H.Dennis. Characteristic and Requirements of Robotic Manipulators for Space Operations[J]. SPIE, 1991, 1612:13-23.
    [26]谢金瑞.国内外谐波传动的应用和发展[J].光学机械,1979(4):22-31.
    [27]向国齐.谐波齿轮传动柔轮有限元分析研究[D].成都:四川大学硕士学位论文,2005:1-30.
    [28]辛红兵.谐波传动的国内外发展现状与趋势[J].现代制造,2009(35).
    [29]付军锋.谐波齿轮传动中柔轮应力的有限元分析[D].西安:西北工业大学硕士学位论文,2007:1-8.
    [30]阳培.谐波齿轮传动装置及其短筒柔轮分析研究[D].北京:机械科学研究总院博士学位论文,2006:1-5.
    [31]曹雪.航天用微小型传动装置的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:2-50.
    [32]于广滨.航天用微小型减速装置多目标优化设计及性能分析[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:1-34.
    [33]石辉. NN型少齿差行星传动的应用[J].雷达与对抗,2000(1):54-60.
    [34]杜秀菊.柱销环行星传动的研究[D].河北:燕山大学硕士学位论文,2001:1-15.
    [35]于影,于波.摆线针轮行星减速器的优化设计[J].哈尔滨工业大学学报. 2002(4):493-496.
    [36]刘鸣熙.摆线针轮传动与小型RV二级减速器的研究[D].北京:北方交通大学硕士学位论文,2008:2-10.
    [37] Derkach Nikolai D, Krutik Ernst N, Korotaev Y A. Gear reduction turbodrills improve drilling results[P].SPE 49258, 2002.
    [38]林彰炎.变厚齿轮RV传动的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,1992:2-20.
    [39] E. Chen, D. Walton. The Optimum Design of KHV Planetary Gear with Small Tooth Differences[J]. International Journal of machine Tools and manufacture, 1990, 30(1):99-110.
    [40] F L Litvin. Gear Geometry and Applied Theory[M]. Premtice Hall Englewood Cliffs, 1994:20-100.
    [41]戴红娟,周红良.少齿差行星齿轮传动技术现状及发展[J].机械工程师,2005(12):32-33.
    [42]朱景梓.齿数差为z d?1的渐开线K-H-V型行星齿轮减速器及其设计[J].太原理工大学学报,1963(3).
    [43]马从谦,陈自修,张文照.渐开线行星齿轮传动设计[M].机械工业出版社,1987:1-652.
    [44]渐开线齿轮行星传动的设计与制造编委会.渐开线齿轮行星传动的设计与制造[M].机械工业出版社,2002:1-349.
    [45]杨廷栋,周寿华等.渐开线齿轮行星传动<原理,设计计算,测试>[M].成都科技大学出版社,1986:1-296.
    [46] B.H.柯特略者夫著,陈德建等译.行星齿轮传动[M].机械工业出版社,1986:1-334.
    [47]饶振纲.微型行星齿轮传动的设计研究[J].传动技术,2003(2):18-34.
    [48] Konei Horl. Development of ultra-small sized servo actuator with brushless DC motor planetary gear drive and optical rotary encoder[J]. Int J Janpan Soc Prec Eng, 1997, 31(1):1-5.
    [49]长古川. 1995年日本精密工学会议文集[C]. 1995:519
    [50]赵雅珠.微型行星齿轮减速机构制造工艺概述[J].机械设计与制造,2010(9):242-243.
    [51]陈文元,张卫平,范志荣.微3K-2型行星齿轮减速器中微齿轮啮合模型和参数计算[J].上海交通大学学报,2000,34(3):381-383.
    [52]成大先主编.机械设计手册(单行本)机械传动[M].化学工业出版社,2010.
    [53]齿轮手册编委会.齿轮手册(第二版)[M].机械工业出版社,2002.
    [54]谢晓辉. NGW行星齿轮减速器回差分析[D].郑州:郑州机械研究所硕士学位论文,2004:1-89.
    [55]费业泰.机械热变形理论及应用[M].国防工业出版社,2002.
    [56] Alan Rudt.Precision Speed Reducers Smooth Servo Motion[J]. PT design, 1995:43-45.
    [57] Stephen J.O Neil. Take a Bite out of Backlash[J]. PT design, 1999, Mar:21-24.
    [58] Stanley C. Lennox. Mathematics for Engineers & Applied Scientists(Second Edition) [C]. 1977, HEINEMANN, London.
    [59]于慧力,李广慧,尹凝霞.轴系零部件设计实例精解[M].机械工业出版社,2009.
    [60]成大先主编.机械设计手册(单行本)轴及其连接[M].化学工业出版社,2010.
    [61]郭术义.齿轮三维建模快速造型与仿真[M].科学出版社,2010.
    [62]谭雪松,张青,赖春林. Pro/ENGINEER Wildfire机械设计[M].人民邮电出版社,2009.
    [63]钟日铭. Pro/ENGINEER Wildfire3.0中文版机械设计实例教程[M].清华大学出版社,2004.
    [64]和青芳,徐征. Pro/ENGINEER Wildfire产品设计与机构动力学分析[M].机械工业出版社,2004.
    [65]二代龙震工作室. Pro/Mechanism/MECHANICA Wildfire2.0机构/运动/结构/热力分析[M].电子工业出版社,2006.
    [66]张朝辉. ANSYS12.0结构分析工程应用实例解析[M].机械工业出版,2010.
    [67] F.L.Litvin, Q.lian, A.L.Kapelevich. Asymmetric modified spur gear drives: reduction of noise, localization of contact, simulation of meshing and stress analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2000(188):363-390.
    [68] F.L.Litvin, A.Fuentes, I.Gonzalez-Perez, Modified involute helical gears: computerized design, simulation of meshing and stress analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2003(192):3613-3655.
    [69]于少春.变速器齿轮齿面接触分析建模与仿真[D].吉林:吉林大学硕士学位论文,2007:58-81.
    [70]陈佳.考虑齿面及轴线偏差的斜齿轮接触有限元分析[D].大连:大连理工大学硕士学位论文,2009:16-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700