多小波构造方法研究及在图像处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多小波优越的特性使得它广泛应用于信号和图像处理中,本文为解决如何从信号和图像内容本身和处理的目的出发,自适应地选择和构造多小波基的问题,研究了多小波、多小波预处理滤波器的构造方法及在图像处理中的应用。主要工作包括:
     1.总结了描述多小波特性的5个表征量:正交性、对称性、近似特性、正则性和时频分辨率,给出了描述这些特性的具体方式,在多小波设计和具体应用间架构了一个桥梁,为有针对性的设计和应用多小波奠定了基础。
     2.针对目前多小波构造方法繁多,选择困难的问题,从对多小波特性要求出发,详细介绍了正交、对称、紧支撑、高近似阶、最优时频分辨率的多小波构造方法,分析了方法的可行性、给出了具体设计方案,并对构造多小波过程中为了克服参数选择中计算量大和陷入局部极小的问题采用了优选初始值和变步长的解决办法。以设计长度为4的二重多小波为例,将整个设计过程有机的结合起来,使整个设计过程清晰明了,为应用者提供了一个方便的设计工具。
     3.多小波预处理滤波器直接影响多小波滤波器组的工作性能,选择不当会破坏所设计的多小波的性质。针对这个问题,本文从对预处理滤波器要满足的要求出发,介绍了三种设计方法:矢量预处理滤波器、滤波器组、多小波平衡化的设计,分析了方法的特点,提出了具体的解决方案。尤其在矢量预处理滤波器设计中,提出了一种基于零空间的求取Q (0)的方法,克服了繁琐的计算和推导过程,大大提高了计算速度和准确性。这样,就可方便地根据具体要求来选择合适的设计方法设计多小波预处理滤波器。
     4.针对基于多小波的多聚焦图像融合中多小波的选择问题,从多聚焦图像特点和对多聚焦图像的频谱内容的分析出发,在理论上提出了选择多小波的标准,即应选择小波函数频宽小,时频分辨率高的多小波,并通过实验验证了标准的准确性。对于融合过程中影响融合效果的另一个重要因素:融合规则,本文提出了对多小波系数不同频率分量采用不同的融合方案的融合规则,低频分量采用区域均方误差加权平均的方法,高频分量采用区域能量匹配度度量进行加权融合的方法进行融合,具有很好的融合效果。在实验中采用了原清晰图像与融合图像的均方根误差、融合图像的空间频率和清晰度作为融合效果的客观评价标准,并分析了评价标准的性能,一般均方根误差是最好的评价标准,但在实际应用中,常常没有原始清晰图像,在主观感觉融合效果较好的情况下,可采用空间频率和清晰度作为评价标准。
     5.针对基于多小波图像去噪方法中的多小波选择问题,通过理论分析和实验验证,证明在相同的阈值函数和阈值条件下,选择具有较高的小波函数时频分辨率的多小波,会产生良好的去噪效果,为多小波去噪提供了选择多小波的依据。
     6.基于多小波对常见浮游植物细胞图像进行了边缘和形状检测的初步研究,分析了细胞图像边缘特点,给出了具体的解决方法,实验证明,在边缘提取中取得了较好的效果,形状检测方法只适用于外形轮廓较好的情况。
To solve the question on correctly choosing the multiwavelets according signal and image contents and their processing intention, the construction methods and application of multiwavelets and prefilter are studied. The dissertation mainly included following aspects:
     1. Five characteristics describing multiwavelets are summarized, which are orthogonality, symmetry, approximation, regularity and time-frequency resolution. A connection between the multiwaveles design and application are established by these characteristics.
     2. The multiwavelets construction methods are introduced according the desire performance of the multiwavelets characteristics, which are orthogonal, symmetric, high approximation, good regularity and optimum time-frequency resolution. The feasibility of these methods is analyzed. The concrete means are given to construct wavelets. Correctly initializtion parameters and varying steps overcome the complexity of computation and local minimum. A convenient multiwavelets construction tool is provided for the practical design process.
     3. The correct selection of prefilter is critical to the performance of the multiwavelets. Three design schemes of prfilters are introduced, which are vector prefilter, prefilter groop, balanced multiwavelets . The concrete realization methods are proposed. A null space method on computing Q (0) is present to boost the computation velocity and correctness.
     4. A criterion of choosing multiwavelets in multi-focus image fuse is proposed, which is the wavelet functions should have narrow frequency width and high time frequency resolution. A new fusion rule is proposed for multi-focus image fusion. The object evaluation of fuse result is analyzed. The square root error between the original clarity image and the fusing result image is an excellent criterion for evaluating the fuse result. Without the original clarity image, the spatial frequency and definition can be used only when the fusing result image is good subjectively.
     5. The selecting method of multiwaveletsin image denoising is present. At the same threshold function and threshold value conditions, the higher time frequency resolution, the better the denoising effect is.
     6. The phytoplankton cell image edge and shape detecting method based on mu1tiwavelets is studied by analyzing the characteristics of the phytoplankton cell image edge. The experiments prove the validity of the methods.
引文
[1] J. Morlet. Wave propation and sampling theory and complex waves. Geophysics, 1982, 47(2): 222-236
    [2] A. Haar, Zur Therie. der orthogonalen Funktionen-Systeme. Mathematische Annalen,1910, 69: 331-371
    [3] O. Stromberg. A Modified Haar System and Higher Order Spline System. W Beckner and Wadworth Math. Series, 1981. II: 475-493
    [4] Y. Meyer. Principle Dincertitude Bases Hilbertiennes et Algebra D'operataur, Bour-bald Seminaire. Astersque (Societe Mathematique de FRance), 1985-1986, 662
    [5] S. Mallat. A Theory of Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans. PAMI, 1989, 11: 674-693.
    [6] S. Mallat. Multifrequency Channel Decompositions Images and Wavelet Models. IEEE Trans. Acoustics,Speech, and Signal Processing, 1989, 37(12): 2091-2110.
    [7] I. Daubechies. Othonormal Bases of Compact Supported Wavelets. Comm. on Pure and Appl. Math., 1988, 41(7): 909-996
    [8] C. K. Chui, J. Z. Wang. Computational and Algorithmic Aspects of Cardinal Spline Wavelets, CAT Report Texas A &M, Univ., 1990.
    [9] Alpert B. A class of basis in L 2 for the sparse representation of intergral operators. SLAM J Math.Naal., 1993, 24
    [10] Goodman T.N.T., Lee S.L.. Wavelets of multiplicity r, Trans. Amer.Math. Soc., 1994, 342: 307-324
    [11] Geronimo J., Hardin D., M assopust P. R. Fractal functions and wavelet expansions based on several functions. Approx. Theory, 1994, 78:373-401
    [12] Chui C K, Lian J. A study of orthogonormalmultiwavelet. Approx. Numer. Math., 1996, 20(20): 273-298
    [13] D. P. Hardin, J.A. M arasovich. Biorthogonal multiwavelets on [-1,1]. Applied and Computational Harmonic Analysis, 1999, 7(1): 34-53
    [14] Cotronei M., Montefusco L B, Puccio L. Multiwavelet analysis and signal prep rocessing. IEEE Trans. Circuits Syst. II, 1998, 45:970-987
    [15] Q. T. Jiang. Orthogonal multiwavelets vrith optimum time-frequency resolution. IEEE Trans. Signal Process, 1998,46(4): 830-844.
    [16] Q. T. Jiang. On the design of multifilter banks and orthonormal multiwavelet bases. IEEE Trans. Signal Processing, 1998, 46(12): 3292-3303
    [17] Q. T. Jiang. Parameterization of M-channel Orthogonal Multifilter Banks. Comp. Math, 2000, 12: 189-211
    [18] L. shen, H. H. Tan, J.Y. Tham. Symmetric-antisymmetric Orthonomal multiwavelets ang related scalar wavelets. Applied and Computation Harmonic Analysis, 2000, 8:258-279
    [19] Bin Han. Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets. Journal of Approximation Theory, 2001,110:18-53
    [20] Jin Pan, Licheng Jiao, Yangwang Fang. Construction of orthogonal multiwavelets with short sequence. Signal Processing, 2001, 8: 2609–2614
    [21]杨守志,程正兴. [0,1]区间上的r重正交多小波基.数学学报, 2002, 45(4): 789-796
    [22] Bruce Kessler. AConstruction of Compactly Supported Biorthogonal Scaling Vectors and Multiwavelets on R2 Journal of Approximation Theory. 2002, 117: 229–254
    [23] Haixiang Wang, Bruce R. Johnson. The discrete wavelet Transform for a Symmetric-Antisymmetric Multiwavelet Family on the Interval. IEEE Trans. Signal Processing, 2004, 52(9): 2528-2538
    [24] L.Cui, Z.Cheng. An algoriyhm for constructing symmetric orthogonal multiwavelets by matrix symmetric extension. Applied Mathmatics and Computation, 2004, 149: 227-243
    [25] G. Donovan, J. S. Geronimo, D.P.Hadin, P.R.Massopust, Construcyion of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal.,1996, 27:1158-1192
    [26]崔丽鸿,程正兴.多小波与平衡多小波的理论和设计.工程数学学报, 2001, 18(5): 105-116
    [27] Vrhel M. J., Aldroubi A. Prefiltering for the Initialization of Multiwavelet Transforms. Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP), 1997, 3: 2033-2036
    [28] Roach D.. Multiwavelet Prefilters: Orthognal Prefilters Preserving Approximation Order p < 4,Nashville, Vanderbilt Univ, 1997
    [29] X. G. Xia, J. S. Geronimo, Hardin D. P, et al.. Design of Prefilters for Discrete Multiwavelet Transforms. IEEE Trans Signal Processing, 1996, 44(1): 25-35
    [30] X. G. Xia and B. W. Suter, Vector-valued wavelets and vector filter banks. IEEE Trans. on Signal Processing, 1996,44(3): 508-518
    [31] X. G. XIA. A New Prefilter Design for Discrete Multiwavelet Transforms. IEEE Trans. On Signal processing, 1998, 46(6): 1558-1570
    [32] D. P. Hardin, D.W.Roach Multiwavelet Prefilters-I:Orthogonal Prefilters Preserving Approximation Order p≤2. IEEE Trans. Circuits and Systems—II: Analog and Digital Signal Processing, 1998, 45(8)1106-1998
    [33] Kitti A, D. P. Hardin, D. M. Wilkes. Multiwavelet Prefilters—Part II: Optimal Orthogonal Prefilters. IEEE TRANS. Image Processing, 2001,10(10): 1476-1487
    [34] Miller, J.T. Li, C.C.. Adaptive multiwavelet initialization. IEEE Trans. Signal Processing, 1998, 46(12): 3282-3292
    [35] Lebrun J., Vtterli M. Balanced Multiwavelets. Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP), 1997, 3: 2473-2476
    [36] Lebrun J., Vtterli M.. High Order Balanced Multiwavelets. Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP), 1998, 3: 12-15
    [37] Lebrun J., VTTERLI M. Balanced Multiwavelets Theory and Design, IEEE Trans Signal Processing, 1998, 3: 1119-1124
    [38] Selesnick I. W.. Multiwavelet Bases with Extra Approximation Properties. IEEE Trans Signal Processing, 1998, 46: 2898-2908
    [39] Tao Xia, Q, Jiang. Optimal multifilter banks: Design, related symmetric extension transform and applicatin to image compression. IEEE Trans Signal Processing, 1999, 47(12): 1878-1889
    [40] Jér?me Lebrun, High-Order Balanced Multiwavelets: Theory, Factorization, and Design [J], IEEE Trans. SignalL Processing, 2001, 49(9): 191-206
    [41] Jim V.. Multi-spectral imagery band sharpening study. PE&RS, 1996, 62(9): 1075-1083
    [42]李军,周月琴,李德仁.小波变换用于高分辨率全色影像与多光谱影像的融合研究.遥感学报,1999, 3(2): 117-120
    [43] Chipman L. J., ORR T. M., Graham L. N.. Wavelets and image fusion. Proc of Int Conf on Image Processing. Los Alamitos: IEEE Computer Society, 1995: 248-251
    [44] LI H., Manjuanth B. S., MITRA S. Multisensor image fusion using the wavelet transform. Graphical Models and Image Process, 1995, 57(3): 235-245
    [45] Hassainia F., Magafia I., Langevin F., et al. Image fusion by orhogonal wavelet transform and comparison with other methods. Proc of Int Conf on Engineering in Medicine and Biology Society. New Jersey: IEEE Press, 1992, 1246-1247
    [46] Slamani M. A.. Enhancement and fusion of data for concealed weapons detection. Proc of SPIE on Signal Processing, Sensor Fusion, and Target Recognition VI. Washington: SPIE Press, 1997, 8-19
    [47] Ramac L. C., Uner M. K., Varshney P. K.. Morphological filters and wavelet based image fusion for concealed weapons detection. Proc of SPIE on Sensor Fusion: Architectures, Algorithms and Application II. Washington: SPIE Press, 1998, 110-119
    [48] Ghassemian H.. Multi-sensor image fusion using multirate filter banks. Proc of Int Conf on Image Processing. Los Alamitos: IEEE Computer Society, 2001, 846-849
    [49] Parkj H., Kim K. K., Yang Y. K.. Image fusion using multiresolution analysis. Proc of Geoscience and Remote Sensing Symposium. New Jersey: IEEE Press, 2001: 709-711
    [50] Yan D. M., Zhao Z. M. Wavelet decomposition applied to image fusion. Proc of Int Conf on Info-tech and Info-net. New Jersey: IEEE Press, 2001, 291-295
    [51] Wilson T. A., Rogers S. K., MYERS L R. Perceptual- based hyperspectral image fusion using multiresolution analysis. Optical Engineering, 1995, 34(11): 3154-3164
    [52] Nikolov S. G., Bull D. R., Canagarajah C. H., et al. Image fusion using a 3-D wavelet transform. Proc of Int Conf on Image Processing and Its Applications. Stevenage: IEE Press, 1999: 235-239
    [53] Graham L., Adhami R. Fusion of coincident images using spatial frequency discrimination by application of the wavelet transform. Proc of Int Conf on Time- Frequency and Time-Scale Analysis. New Jersey: IEEE Press, 1994: 326-329
    [54] Tseng D C, Chen Y. L., Liu M. S.. Wavelet- based multispectral image fusion. Proceedings of Geoscience and Remote Sensing Symposium. New Jersey, 2001, 1956-1958
    [55]全海英,杨源,张懿.一种基于第二代小波变换的图像融合算法.系统工程与电子技术, 2001, 23(5): 74-79
    [56] Yang X., Yang W. H., Pei J. H. Different focus points images fusion based on wavelet decomposition. Proc of Int Conf on Information Fusion. New Jersey: IEEE Press, 2000, MoD-3-MoD-8
    [57]李树涛,王耀南.基于树状小波分解的多传感器图像融合.红外与毫米波学报, 2001, 20(3): 219-222
    [58]蒋晓瑜,高稚允,周立伟.小波变换在多光谱图像融合中的应用.电子学报, 1997, 25(8): 105-108
    [59] Koren I, Laine A, Taylor F. Image fusion using steerable dyadic wavelet transform. Proc. of Int. Conf. on Image Processing. Los Alamitos: IEEE Computer Society, 1995: 232-235
    [60] Liu Z. , Tsukada K., Hansaki K., et al.. Image fusion by using steerable pyramid. Pattern Recognition Letters, 2001, 22(9): 929 - 939
    [61] Zhang Z, Blum R S.. A categorization of multiscale- decomposition- based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 1999, 87(8): 1315-1326
    [62] Oliver R.. Image sequence fusion using a shift invariant wavelet transform. Proc of Int Conf on Image Processing. Los Alamitos: IEEE Computer Society, 1997: 288-291. [63 ] Unser M. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Processing, 1995,11(4): 1549
    [64] J. NùňEZJ , Otazu X., Fors O.. , etal . Multiresolution- based image fusion with additive wavelet decomposition, IEEE Trans on Geoscience and Remote Sensing, 1999 , 37(3):1204-1211
    [65] Chibani Y.., Houaccine A. On the use of the redundant wavelet transform for multisensor image fusion. Proc of Int Conf on Electronics, Circuits and Systems . New Jersey: IEEE Press, 200: 442 - 445
    [66] Holschneider M., Tchamitchian P. Les Ondelettes en 1989[M], Paris: Springer-Verlag, 1990, 102
    [67]张晓东,李德仁,蔡东翔等.αtrous小波分解在边缘检测中的应用,武汉大学学报, 2001, 26(1): 29-33
    [68]李小春,陈鲸.多进制小波变换的快速构造及在遥感图像融合中的实现,计算机工程与应用, 2004, 7: 32-34,14
    [69]朱长青,王倩,杨晓梅.基于多进制小波的SPOT全色影像和多光谱遥感影像融合.测绘学报, 2000, 29(2): 132-136
    [70] G. Simone, C. Morabito, A. Farina. Radar image fusion by multiscale Kalman filter. in: ThirdInternation al Conference on Fusion, Fusion 2000, Paris, 2000, WeD3-10–WeD3-17
    [71] A.M. Signorini, A. Farina, G. Zappa. Application of multiscale estimation algorithm to SAR images fusion. in: International Symposium on Radar, IRS98, Munich, 1998. 9:1341–1352
    [72] J. Nunez, X. Otazu, O. Forse, et al.. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sensing, 1999, 37(3): 1204–1211
    [73]哈司巴干,马建文,李启清.小波局部高频替代融合方法.中国图象图形学报, 2002, 7(A)(10): 1012-1016
    [74]李军,周月琴,李德仁.小波变换用于高分辨率全色影像与多光谱影像的融合研究.遥感学报,1999, 3(2) :117-120
    [75]王洪华等.基于多进制小波变换的遥感影像融合.测绘学院学报, 2001(9)
    [76] Donoho D. L., and Johnstone LM.. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994, 81:425-455
    [77] Donoho D. L. and Johnstone LM., Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,81:425-455
    [78] Donoho D. L.. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, 1995,41(3): 613-627
    [79] Donoho D. L. and Johnstone LM., et al. Wavelet shrinkage: Asymptopia? J.RStatis.Soc.B., 1995, 57(2):301-337
    [80] Bruce A. G., GaoHong Ye. Understanding waveshrink: variance and bias estimation. http:www.mathsoft.com/wavelets.html
    [81] Jansen M., Malfait M., Bultheel A.. Generalized cross validation for wavelet thresholding. Signal Processing, 1997, 56(1): 33-44
    [82] Downie T. R., Silverman B. W.. The discrete multiple wavelet transform and thresholding methods. IEEE Trans. Signal Processing, 1998, 46(9): 2558-2561
    [83] Bui T. D., Chen G.. Translation invariant denoising using multiwavelets. IEEE Trans. Signal Processing, 1998, 46(12): 3414-3420
    [84] Krim H., Pesquet J. C.. On the statistics of best bases criteria. In: A ntoniadis A., Oppenheim Gedis. Wavelets in statistics of ecture Notes in Statistics, New York: Springer Verlag, 1995:193-207
    [85] Krim H., Tucker D., Mallat S. G. et al.. On denoising and best signal representation. IEEE Trans. Information Theory, 1999, 5(7): 2225-2238
    [86] Hansen M,, Yu Bin. Wavelet thresholding via MDL for Natural Images. IEEE Trans. Information Theory, 2000, 46(5):1778-1788
    [87] Jansen M., Bultheel A.. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise. IEEE Trans. Image Processing, 1999, 8(7): 947-953
    [88] Johnstone I. M., Silverman B. W.. Wavelet threshold estimators for data with correlated noise. Journal of royal statistics society series (B), 1997, 59: 319- 351
    [89] Krim H., Schick I. C.. Minimax description length f r signal denoising and optimized representation. IEEE Trans. Information Theory, 1999, 45(3): 898-908
    [90] B. Sanker, et al.. Multiresolution Biological Transient Extraction Applied to Respiratory Crackles. Comput. Boil. Med., 1996, 26(1):25-39
    [91] M.S.Crouse, R.D.Nowak, and R.G.Baraniuk. Wavelet-based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. Signal Processing, 1998, 46(4): 886-902
    [92] H.choi and R.Baraniuk. Image Segmentation Using Wavelet-domain Classification. Proc, SPIE, 1999,3816
    [93] Pan Quan, Zhang Pan, Dai Guanzhong et al. Two denoising methods by wavelet transform. IEEE Trans.on SignalProcessing, 1999, 47 (12): 3401-3406
    [94] Xu Yansun, Weaver J. et al. Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Trans. Image Processing, 1994, 3(6):743-758
    [95] Mallat S. G., zhong S. F.. Characterization of signals from multiscale edges. IEEE Transactions on PAMI ,1992 ,14(7): 710-732
    [96]刘宏兵,杨万海,马剑虹.图像小波边缘提取中阚值选取的一种自适应方法.西安电子科技大学学报(自然科学版),2000,27(3):294-296
    [97]杨垣,梁德群.多尺度边缘检测中滤波尺度自适应调整方法.西安交通大学学报,1998,32(11):20-23
    [98] Koening R., Dunn H. K., Lacy L. Y.. The sound spectography. Acoust. Soc. Amer., 1946, 18:19-49
    [99] Potter R. K., Kopp G., Green H. C.. Yisible speech. New York: Van Nostrand, 1947
    [100] Gabor D.. Theory of communication. IEE., 1946, 93:429-457
    [101] Ville J.. Theorie et applications de la notion de signal analytique. Cables et Transmission, 1948, 2A: 61-74
    [102] Page C. H.. Instanneous power spectra, Appl. Phys., 1953, 23:103-106
    [103] Mallat S. G.. Multifrenquency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech, signal processing, 1989, 37: 2091-2110
    [104] G. Strang and V. Strela, Short wavelets and matrix dilation equations. IEEE Trans. on Signal Processing, 1995, 43(1): 108-115
    [105] Jiang, Q.. On the regularity of matrix refinable functions. SIAM J. Math.Ana1., 1998, 29:1157-1176.
    [106]李树涛,王耀南,张昌凡.多传感器图像融合的客观评价与分析.仪器仪表学报, 2002, 23(6): 651-654
    [107]王海晖,彭嘉雄,吴巍.采用交互信息量评价遥感图像融合结果的方法.华中科技大学学报(自然科学版), 2003,31(12):
    [108] Gonzales, R. C. &Woods, R. E. Digital Image Processing. New York, USA: Addison 2 Wesley, 1993
    [109] Kenneth R. Castlmen, Digital Image Processing,北京:清华大学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700