中心城市公众出行交通动态信息采集、处理及共享技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国对智能交通系统认识的不断深入,关于先进的交通信息服务系统(ATIS,Advanced Transportation Information Service)的研究也越来越被人们所重视。研究的热点正逐步从理论和技术转向实际应用,各种ATIS系统的建设也逐渐开展起来。ATIS是ITS(智能交通系统)的核心部分,它建立在完善的信息网络基础之上,通过对各类信息加以处理后,向社会提供实时的道路交通信息、公共交通信息、换乘信息、交通气象信息、停车场信息以及与出行相关的其他信息,出行者可根据这些信息确定自己的出行方式和选择路线。公众出行交通信息服务作为ATIS的一个重要组成部分,主要由三个部分组成:信息采集、数据处理和信息发布,而信息采集是实现公众出行交通信息服务的前提条件。
     实现先进的公众出行交通信息服务的前提是能够实时、准确地识别道路交通运行状态,这就需要获得实时、充分、准确的道路网络的动态交通流信息。出行大众不仅仅满足于对单一的静态交通信息的获取,而是要求在出行前能够获得“点到点”式的交通决策信息、出行中“随机应变”的动态交通信息、出行后“行之有效”的交通反馈信息,而现有的交通动态信息采集存在着设备单一,基本上是通过一些固定的信息采集设备和人工方式获得的,采集到的信息孤立单一,没有很好的整合起来,覆盖面率低;而基于浮动车的交通信息采集技术作为目前国内外研究的重点,是对现有的动态交通信息采集技术的一种有效补充和完善。
     实现先进的公众出行交通信息服务除了需要实时动态交通信息之外,还必须实现从各交通信息化子系统中集成共享相关的出行服务信息。现有的各交通信息化子系统由于是在不同的时间、针对不同的业务需要而开发的,因而可能采用了不同的开发工具、编程语言、不同的操作系统平台、软件架构和通信协议以及不同的数据库平台等。由于一个业务请求很难在不同开发平台实现的子系统间实现有效的调用,由此产生了大量的信息孤岛,并将有用的数据信息封闭在了一个个子系统当中。在此背景下,基于面向服务的架构(SOA:service-oriented Architecture)应运而生,它通过把子系统能够实现的功能划分为粒度不同的服务,子系统之间的功能调用转换为对服务的调用来实现信息共享。
     本文正是从成都公众出行动态交通信息采集技术、信息共享技术、数据处理及信息发布的关键技术和系统实现的角度来进行研究与探讨的。
     本文的主要研究工作和创新性成果包括:
     (1)在对浮动车信息采集技术和基本原理、优缺点和组成结构等进行详细阐述的基础上,提出了浮动车数据采集地图匹配算法及路段行程时间算法,并通过具体实例验证了算法的可行性和优越性,较好地解决了基于浮动车技术实现动态交通信息采集和处理的问题。
     (2)针对浮动车信息采集技术在实际应用中存在的可靠性不高的问题,首次设计并提出了最小浮动车样本数量确定方法和“道路覆盖率与更新周期的关系模型”,并通过具体实例验证了方法与模型的实用性和有效性。
     (3)深入研究了成都市公众出行交通综合服务系统的信息来源,针对系统的异构性和信息共享实际需求,首次提出了基于SOA技术的“基于局部中心库与Web服务相结合的体系架构模型”和异构交通信息系统共享技术方案。成都市公众出行信息系统开发实践表明,该技术方案较好地解决了不同系统之间数据共享和应用互操作难题,同时,与其他技术方案相比,基于SOA的技术架构具有系统耦合度低、扩展性好、与平台和开发语言无关等诸多优点,是解决异构信息系统集成的理想选择。
     (4)通过对成都公众出行系统中交通出行数据处理和信息发布的关键技术研究,首次提出“基于蚁群和专家系统的多模式行程规划算法”以及“推/拉两种交通信息服务模式”,并首次提出了“基于神经网络和专家系统的智能化拉式服务模型”。
With the development of intelligent traffic systems, more and more attentions have been paid to ATIS(Advanced Transportation Information Service). The hotspot of the research is turning from theory and technology to practical application. Constructions of various ATIS systems have been also in proceeding. ATIS which is based on information network is the core of ITS and can supply timely information of road traffic, public traffic, traffic transferring, traffic weather, parking and other information related to traveling. People who will go out can decide their way and route according to those information. Public traveling information service which is an important part of ATIS is made up of three parts: information collection, data processing and information publishing. And information collection is the precondition to realize of public traveling information service.
     To implement advanced traffic information service for public traveling, the precondition is the identify of real-time and accurate road traffic running state. So the acquiring of real time, sufficient, accurate dynamic traffic information flow is very important. Nowadays, single, static traffic information can't satisfy travelers. What they need are 'point-to-point' traffic decision-making information before traveling, 'play to score' dynamic traffic information during traveling and 'effective' traffic feedback information. But the devices for current dynamic traffic information are all single ones, which haven't been conformed and have low overlay rate. The technology of collecting traffic information with floating car, which is a research with emphasis, is an effective supplement and perfection.
     In order to implement advanced traffic information service for travelers, besides the acquiring of dynamic traffic information, the integration of related information of traveling services is a necessity. However, subsystems for traffic information were developed in different time which have different operation functions. They were developed with different developing tools, different operating system platforms and different database platforms. Because of those above, the operation can hardly implement effective transferring among different subsystems. So the resulted 'information isolated island' problem lock useful information in a serials of subsystems. On this background, service oriented architecture (SOA) emerged as time requires, which divides the functions of subsystems in different granularities. So, to implement information sharing, the transferring of functions among different subsystems converted to the transferring of different services.
     This paper discusses technology of information sharing and collecting in the aspects of the collecting of dynamic traffic information, information sharing, data processing, information publishing and system implementation.
     Firstly, based on detailed explanation of basic principles, advantages, disadvantages and structures of technology about information collection using floating cars, algorithms of map-matching based on data collection through floating car and timing on section of journey are brought forward for the first time. The feasibility and superiority of the two algorithms are also validated through concrete examples. Those two algorithms can preferably solve problems of dynamic traffic information collection and disposition based on floating car technology.
     Secondly, methods of how to confirm minimum quantity of floating cars and "relation model between road overlay rate and update cycle" are designed and advanced for the first time so as to solve problem of low reliability in practical application of technology for floating car information collection. Practicability and validity of the two are also validated through concrete examples.
     Thirdly, information origins of integrated information service system for public traveling of Chengdu city are researched deeply. Aimed at the isomerous character and requirement of information sharing, "system architecture model based on local central database and web service" and scheme of information sharing among isomerous traffic information systems based on SOA technology are brought forward for the first time. Through the exploitation of public traveling information system of Chengdu city, problems of data sharing and operation application among different systems are solved successfully. At the same time, comparing with other schemes, architecture based on SOA is excellent at the aspects of lower system coupling, better expansibility, independent of platform and exploitation language, which is a good choice to solve problems for integrating of isomerous systems.
     Fourthly, through research of key technologies of data disposition of traffic traveling information and information publishing of Chengdu public traveling system, "algorithm of multi-pattern route layout based on ant colony and experts systems" and "two service modes of traffic information—pushing/pulling " are brought forward for the first time. At the same time, "intelligent model of pulling service based on Neural Network and expert system" is also advanced first.
引文
[1] 陆化普编著.智能运输系统[B].人民交通出版社.2002,1,1-9.
    [2] 孙国庆.中国公路ITS的发展[J].智能交通高层论坛.2003,9.
    [3] 杨荫凯.智能交通系统(ITS)概述及我国的发展对策选择[J].地理科学进展.1999,18(3),274-278.
    [4] Gabriel Baum, Alwar Narayanan. ITS Data Collection-The Next Steps. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [5] Nam Sun Kim, Yong Jung Lee, Seung Hwan Lee, Young Tae Oh. Development of a Diagnosis System for Inductive Loop Detector. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [6] Ajou Transportation Research Institute "Seoul Metropolitan traffic signal control systemdevelopment research project achievement 2th result report"(detector system development research), 1992.
    [7] Road traffic safety Authority, "Comparison & Analysis of performance for each loopdetector shape", 1994.
    [8] Lee chul-kee, Korean Society of Transportation' s journal 13th Volume No. 3. "The studyfor decision in optimal shape of loop detector for real time signal control", 1995.
    [9] Lee chul-kee, Korean Society of Transportation' s journal 14th Volume No. 3, "Comparison & evaluation of vehicle detector information for real time signal control", 1996.
    [10] Seoul Metropolitan Police Agency, "Real time signal control system function improvement project", 2000.
    [11] Seoul Metropolitan Police Agency, Road Traffic Safety Authority, "Real time signalcontrol system establishment work practical application design in Seoul City 2000", 2000.
    [12] Seoul Metropolitan Police Agency, "Real time signal control system detector repair work construction specifications", 2003.
    [13] AdolfD, "Traffic Flow Fundamentals", 1990. May.
    [14] William R. McShane, Roger P. Roess, Elena S. Prassas, "Traffic Engineering", Prentice hall, 1998.
    [15] Lawrence A. Klein, Placentia, California, "Sensor Technologies and Date Requirements for ITS", 2001. May.
    
    [16] Zhongren Wang, Chiu Liu. An Evaluation of the Loop Detector Method for Travel Time Delay Estimation. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [17] Akihiko Yoshizaki,Yuji Ohno,Akio Kuniyasu. Development and Utilization ofDynamic OD Information Display Equipment that Uses Information Collected by Infrared Beacons. Proc. of the 1 lth World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [18] Yuichi Taniguchi,Hideaki Shiranaga. Development of a Far Infrared Vehicle Sensor. Proc. of the 1 lth World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [19] XuDong Zhang,JiaJie Wang,TingJian Fang. Improving the Mixture Gaussian Model for Video-based Traffic Flow Detection System. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [20] A Dempster,N. Laird,and D. Rubin. "Maximum likelihood from incomplete datavia the EM algorithm, "Journal of the Royal Statistical Society, 39 (Series B):1-38,1977.
    
    [21] Christof Ridder, Olaf Munkelt,and Harald Kirchner. "Adaptive BackgroundEstimation and Foreground Detection using Kalman-Filtering, "Proceedings ofInternational Conference on recent Advances in Mechatronics, ICRAM'95, UNESCO Chair on Mechatronics, 193-199,1995.
    
    [22] C. Stauffer,W.E.L. Grimson. "Adaptive Background Mixture Models for Real-Time Tracking". In CVPR'99, Vol.2,pp.246-252,June 1999.
    
    [23] M. Harville, G. Gordon, and J. Woodfill. Foreground segmentation usingadaptive mixture models in color and depth. In Workshop on Detection and Recognition of Events in Video., 2001.
    
    [24] D. Roller, K. Danilidis, H.H. Nagel, "Model-Based Object Tracking in Monocular Image Sequence of Road Traffic Scenes", Int. Journal of Computer Vision, 10:3,257-281,1993.
    
    [25] T. Horprasert, D. Harwood and L.S. Davis, "A statistical Approach for Real-Time Robust Background Subtraction and Shadow Detection," in Proceedings of IEEE ICCV'99 FRAME-RATE Workshop, 1999.
    
    [26] J. Stauder, R. Mech, and J. Ostermann, "Detectiom of moving cast shadows for object segmentation," IEEE Transactions on Multimedia, vol. 1, no. 1, pp. 65-76,Mar. 1999.
    
    [27] C. Stauffer, W.E.L. Grimson. "Adaptive Background Mixture Models for Real-Time Tracking". In CVPR'99, Vol.2,pp.246-252,June 1999.
    
    [28] M. Harville, G. Gordon, and J. Woodfill. Foreground segmentation using adaptive mixture models in color and depth. In Workshop on Detection and Recognition of Events in Video., 2001.
    
    [29] Lipton, Fujiyoshi and Patil, "Moving Target Classification and Tracking fromReal-time Video" IEEE Workshop on Applications of Computer Vision (WACV), Princeton NJ, October 1998, pp.8-14.
    
    [30] Takehiko Kato, Yoichiro Anzai,Hidenori Yamamoto. Development and Applications of an Integrated Video Imaging Vehicle Detector. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [31] Makoto Toyota,Itoji Sameda,Susumu Yamada,Masahiko Wakai,Souichirou Tamura. Feasibility Study for Detecting Traffic Counts using Image Processing System. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [32] Zhaosheng Yang, Shoufeng Lu , He Zhang . Research on the Method used in Predicting the Traffic Volume on Non-Detector Intersections. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [33] Koji Wada. Research, Development and Field Testing of the Probe Car Information System (IV). Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [34] Wada, K. and Fujii, H., "Research, Development and Field Testing of the Probe Car Information System (II)", Proc. of the 9th World Congress on ITS, Chicago, USA(2002).
    
    [35] Tajima, T., Kawasato, T., Adchi, S., "A Study of Sensor Fusion Technology for Traffic Information Services Employing Wide Range Communication Media", Proc. of the 9th World Congress on ITS, Chicago, USA(2002).
    
    [36] Wada, K., "Research, Development and Field Testing of the Probe Car Information System (III)", Proc. of the 10th World Congress on ITS, Madrid, Spain (2003).
    
    [37] Masakuni Tsuge , Masayuki Arai. Practical Use of Floating Car Data and itsBenefits. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [38] Takashi Fujita, Hidenori Tsukahara, Akinori Satou. Effectivness Evaluation of Probe-Car System. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [39] Takumi Fushiki, Takayoshi Yokota,Kazuya Kimita,Masatoshi Kumagai,Itaru Oda. Study on Density of Probe Cars Sufficient for Both Level of Area Coverage and Traffic Information Update Cycle. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [40] Tetsuhiro Ishizaka ,Atsushi Fukuda,Sorawit Narupiti,Chawalit Tipagornwong. Study on Traffic Information Collection using Probe Vehicle in Developing Countries. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [41] Hirotaka Nishi ,Satoshi Niikura,Shinya Adachi ,Osamu Miyawaki. Examining of the Possiblity of Collecting Probe Data using Infrared Beacons. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [42] Makoto Mochizuki,Shinya Adachi ,Teruyuki Tajima. Verification of TrafficInformation Generated from Probe Data. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [43] Shinya Adachi,Rie Ikeda,Hirotaka Nishi, Seizi Yoshida,Yoshiyuki Takabe. Compression Method for Probe Data. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [44] Hisashi Tamura ,Osamu Fujita,Tsukasa Adachi ,Toshihiko Tabata. Construction of Probe Vehicle Data-based Integrated Database System. Proc. of the 1 lth World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [45] Kenji Kunimatsu,Yoshiki Ueyama, Kazuhiro Yanase. Maintenance of Map Database using Probe Car Data. Proc. of the 1 lth World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [46] Takeshi Morita,Shigeki Nishimura,Kenji Tenmoku,Hiroshi Shimoura,Taro Hirai. Estimate of Bus Routes with Probe Car Data. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [47] Rui Wang ,Hideki Nakamura,Nobushige Izu. Estimation of Urban Street Geometric Characteristics by using Probe Vehicle Data. Proc. of the 1 lth World Congress on Intelligent Transport Systems, Nagoya, 2004.
    
    [48] Lorkowski, S., et al, "Towards Area-Wide Traffic Monitoring-Applications Derived from Probe Vehicle Data", in Proceedings of the 8th International Conference on Applications of Advanced Technologies in Transportation (AATT), ASCE, Beijing, May 2004.
    
    [49] Roess, B.P., et al, "Traffic Engineering", Prentice Hall, New Jersey, U.S., pp. 100-101.
    
    [50] Masao Kuwahara,Edward Chung,Tomotaka Ishid. Fundamental Study on the Issues of using Probe Data for OD Estimation and Route Identification. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [51] Tomio Miwa, Yusuke Tawada, Toshiyuki Yamamoto, Takayuki Morikawa. En-Route Updating Methodology of Travel Time Prediction using Accumulated Probe-Car Data. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [52] Ryota Horiguchi, Koji Wada. Effective Probe Data Transmittal with Detection of Congestion Pattern. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [53] Shigeyuki Nakamae, Masanori Sawayama, Kaori Tsujio A Useful Bus Information System that Helps Reduce Traffic Congestion. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [54] Hisashi Tamura, Osamu Fujita, Tsukasa Adach,Toshihiko Tabata. Intersection Congestion Evaluation System Development utilizing Probe Car Data. Proc. of the 11th World Congress on Intelligent Transport Systems, Nagoya, 2004.
    [55] 姜桂艳.动态交通流信息采集系统若干问题研究.硕士论文,吉林大学,2004年3月.
    [56] 徐亮.动态交通信息检测器选择及其空间位置优化问题研究.硕士论文,吉林大学,2004年3月.
    [57] 丁展如.交通信息采集设备网络传输模块的设计和实现.硕士论文,浙江大学,2004年3月.
    [58] 路加.交通拥挤的度量方法与基于浮动车的交通拥挤检测.硕士论文,清华大学,2003年12月.
    [59] 董佑平.基于交通信息的城市路网最优路径研究.硕士论文,山东科技大学,2004年5月.
    [60] 林增刚.交通信息采集与区域交通网络优化系统的设计与实现.硕士论文,西北大学,2003年5月.
    [61] 席建锋.基础动态交通信息采集技术、处理方法及组织管理研究.吉林大学硕士论文,2003.
    [62] 李进,刘智勇,黄道君.基于视频图像处理技术的道路交通参数检测[J].邑大学学报.2000,14(3):49~54.
    [63] 翟润平,战俊.视频检测技术检测交通流参数的原理与方法[J].中国人民公安大学学报.1998(1):24~27.
    [64] 张志勇,黄爱民,刘建平.视频智能交通系统.计算机工程与应用[J].2001(6):113~116
    [65] 陈德望,高海军,陈龙等.城市高速道路微波检测器RTMS的检测精度分析[J].公路交通科技.2002,19(5):122~124.
    [66] 张文傅.交通信号微波车辆检测器的使用.山西交通科技.1999年第6期
    [67] 李德仁,陈小明,郭丙轩,仲思东.车载GPS道路信息采集和更新系统研究[J].武汉测绘科技大学学报.2000,25(2):96~99.
    [68] 刘国静,基于SOA架构的企业应用研究[D],华东师范大学2006-09-11
    [69] 李锦棠,企业SOA服务集成的研究与设计[D],广东工业大学,2006-07-24
    [70] 陶飞飞,异构平台下SOA的企业间应用研究与实现[D],河海大学,2006-06-01;
    [71] 杨恒宇,基于SOA的WEB应用系统的研究与实现[D],合肥工业大学,2006-07-13;
    [72] 齐畅,基于SOA的数字资源管理与服务平台的设计与实现[D],清华大学,2006-06-29;
    [73] 缪炎,SOA架构下城市规划地理信息系统的研究与实现[D],武汉大学,2006-03-27;
    [74] 郭春燕,基于SOA的企业应用的研究与实现[D],大连理工大学,2006-02-23;
    [75] 张志雄,基于SOA的移动电子商务系统的研究[D],西北工业大学,2005-11-08;
    [76] 魏东,基于SOA体系结构软件开发的研究与实现[D],西北大学;2005-11-18
    [77] 范新灿,SOA架构在Web扩展服务的探讨[J],应用技术;
    [78] 杜攀,徐进 SOA体系下细粒度组件服务整合的探讨[J],计算机应用,2006(3):699-702;
    [79] 孟励,SOA与面向构件技术[J],应用技术,2005,12;
    [80] 吕希艳,张润彤 基于SOA的企业信息资源整合[J],中国科技论坛,2006(2):103-105;
    [81] 马华,李建华基于SOA的企业应用集成系统[J],计算技术与自动化,2005(4):87-89;
    [82] 周珂,基于SOA软件架构的企业应用[J],微机发展,2005(11):52-54;
    [83] 廖建军,胡宏涛基于SOA实现企业应用集成[J],微机发展,2005(9):114-116;
    [84] 魏东,陈晓江等,基于SOA体系结构的软件开发方法研究[J],微电子学与 计算机,2005(6):73-76;
    [85] 吴家菊,刘刚等,基于Web服务的面向服务SOA架构研究[J],现代电子技术,2005(14):1-5;
    [86] 朱海萍,李增智等,基于面向服务体系结构SOA的业务管理研究[J],北京邮电大学学报,2004(12):190-195
    [87] Wikipedia http://en.wikipedia.org/wiki/Service-oriented_architecture;
    [88] 陆化普编著.智能运输系统[B].人民交通出版社.2002,1,1~9.
    [89] 胡明伟,缪立新,王耕非.北京市交通流数据采集、处理/分析和信息发布系统设计[J].公路交通科技.2003.04,Vol20(2):77~80.
    [90] 刘伟铭编著.高速公路系统控制方法[B],人民交通出版社.1998,15~17.
    [91] Lawrence A. Klein. Sensor Technologies and Data Requirements for ITS[B]. Arrech House Boston &London, 2001.
    [92] Detection Technology For IVHS [R]. U. S. Deportment of Transportation Federal Highway Administration, Volume I: Final Report, 1996.
    [93] 李进,刘智勇,黄道君.基于视频图像处理技术的道路交通参数检测[J].五邑大学学报.2000,14(3):49~54.
    [94] 张志勇,黄爱民,刘建平.视频智能交通系统.计算机工程与应用[J].2001(6):113~116.
    [95] 翟润平,战俊.视频检测技术检测交通流参数的原理与方法[J].中国人民公安大学学报.1998(1):24~27.
    [96] 陈德望,高海军,陈龙等.城市高速道路微波检测器RTMS的检测精度分析[J].公路交通科技.2002,19(5):122~124.
    [97] 美国休斯测试中心.常见交通检测技术性能比较报告.美国联邦高速道路管理局.1994.
    [98] 汤灏.车辆检测器技术的选用[J].中国交通信息产业.2004,03,45:76~77.
    [99] 杨兆升编著.城市交通流诱导系统理论与模型[B].2000,01,219~230.
    [100] 中国公路学会《交通工程手册》编委会.交通工程手[B],人民交通出版社.1998,5,1159~1169.
    [101] 李作敏,杜颖编著.交通工程学[B].人民交通出版社.1999,02,45~46.
    [102] 徐吉谦编著.交通工程总论[B].1999,08,69~70.
    [103] 李德仁,陈小明,郭丙轩,仲思东.车载GPS道路信息采集和更新系统研究[J].武汉测绘科技大学学报.2000,25(2):96~99.
    [104] S Turksma. The various uses of floating car data[J]. Transport information and control Conference Publication. IEE, No.472, 2000:51~55.
    [105] 北京大恒公司GPS接收机(DH2000型号)用户手册.
    [106] 谭浩强主编.Visual Basic语言教程[B].电子工业出版社.2000,10.
    [107] 张冰,朱志宇,刘维亭.用VB实现GPS接收机与地理信息软件MapInfo之间的通讯[J].华东船舶工业学院学报.2000,14(5):22~26.
    [108] 胡静.Windows环境下计算机与GPS串行通信程序的开发[J].计算机应用研究.2002,3:89~93.
    [109] 罗德安,廖丽琼.一种车载GPS系统坐标转换共识及其应用[J].西南交通大学学报2001,31(4):365~368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700