表面活性剂水溶液池核沸腾传热强化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源紧缺和节能减排的急迫性要求尽可能提高沸腾传热设备的传热效率,沸腾传热强化的基础研究因此具有重要的理论意义和应用价值。添加表面活性剂的沸腾传热强化技术具有添加量少、强化效果显著和操作简单的特点而受到国内外的普遍关注,并成为传热科学研究中的热点课题。
     本文选定离子型表面活性剂SDS和CTAB水溶液、非离子型表面活性剂TritonX-114和Triton X-100水溶液为实验工质,对表面活性剂溶液物性、沸腾过程中蒸汽携带表面活性剂特性、表面活性剂溶液池核沸腾传热强化特性、表面活性剂溶液池核沸腾传热的影响参数识别体系构建、沸腾工况下表面活性剂溶液表面张力及接触角的理论计算、表面活性剂溶液池核沸腾换热关联式的开发等方面开展了系统的实验研究和理论研究,取得了一些具有学术意义和实用价值的研究成果:
     (1)针对选定的表面活性剂及其水溶液,测定了与沸腾传热相关的溶液物性,得出表面活性剂种类、溶液浓度和溶液温度等参数对热稳定性、浊点、表面张力、动力粘度和接触角的影响规律;考虑到沸腾过程中的蒸汽携带表面活性剂效应对表面活性剂溶液沸腾传热的影响,开展了沸腾过程中蒸汽携带表面活性剂的实验研究,获得了蒸汽携带表面活性剂效应对表面活性剂溶液沸腾传热强化效果的作用规律,为进一步研究表面活性剂溶液池核沸腾传热强化特性奠定基础。
     (2)对影响表面活性剂溶液池核沸腾传热的参数进行科学分类,分类考察并获得了不可变参数、可变参数和外部参数及参数耦合对表面活性剂溶液池核沸腾传热强化效果的作用机制,在此基础上构建了表面活性剂水溶液池核沸腾传热的影响参数识别体系。就影响参数的主次关系而言,溶液浓度、热流密度、动态表面张力和动力粘度是影响表面活性剂水溶液池核沸腾传热的关键影响参数;分子量、接触角、聚氧乙烯基团数(EO基团数)、浊点是重要影响参数;蒸汽携带表面活性剂效应、表面活性剂及其水溶液的热稳定性是不确定性影响参数。就影响参数的作用权重而言,相同条件下关键影响参数、重要影响参数和不确定性影响参数的影响权重依次降低。分析比较不同种类表面活性剂水溶液池核沸腾传热强化特性时,在区分表面活性剂电离特性的前提下不仅要考虑影响参数的主次关系,同时也要考虑影响参数的参数值变化方向及变化幅度。
     (3)鉴于溶液物性准确确定对传热定量分析的重要性和沸腾工况下表面活性剂水溶液表面张力及接触角的现有测定手段的局限性,对沸腾工况下表面活性剂水溶液的表面张力和接触角开展了理论计算研究。基于沸腾工况下表面活性剂的界面吸附传质特征分析,建立了沸腾工况下表面活性剂的界面吸附模型,借助吉布斯(Gibbs)吸附方程,确定了沸腾工况下表面活性剂水溶液表面张力的理论计算式;同时根据固液界面的表面活性剂吸附位状态分析和固汽界面的吸附特征分析,借助润湿方程,确定了沸腾工况下表面活性剂水溶液接触角的理论计算式。根据沸腾工况下表面活性剂水溶液表面张力和接触角的理论计算式,对沸腾工况下的SDS、CTAB、Triton X-114和Triton X-100水溶液的表面张力和接触角进行了理论计算,结果表明:和常温相比,沸腾工况下表面活性剂水溶液的表面张力显著降低;SDS、Triton X-114和Triton X-100水溶液的接触角均小于相同条件下水的接触角,CTAB水溶液则相反;沸腾工况下热流密度对表面张力和接触角的影响体现在较高热流密度范围内。
     (4)用经典池核沸腾换热关联式对本文实验结果进行了预测,发现经典池核沸腾换热关联式基于的换热模型的片面性使其不能很好地预测实验结果。为开发准确度高、通用性好的表面活性剂溶液池核沸腾换热关联式,在实验研究的基础上分析获取了影响表面活性剂溶液池核沸腾换热的无量纲数,开发了新的无量纲数形式的表面活性剂溶液池核沸腾换热关联式,新建换热关联式计算结果与实验结果吻合良好。
The urgency of energy shortages, energy savings and environmental protections requires improving the heat transfer efficiency of boiling heat transfer equipments as much as possible, and the baisc research of boiling heat transfer enhancements thus has important theoretical significance and application value. The boiling heat transfer enhancements with the additives of surfactants have the merits such as small additons, siginificant heat transfer enhancement effect and simple operation, so have aroused public concern around the world and are becoming one of the focuses in the heat transfer scientific research.
     In this paper, heat transfer enhancement perfromances of nucleate pool boiling with different surfactant additives, two ionic surfactants, sodium dodecyl sulfate(SDS) and cetyltrimethylammonium bromide(CTAB), and two nonionic surfactants, Triton X-114 and Triton X-100, are presented. The main research contents include:the experimental investigations of physical properties, steam carrying effects and nucleate pool boiling heat transfer, the theorectical researches of surface tensions and contact angles of aqueous surfactant solutions under boiling conditions and the establishment of heat transfer correlations of nucleate pool boiling of aqueous surfactant solutions. Based on experimental and theoretical investigations, some achievements with scientific significance and values have been acquired:
     (1) Physical properties related to boiling heat transfer are investigated based on the selected aqueous surfactant solutions, and the effect law of surfactant species, concentrations and temperature of surfactant solutions on the thermal stability, cloud point, surface tensions, dynamic viscosity and contact angles is achieved. Considering the influence of steam carrying effects on boing heat transfer of surfactant solutions, experimental studies of steam carrying effects during boiling are conducted and the action rules of steam carrying effects on boiling heat transfer enhancement of surfactant solutions are obtained. This work provides a basis for further study the characteristics of boiling heat transfer enhancements of surfactant solutions.
     (2) Based on the scientific classification of the influence parameters of surfactant solutions boiling heat tranfer, the mechanisms of single parameter and the interactions of all kinds of parameters on boiling heat transfer of surfactant solutions are investigated and the parameters recognition system for nucleat pool boiling heat transfer of surfactant solutions is established. As to the major and minor relationships of influence parameters, concentrations, heat flux, dynamic surface tensions and dynamic viscosity are the key influence parameters, molecular weight, ionic nature, cloud point and ethylene oxide(EO) group number are the important parameters, steam carrying effect and thermal stability are the uncertainty parameters. As to the weight relationships of influence parameters, the weight is becoming lower in the order of key parameters, important parameters and uncertainty parameters at the same conditions. When considering the boiling heat transfer enhancements of different species surfactants, it should be noted that both the major and minor relationships of parameters and the change directions and amplitude of parameter value are to be considered on the basis of the same ionic nature of surfactants.
     (3) In view of the importance of accurate determination of surfactant solutions physical properties and the limitation of measuring method for surface tensions and contact angles of surfactant solutions under boiling conditions, the theorectical studies of surface tensions and contact angles of surfactant solutions under boiling conditions are carried out. A predicted model of interfacial adsorption is developed based on the mass transfer analysis of interfacial adsorption during boiling of surfactant solutions. Taking account of the Gibbs adsorption equation, analysis of interfacial adsorption of surfactant solutions on solid-liquid and solid-vapor interface and Young equation, the theorectical computation formulas of surface tensions and contact angles under boiling conditions are achieved and the calculation results show that the value of surface tensions under boiling conditions is much lower when comparing with the value of surface tensions under normal conditions. The contact angles of SDS, Triton X-114 and Triton X-100 solutions are lower than water at the same conditions, and the CTAB solutions do the contrast. The influences of heat flux on surface tensions and contact angles exist at high heat flux range.
     (4) Typical heat transfer correlations for nucleate pool boiling are used to predict experimental data of this paper, but the one-sidedness of heat transfer models in typical correlations leads to the predicted value quite different to the experimental data. Then, a new heat transfer correlations with dimensionless numbers form for nucleate pool boiling of aqueous surfactant solutions is estabished by the regression of nucleate boiling heat transfer experiments data, and the new heat transfer correlations are compared with current available data and experimental data with good cosistency.
引文
[1]林宗虎,汪军,李瑞阳等.强化传热技术.北京:化学工业出版社.2007.
    [2]Manglik R M. On the advancements in boiling, two-phase flow heat transfer, and interfacial phenomena-Preface. Journal of Heat Transfer,2006,128(12):1237-1242.
    [3]Cheng L, Mewes D, Luke A. Boiling phenomena with surfactants and polymeric additive:A state-of-the-art review. International Journal of Heat and Mass Transfer.2007,50(13-14): 2744-2771.
    [4]Bergles A E. Heat transfer enhancement:the encouragement and accommodation of high heat fluxes. Journal of Heat Transfer,1997,119:8-19.
    [5]林瑞泰.沸腾换热.北京:科学出版社,1988.
    [6]杨世铭.传热学.北京:高等教育出版社,第二版,1987.
    [7]Collier J G, Thome J R. Convective boiling and condensation. New York:Oxford University Press Inc.,1994.
    [8]Kandlikar S G, Shoji M, Dhir V K. Handbook of phase change:boiling and condensation. Philadelphia:Taylor & Francis Inc.,1999.
    [9]Yang Y M. Boiling heat transfer enhancement by surfactant additives. Journal of the Chinese Institute of Chemical Engineers,2004,35(5):495-508.
    [10]Wasekar V M, Manglik R M. A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. Journal of Enhanced Heat Transfer,1999,6: 135-150.
    [11]Fainerman V B, Mobius B, Miller R. Surfactant:chemistry, interfacial properties, applications. Amsterdam:Elsevier Science BV,2001.
    [12]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [13]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003.
    [14]Holmberg K, Jonsson B, Kronberg B, et al著,韩丙勇,张学军译.水溶液中的表面活性剂和聚合物.北京:化学工业出版社,2005.
    [15]金谷.表面活性剂化学.合肥:中国科学技术出版社,2008.
    [16]Hetsroni G Boiling of water and surfactants in confined space. ASME Conference Proceedings of the 9th Biennial Conference on Engineering Systems Design and Analysis, 2008,4:185-192.
    [17]Hetsroni G, Mosyak A, Rozenblit R, et al. Natural convection boiling of water and surfactant solutions having negligible environmental impact in vertical confined space. International Journal of Multiphase Flow,2009,35(1):20-33.
    [18]Hetsroni G, Gurevich M, Mosyak A, et al. Effect of surfactant concentration on saturated flow boiling in vertical narrow annular channels. International Journal of Multiphase Flow, 2007,33(11):1141-1152.
    [19]Hetsroni G, Mosyak A, Pogrebnyak E, et al. Natural convection boiling of water and surfactants in narrow horizontal annular channels. International Journal of Multiphase Flow 2007,33(5):469-483.
    [20]Hetsroni G, Gurevich M, Mosyak A, et al. The effect of surfactants on boiling heat transfer. Journal of Enhanced Heat Transfer,2006,13(2):185-195.
    [21]Hetsroni G, Mosyak A, Pogrebnyak E, et al. Bubble growth in saturated pool boiling in water and surfactant solution. International Journal of Multiphase Flow,2006,32(2):159-182.
    [22]Klein D, Hetsroni G, Mosyak A. Heat transfer characteristics of water and APG surfactant solution in a micro-channel heat sink. International Journal of Multiphase Flow,2005,31(4): 393-415.
    [23]Hetsroni G, Gurevich M, Mosyak A, et al. Boiling enhancement with environmentally acceptable surfactants. International Journal of Heat and Fluid Flow,2004,25(5):841-848.
    [24]Hetsroni G, Zakin J L, Gurevich M, et al. Saturated flow boiling heat transfer of environmentally acceptable surfactants. International Journal of Multiphase Flow,2004, 30(7-8):717-734.
    [25]Hetsroni G, Gurevich M, Mosyak A, et al. Subcooled boiling of surfactant solutions International Journal of Multiphase Flow,2002,28(3):347-361.
    [26]Hetsroni G, Zakin J L, Lin Z, et al. The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. International Journal of Heat and Mass Transfer, 2001,44(2):485-497.
    [27]Zhang J T, Manglik R M. Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. Journal of Heat Transfer,2005,127(7):684-691.
    [28]Zhang J T, Manglik R M. Effect of ethoxylation and molecular weight of cationic surfactants on nucleate boiling in aqueous solutions. Journal of Heat Transfer,2004,126(1):34-42.
    [29]Wasekar V M, Manglik R M. Short-time-transient surfactant dynamics and Marangoni convection around boiling nuclei. Journal of Heat Transfer,2003,125(5):858-866.
    [30]Wasekar V M, Manglik R M. The influence of additive molecular weight and ionic nature on the pool boiling performance of aqueous surfactant solutions. International Journal of Heat and Mass Transfer,2002,45(3):483-493.
    [31]Manglik R M, Wasekar V M, Zhang J T. Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Experimental Thermal and Fluid Sciences,2001, 25(1-2):55-64.
    [32]Wasekar V M, Manglik R M. Pool boiling heat transfer in aqueous solutions of an anionic surfactant. Journal of Heat Transfer,2000,122(4):708-715.
    [33]Zhang J T, Manglik R M. Visualization of ebullient dynamics in surfactant solutions. Journal of Heat Transfer,2003,125(4):547.
    [34]Inoue T, Teruya Y, Monde M. Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent. International Journal of Heat and Mass Transfer,2004,47(25):5555-5563.
    [35]Jeong Y H, Chang W J, Chang S H. Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids. International Journal of Heat and Mass Transfer,2008, 51(11-12):3025-3031.
    [36]Tzan Y L, Yang Y M. Experimental study of surfactant effects on pool boiling heat transfer. Journal of Heat Transfer,1990,112(1):207-212.
    [37]Wu W T, Yang Y M, Maa J R. Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives. Journal of Heat Transfer,1995,117(2):526-529.
    [38]Yang Y M, Lin C Y, Liu M H, et al. Lower limit of the possible nucleate pool-boiling enhancement by surfactant addition to water. Journal of Enhanced Heat Transfer,2002, 9(3-4):153-160.
    [39]Wu W T, Yang Y M, Maa J R. Nucleate pool boiling enhancement by means of surfactant additives. Experimental Thermal and Fluid Science,1998,18:195-209.
    [40]Yang Y M, Maa J R. On the criteria of nucleate pool boiling enhancement by surfactant addition to water. Chemical Engineering Research and Design,2001,79(4):409-416.
    [41]王晔春,彭晓峰,郭烈锦.表面活性剂强化双组分混合工质沸腾换热实验研究.工程热物理学报,2008,10:1708-1711.
    [42]Rozenblit R, Gurevich M, Lengel Y, et al. Flow patterns and heat transfer in vertical upward air-water flow with surfactant. International Journal of Multiphase Flow,2006,32:889-901.
    [43]Zhang J. Experimental and computational study of nucleate pool boiling heat transfer in aqueous surfactant and polymer solutions. University of Cincinnati,2004.
    [44]Wang A T, Hartnett J P. Influence of surfactants on pool boiling of aqueous polyacrylamide solutions. Warme Stoffubertrag,1992,27:245-248.
    [45]Huplik V, Paithby G D. Surface-tension effects in boiling from a downward-face. Journal of Heat Transfer,1972,94:403-409.
    [46]Morgan A I, Bromley L A, Wilke C R. Effect of surface tension on heat transfer in boiling. Industrial and Engineering Chemistry.1949,41:2767-2769.
    [47]Wasekar V M. Nucleate pool boiling heat transfer in aqueous surfactant solutions. University of Cincinnati,2001.
    [48]Iliev T, Dushkin C D. Dynamic surface tension of micellar solutions studied by the maximum bubble pressure method. Colloid Polym Science,1992,270:370-376.
    [49]Hernandez-Acasta S. Capillary rheometyr of micellar aqueous solutions. Journal of Non-Newtonian Fluid Mechnics,1999,85:229-247.
    [50]Wang C H, Dhir V K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Journal of Heat Transfer,1993,115:659-669.
    [51]Jung J Y, Kwak H Y. Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness. International Journal of Heat and Mass Transfer,2006, 49(23-24):4543-4551.
    [52]Melendez E, Reyes R. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer. International Journal of Thermal Sciences,2006,45: 796-803.
    [53]莫小刚,刘尚营.非离子表面活性剂浊点的研究进展.化学通报,2001,8:483-487.
    [54]Peng H, Ding G, Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science,2011,35(6):276-280.
    [55]宋新南,顾加强,胡自成等.表面活性剂水溶液池沸腾换热试验.江苏大学学报(自然科学版),2010,31(2):184-188.
    [56]Koshy L, Saiyad A H, Rakshit A K. The effect of various foreign substances on the cloud point of Triton X-100 and Triton X-114. Colloid Polym Science,1996,274:582-587.
    [57]Akbsas H, Batigoc C. Spectrometric studies on the cloud point of Triton X-45. Fluid Phase Equilibria,2009,279:115-119.
    [58]Inoue T, Teruya Y, Ishii M, et al. Enhancement of pool boiling heat transfer in water and ethanol/water mixtures (effect of surface-active agent). Heat transfer-Asian Research,2004, 33(4):229-244.
    [59]Wu W T, Yang Y M, Maa J R. Effect of surfactant additives on pool boiling of lithium bromide solution. International Journal of Communication Heat and Mass Transfer,1998, 25(8):1127-1134.
    [60]Wen D S, Wang B X. Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. International Journal of Heat and Mass Transfer,2002,45:1739-1747.
    [61]于晶华,王丽娟,侯玲.添加剂对乙二醇水溶液沸腾传热的研究.沈阳工业大学学报,2005,27(2):232-237.
    [62]Stroebe G W, Baker E M, Badger W L. Boiling-film heat transfer coefficients in a long-tube vertical evaporator. Industrial and Engineering Chemistry,1939,31(2):200-206.
    [63]Morgan A I, Bromley L A, Wilke C R. Effect of surface tension on heat transfer in boiling. Industrial and Engineering Chemistry,1949,41(12):2767-2769.
    [64]Lee J, Jeong Y H and Chang S H. CHF enhancement in flow boiling system with TSP and boric acid solutions under atmospheric pressure. Nuclear Engineering and Design,2010, 240(10):3594-3600.
    [65]Jeong Y H, Sarwar M S, Chang S H. Flow boiling CHF enhancement with surfactant solutions under atmospheric pressure. International Journal of Heat and Mass Transfer,2008, 51(7-8):1913-1919.
    [66]Inoue T, Monde M, Kuwahara T, et. al. Enhancement of nucleate pool boiling heat transfer in ammonia/water mixtures (effect of surface-active agent). Heat Transfer-Asian Research,2011, 40(1):89-98.
    [67]纪献兵,徐进良.表面活性剂对池沸腾换热的影响.工程热物理学报,2008,29(12):2049-2052.
    [68]Liu T, Sun X, Li X, et al. Neural network analysis of boiling heat transfer enhancement using additives. International Journal of Heat and Mass Transfer,2002,45(25):5083-5089.
    [69]刘大庆,蔡振业,林纪方.添加剂强化沸腾传热性能的综合评价及预测.大连理工大学 学报,1995,35(2):145-150.
    [70]Liu T, Cai Z, Lin J. Enhancement of nucleate boiling heat transfer with additives. Heat Transfer Enhancement and Energy Conservation. New York:Hemisphere,1990.
    [71]Chen G, Quan X, Cheng P. Effects of surfactant additive on flow boiling over a microheater under pulse heating. International Journal of Heat and Mass Transfer,2010,53(7-8): 1586-1590.
    [72]Johansson M, Leifer I, Vamling L, et al. Falling film hydrodynamics of black liquor under evaporative conditions. International Journal of Heat and Mass Transfer,2009,52(11-12): 2769-2778.
    [73]Quinn G, Cetegen B M. Effect of surfactant addition on boiling heat transfer in a liquid film flowing in a diverging open channel. International Journal of Heat and Mass Transfer,2010 53(1-3):245-253.
    [74]Tao Y, Huai X, Wang, L, et al. Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles. Applied Thermal Engineering,2011,31(10):1790-1797.
    [75]Jontz P D, Myers J E. The effect of dynamic surface tension on nucleate boiling coefficient. AIChE Journal.1960,6(1):34-38.
    [76]Wang T A T, Hartnett J P. Pool boiling of heat transfer from a horizontal wire to aqueous surfactant solutions. Proceedings of 10th International Heat Transfer Conference, Brighton, 1994, pp:177-182.
    [77]Qiao Y M, Chandra S. Experiments on adding a surfactant to water droplets boiling on a hot surface. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1997,453(1959):673-689.
    [78]侯玲,宋永吉,刘天庆.添加剂对乙二醇-水溶液沸腾传热的强化.化学工业与工程,2000,17(6):349-353.
    [79]马淑云,侯玲.添加剂对乙二醇二元、三元混合物沸腾传热的强化.化工技术与开发,2004,33(1):30-32.
    [80]Qiao Y M, Chandra S. Spray cooling enhancement by addition of surfactant. Journal of heat Transfer,1998,120:92-98.
    [81]Sher I, Hetsroni G An analytical model for nucleate pool boilingwith surfactant additives. International Journal of Multiphase Flow,2002,28:699-706.
    [82]Zhang J, Manglik R M. Nucleate pool boiling of aqueous polymer solutions on a cylindrical heater. Journal of Non-Newtonian Fluid Mechanic,2005,125:185-196.
    [83]王磊,陶毓伽,淮秀兰等.添加表面活性剂的喷雾冷却实验研究.激光与光电子学进展,2009,10:92-95.
    [84]Wasekar V M. Heat transfer in nucleate pool boiling of aqueous SDS and triton X-100 solutions. Heat and Mass Transfer,2009,45(11):1409-1414.
    [85]Dhir V K. Boiling heat transfer. Annual Review of Fluid Mechanics,1998,30:365-401.
    [86]Cheng L, Mewes D. Review of two-phase flow and flow boiling of mixtures in small and mini channels. International Journal of Multiphase Flow,2006,32:183-207.
    [87]Roll J B, Myers J E. The effect of surface tension on factors in boiling heat transfer. AIChE Journal,1964,10(4):530-534.
    [88]Shah B H, Darby R. The effect of surfactant on evaporative heat transfer in vertical film flow. International Journal of Heat and Mass Transfer,1973,16:1889-1903.
    [89]Wu W T, Yang Y M, Maa J R. Pool boiling incipience and vapor bubble growth dynamics in surfactant solutions. International Journal of Heat and Mass Transfer,1999,42:2483-2488.
    [90]Frost W, Kippenhan C J. Bubble growth and heat transfer mechanisms in the forced convection boiling of water containing a surface active agent. Journal of Heat Transfer,1967, 10:931-949.
    [91]Ammerman C N, You S M. Determination of boiling enhancement mechanism caused by surfactant addition to water. Journal of Heat Transfer,1986,118:429-435.
    [92]Podsushnyy A M, Minayev A N, Statsenko V N et al. Effect of surfactants and of scale formation on boiling heat transfer to sea water. Heat Transfer-Soviet Research,1980,12(2): 113-114.
    [93]张小艳,张兴群,陈蕴光等.混合制冷剂在微肋管内流动沸腾的换热关系式.西安交通大学学报,2007,41(11):1279-1283.
    [94]Francisco T, Manel V, Mahmoud B, et al. Pool boiling of ammonia/water and its pure components:comparison of experimental data in the literature with the predictions of standard correlations. International Journal of Refrigeration,2007,30(5):778-788.
    [95]Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics. Journal of Heat Transfer,1969,12:245-250.
    [96]Carey V P. Liquid vapor phase change phenomena. Washington DC:Hemisphere,1992.
    [97]邱运仁,陈卫萍,思勤.添加剂稀溶液的流动沸腾传热模型.中南:L业大学学报(白然科学版),2000,31(5):433-436.
    [98]陈镜泓,李传儒.热分析及应用.北京:科学出版社,1985.
    [99]刘振海,徐国华,张洪林.热分析仪器.北京:化学工业出版社,2006.
    [100]Schramm L L, Green W H F. An absolute differential maximum bubble pressure surface tensiometer employing displaced capillaries. Colloid and Polymer Science,1992,270(7): 694-706.
    [101]Stasiuk E N, Schramm L L. An absolute droplet pressure interfacial tensiometer and its application to bituminous systems of vanishing density contrast. Colloid and PolymerScience,2000,278(12):1172-1179
    [102]尹东霞,马沛生,夏淑倩等.用差分最大气泡压力法测定对二甲苯+乙酸体系的表面张力.化工学报,2007,58(2):276-280.
    [103]Barry B W, Wilson R. CMC counterion binding and thermodynamics of ethoxylated anionic and cationic surfactants. Colloid and Polymer Science,1978,256:251-260.
    [104]赵晓丽.基于图像的植物叶面雾滴接触角测量方法研究.江苏大学,2008.
    [105]熊艳,贾志海,蔡小舒.图像分析法测量液滴接触角.计测技术,2010,30(2):9-11.
    [106]Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science,1999,81(3):167-249.
    [107]Levitz P E, Adsorption of non ionic surfactants at the solid/water interface. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,205:31-38.
    [108]冯师颜.误差理论与实验数据处理.北京:科学出版社,1964.
    [109]叶大钧.热力机械测试技术.北京:机械工业出版社,1988.
    [110]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算.北京:科学出版社,2003
    [111]金定安,曹子栋,俞建洪.工业锅炉原理.西安:西安交通大学出版社,1986
    [112]张建民,王景奎.蒸汽带水的原理与降低蒸汽湿度的有效途径.江西能源,2002,19(3):28-29.
    [113]Cooper M G. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Advances in Heat Transfer,1984,16:157-239.
    [114]Adamson A W, Gast A P. Physical chemstry of surfaces, New York:Wiley,1997.
    [115]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society,1918,40:1361-1403.
    [116]Fowler R H, Guggenheim E A. Statistical thermodynaics. Cambridge:Cambridge University Press,1939.
    [117]Temkin M I, Pyzhev V. Kinetic of ammonia synthesis on promoted iron catalysts. Acta Physiochimica,1940,12:327-356.
    [118]Meeks O R, Rybolt T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules. Journal of Colloid and Interface Science,1997,196(1): 103-109.
    [119]Ward A F H, Tordai L. Time dependence of boundary tensions of solutions. Journal of Chemical Physics,1946,14:453-461.
    [120]Theander K, Pugh R J. The influence of pH and temperature on the equilibrium and dynamic surface tension of aqueous solutions of sodium oleate. Journal of Colloid and Interface Science,2001,239:209-216.
    [121]Davies J T, Rideal E K. Interfacial phenomena. New York:Academic Press,1981.
    [122]王晓东.接触角滞后现象与动态湿润分析.清华大学,2003.
    [123]Kwok, D Y, Neumann, A W. Contact angle measurement and contact angle interpretation. Advance in Colloid and Interface Science,1999,81:167-249.
    [124]Zisman A W. Contact angle, wettability and adhesion. In:Advances in Chemistry Series 43, American Chemical Society, Washington, DC,1964.
    [125]陈传煊.表面物理化学.北京:科技技术文献出版社,1995.
    [126]汤伟,朱定一,陈丽娟等.基于分子动力学结合神经网络的Au表面能的计算方法.中国有色金属学报,2005,15(1):105-109.
    [127]Ribeiro A C F, Lobo V M M, Azevedo E F G, et al. Diffusion coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of (3-cyclodextrin. Journal of Molecular Liquids,2003,102(1-3):285-292.
    [128]Rosa P T V, Santana C C, Carbonell R G. Determination of the liquid pool surfactant and protein concentration for semi-batch foam fractionation columns. Brazilian Journal of Chenmical Engineering,2007,24(1):1-14.
    [129]Ruia C C, Molina-Bolivar J A, Aguiar J, et al. Thermodynamic and structural studies of Triton X-100 micelles in ethylene glycol-water mixed solvents. Langmuir,2001, 17:6831-6840.
    [130]Godbole S P, Schumpe A, Shah Y T, et al. Hydrodynamics and mass transfer in non-newtonian solutions in a bubble column. AIChE Journal,1984,30(2):213-220.
    [131]Morgan J D, Napper D H, Warr G G, et al. Kinetics of recovery of hexadecyltrimetylammonium bromide by flotation. Langmuir,1992,8:2124-2129.
    [132]Jones B J, McHale J P, Garimella S V. The influence of surface roughness on nucleate pool boiling heat transfer. Journal of Heat Transfer,2009,31(12):121009.1-14.
    [133]潘良明,辛明道,何川等.垂直矩形窄缝内的过冷流动沸腾换热性能,热科学与技术,2002,1(2):185-188.
    [134]Saiz Jabardo J M, Silva E F, Ribatski G, et al. Evaluation of the rohsenow correlation through experimental pool boiling of halocarbon refrigerants on cylindrical surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2004,26(2):218-230.
    [135]Tolubinsky V I, Kitchigin A M, Povsten S G Spectral analysis of noise in pool boiling in the transition region. Proceedings of Fifth International Heat Transfer Conference, Tokyo, Japan, 1974, pp:86-90.
    [136]Soumerai H P. Thermodynamic generalization of heat transfer and fluid flow data. ASHRAE Transactions.1986,4:776-790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700