外骨骼机器人辅助腿驱动系统控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能人工腿是机器人学和生物医学工程学领域一个备受关注的研究课题,它最优秀的特点是能模仿人体健康腿的运动方式且步行速度可自然、随意地跟随佩戴者步行速度的变化而变化。本文将对增强人体下肢能力的外骨骼机器人辅助腿的驱动系统进行研究。
     针对外骨骼机器腿的特点和直流伺服电机以及DSP的国内外发展现状和前景,本论文做了以下几个方面的工作:
     首先,在设计了外骨骼机器腿的机械结构的基础上,对驱动部分各个零部件进行了加工和装配,并在设计了基于CAN总线的机器人现场总线控制系统和数字伺服控制系统的基础上,对控制方案进行了更深一步的研究和探索。设计了基于TMS320F2812的关节驱动控制系统,介绍了事件管理器等模块在电机控制中的应用,并对电机驱动系统进行了设计和研究。
     其次,本文在对CAN总线通信系统和DSP控制系统的研究基础上提出了模糊控制的思想,并进行了模糊系统的建模。在控制器的设计中,由于PID控制仍是目前应用最广泛的一种控制方式,因此本文首先讨论了常规PID控制算法及参数整定,然后,专门研究了模糊控制,它可以克服系统参数变化、非线性等不利因素,鲁棒性强。本文针对模糊控制设计了模糊控制器,并用Matlab的simulink模块进行了仿真和结果分析,最终得出模糊PID控制在系统参数改变的情况下仍有满意的控制效果。
     最后,对外骨骼机器人辅助腿驱动系统的软件进行了设计,对可视化操作界面进行了说明,设计了主程序、中断服务程序和电机的PWM输出控制;同时也介绍了模糊自适应PID控制算法在DSP上的数字化实现。
Intelligent artificial leg has been an interesting research project in the fields of robotics and biomedical engineering, its most excellent characteristics is that it can imitate the movement ways of human healthy legs and its walking speed can change naturally with the change of wear person's walking speed. The paper will research on the drive system of strengthen the human lower limbs ability by outside skeleton robot auxiliary leg.
     According to the outside skeleton robot auxiliary leg's characteristics and direct currents servo motor and domestic and international development condition and foreground of DSP, this paper do some works as follows:
     Firstly, At the foundation of the mechanical structure of the outside skeleton machine leg, produce and assemble the components and parts of drive part, then at the foundation of design the control network base on CAN bus and digital servo control system to research and explore the control project deeply. Design joint drive control system base on TMS320F2812, then introduce event manager and other model part in the motor control of application, then design and research the motor drive system.
     Then, the paper raise the fuzzy control idea base on CAN bus communicate system and DSP control system, then build up the fuzzy system model. In the design of the controller, because of the PID control is still a kind of control method apply most extensively, so that the paper discuss the normal PID control calculate way and parameters rectify, then, study exclusively in the fuzzy control, it can overcome the system parameter variety and not linear factor of etc. robust is strong. In the paper design a fuzzy controller toward to the fuzzy control, then to imitate the true and analyze the result with simulimk model in the Matlab, finally get a result that designed the misty controller to misty control, the simulink mold piece that change the parameter still can get the satisfied control result under the fuzzy PID control system.
     Finally, design the software of outside skeleton robot auxiliary leg, and elucidation the visible operate interface, then design the main procedure and break service procedure and motor PWM output control; Also introduce the fuzzy PID control calculate way achieve on the digital DSP.
引文
1.陈峰.可穿戴型助力机器人技术研究[D],中国科学技术大学,2007.
    2. PETER WEISS. Dances with Robots, the military is betting millions that technology can turn soldiers into superhumans [J], Science news, June 30,2001:407-408.
    3. Adam Zoss, H.Kazerooni, Andrew Chu. On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [J],2005 IEEE/RSJ International Conference on Intelligent Rotbots and systems, Page(s):3132-3139.
    4. Hiroaki Kawamoto, Yoshiyuki Sankai. Power Assist System HAL-3 for Gait Disorder Person[J], Springer-Verlag Berlin Heidelberg,2002:196-203.
    5. Masako Nozawa, Yoshiyuki Sankai. Control Method of Walking Speed and Step Length for Hybrid Assistive Leg [J], Springer-Verlag Berlin Heidelberg,2002:220-227.
    6.罗志增,任晓亮.肌电信号的拾取和预处理[J],传感技术学报,2004,2:220-223.
    7.李晓明.基于外骨骼技术的机器人远程控制[D],浙江大学,2004.
    8.黄雨.气动人工肌肉驱动特性实验研究,北京理工大学,2003.
    9.郑奇.双自由度类人上肢的设计及气动执行器的研究[D],天津大学,2004.
    10.孙立宁,何富君,杜志江,姚玉峰.辅助康复机器人技术的研究与发展[J],机器人,2006,28(3):355-360.
    11.杜志俊.工业机器人的应用及发展趋势[J],机械工程师,2002,8-10.
    12.王亚辉,何耀民.机器人的应用现状及发展趋势[J],经济师,2005,8:246-247.
    13.蒙运红,傅祥志.两足步行机器人动态步行规划及仿真[J],华中理工大学学报,1999,27(3):12-15.
    14.张永学.基于多传感器信息的双足机器人步行系统的研究[J],高技术通讯,2001,6:66-69.
    15. Peter Kopacek, Edmund Schierer, Markus Wuerzl. A Controller Network for a Humanoid Robot [J]. Springer-Verlag Berlin Heidelberg,2005:584-589.
    16.邵黎军.基于CAN总线的仿人机器人关节控制系统研究[D],清华大学,2004.
    17.饶运涛,邹继军.现场总线CAN原理与应用技术[M],北京:北京航空航天大学出版社,2003:20-30.
    18.杨旭.基于DSP的电机控制系统的研究及其应用[D],西北工业大学,2004.
    19. Kosei Demura, Nobuhiro Tachi, Tetsuya Maekawa, Tamaki Ueno. KENSEI-chan:Design of a Humanoid for Running[J], Springer-Verlag Berlin Heidelberg,2002:331-336.
    20.李长峰.基于DSP技术的运动控制卡的研制和开发[D],哈尔滨理工大学,2004.
    21.韩安太,刘峙飞,黄海.DSP控制器原理及其在运动控制系统的应用[M],北京:清华大学出版社,2003:27-31.
    22.刘建群,黄浩权,段正澄,熊有伦.基于DSP的机器人控制系统的研究与实现[J],机械科学与技术,2001,20(4):518-521.
    23.谈世哲,梅志千,杨汝清.基于DSP的工业机器人控制器的设计与实现[J],机器人,2002,24(2):134-139.
    24.高爽.基于DSP的仿生步行机器人平台开发与研究[D],西北工业大学,2006.
    25.许春山,曹广益,郭毓.DSP在机器人高精度伺服系统中的应用[J],计算机工程,2002,28(3):199-201.
    26.朱世强,王宣银.机器人技术及其应用[M],杭州:浙江大学出版社,2001.7.
    27.孙迪生,王炎.机器人控制技术[M],北京:机械工业出版社,1997.
    28.何发昌,邵远.多功能机器人原理及应用[M],北京:高等教育出版社,1996.
    29.袁中凡.机电一体化技术[M],北京:电子工业出版社,2006,68-70.
    30.谐波传动手册,北京飞达克美谐波传动技术创新有限公司.
    31. Badler N, etal. Real time virtual humans [M]. International Conference on Digital Media Futures, Brad Ford, UK,1999.
    32. Paridal, etal. Constraint-Satisfying Planar Development of Complex Surfaces [J], CAD, 1993,25(4):225-232.
    33. Shimada T, etal Approximate Transformation of an Arbitrary Curred Surfaces into a plane using Dynamic Programming [J], CAD,1991,23(2):153-159.
    34.王伟.基于CANBUS的现场总线控制系统组态软件的研制[D],哈尔滨工业大学,2006.
    35.杨慧,田亮,田敏.CAN总线协议分析[J],中国仪器仪表,2004.
    36. Chakib Benic, etal. Piece wise Surface Flattening for Nondistorted Texture Mapping [J], ACM Computer Graphics,1991,25(4):237-246.
    37.王晓明,王玲.电动机的DSP控制[M],北京:航空航天大学出版社,2004.
    38.王学慧.模糊控制理论及研究[M],北京:电子工业出版社,1987.
    39.蔡自兴.智能控制(第二版)[M],北京:电子工业出版社,2004.
    40. ZhouLi, De-Yun Xiao, Shi-ZhongHe. Self-adjusting PID controller based fazzy inferences, Control Theary and Application [J],1997,14(2):238-242.
    41. A Vision Fuzzy, Logic based set-point weight turning of PID controllers [J], IEEE Trans. On system, Man and Cybernetics-Part A:System and Humans,1999,29(6):587-592.
    42.孙涵芳等著.单片微型计算机[M],北京:北京航空航天大学出版社,1989.
    43.苏旭武.直线伺服刀架控制系统的计算机辅助设计与仿真[J],微电机,2000,20(2):29-33.
    44.陈伯时著.电力拖动自动控制系统[M],北京:机械工业出版社,1991.
    45. Kazuo Kiguchi. An Exoskeleton for Human Shoulder Rotation Motion Assist [J], Springer-Verlag Berlin Heidelberg,2004:1092-1099.
    46.潘且鲁,潘俊民.步行机器人自适应模糊伺服控制器设计[J],控制理论与应用,1999,16(1):76-80.
    47. N.G. TSAGARAKIS, DARWIN G. CALDWELL. Development and Control of a 'Soft-Actuated' Exoskeleton for Use in Physiotherapy and Training [J], Autonomous Robots, 2003,15:21-33.
    48.谭冠政,陈勇旗.基于模糊PID控制的人工腿位置伺服系统设计与仿真[J],计算技术与自动化,2001,20(3):53-58.
    49.蔡利东,曹鸣.基于DSP的机器人伺服控制卡的设计[J],全国自动化新技术学术交流会会议论文集,2005:84-88.
    50. S. HASHIMOTO, S. NARITA. Humanoid Robots in Waseda University-Hadaly-2 and WABIAN [J], Autonomous Robots,2002,12:25-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700