bFGF基因转染MSCs复合纳米仿生骨治疗骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     骨缺损是骨科常见病,各种创伤、感染、肿瘤切除、病理发育等因素均可造成骨缺损。较小的骨缺损能自行修复,骨缺损较大时则难以完成自行修复。已有研究表明长管状骨骨干的直径决定了骨缺损能否自行愈合的长度,当骨干骨缺损长度超过于其直径的1.5~2.5倍时即难以自行愈合,造成永久性骨不连。
     大的骨缺损需要植骨材料修复,目前临床上用来修复缺损的材料主要有:自体骨,异体骨,异种骨,人工材料,复合材料等,这些材料各有利弊,均难以达到修复骨缺损的理想材料要求。近年来采用骨组织工程技术,将细胞与特定支架材料联合培养,形成有生命活性的组织工程化复合材料,用其修复骨缺损已经取得了初步成效。但对如何构建理想骨组织工程材料有待进一步研究。本课题的目的是,采用骨组织工程技术,以MSCs为种子细胞,转染bFGF基因后,以纳米羟基磷灰石/胶原复合材料(纳米仿生骨nHAC)为支架,形成组织工程化骨,探讨其修复新西兰白兔桡骨节段性骨缺损的可行性。
     方法
     1.取2~3月龄健康新西兰白兔20只,穿刺抽取双侧股骨大转子部位骨髓约2~3 ml,采用1小时贴壁分离并机械刮除法分离培养骨髓中MSCs细胞,留备下一步实验。其中少量细胞进行形态学观察,并采用成骨细胞诱导条件培养基培养,钙钴法检测碱性磷酸酶表达,茜素红染色观察钙结节形成能力。
     2.部分传代培养的MSCs细胞,以质粒为载体,通过电穿孔方法转染bFGF,转染后传代培养备用。少量细胞进行如下鉴定:采用RT-PCR方法检测转染细胞的bFGFmRNA表达水平,采用免疫组化方法检测bFGF蛋白表达。
     3.将传代培养的MSCs细胞及转染bFGF的MSCs细胞分别与nHAC支架材料复
ObjectivesBone defects were common conditions caused by trauma, sarcoma or infection. Small bone defects can be repaired automatically by bone induction、 conduction or regeneration. Large bone defects will not heal without bone transplantation.The current bone defects repairing materials include: Autogenous bone, allogenic bone, artificial materials, composite materiel etc. All of these materials were not ideal. It is clinical desirable to find ideal materials to repair larger bone defects. Bone tissue engineering may provide an alternative for bone defects repairing. The aim of this study was to investigate the bone defects repairing ability of the combined material, which with MSCs transduced with bFGF gene as its seeding cells and with nHAC as its scaffolds. Materials and methods1. 20 young New Zealand white rabbits about 2~3 months old were used to harvest bone marrow. The bone marrow was inspired from two femoral trochanter of the rabbits. MSCs were isolated from the bone marrow cells and anchoring at one hour and physically curetle and cultured in vitro. Small samples of MSCs were cultured with conditioned culture medium to assess the alkaline phosphates and the mineralization ability.2. Half of the MSCs were transferred with bFGF gene and cultured. Small samples were used to assess the expression of the bFGF with RT-PCR methods and
    immuohistological methods.3. MSCs or MSCs transferred with bFGF gene were combined with nHAC and cultured for 5~7 days respectively. Specimens were obsevered under microscope and electron microscope.4. 62 New Zealand white rabbits which were about 3~4 months old were divided into A、 B、 D group. 10 mm segmental defect were made on the bilateral radius of the rabbits. A group (n=30): the defect areas on the left radius were transplanted with MSCs combined with nHAC. B group (n=30): MSCs transduced with bFGF gene combined with nHAC were transplanted into the defect areas on the left radius. C group (n=60): All the right radiuses of A and B group were divided into this group, the defect areas were implanted with nHAC scaffolds without cells. D group: 2 other rabbits were divided into this group, the same bone defect were made on the bilateral radius without implanting materials. After 2 weeks, 4 weeks, 6 weeks, 12 weeks, 24 weeks from operation, 6 rabbits were killed from A or B group and X ray radio graphical, histological and immuohistological studies were performed. Specimen from C group were harvest and assessed consistent with A and B group, Specimen from D group were harvest at 24 weeks after operation and were assessed with radio graphical and histological method.Results1. The characters of MSCs: the shape of MSC is fusiform or angiogram, with multiple processes, the plasma is pale blue, the nucleus is round with multi-differentiation. MSCs survived and proliferated and differentiated well, the biochemical indexes were stable, MSCs showed the expression of alkaline phosphates, and localized regions of mineralization were found at about 2 weeks with conditioned culture medium.2. bFGF gene transferred MSCs: It didn't change the morphological characteristics of MSCs when MSCs were transferred with bFGF gene. The proliferation and differation of MSCs with bFGF gene transferred were active. The MSCs with bFGF gene transferred can express bFGF at 24h, can express bFGF notably at about 2 weeks and can still express bFGF at 5 weeks after gene transferring.
引文
1. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59.
    2. Burchardt H. Related Articles, The biology of bone graft repair. Clin Orthop. 1983;(174):28-42.
    3. Enneking WF, Eady JL, Burchardt H Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am. 1980; 62(7): 1039-58.
    4. Nilsson E S, Urist M R, Dawson E G, et al. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg. 1986, 68B: 635-642.
    5.袁志,胡蕴玉,马平.骨移植治疗节段性骨缺损的回顾与进展.现代康复 2001;5(3) 104-105.
    6. Han CS, Wood MB, Bishop AT, Cooney WP 3rd. Vascularized bone transfer. J Bone Joint Surg Am. 1992;74(10): 1441-9.
    7. de Boer HH. The history of bone grafts. Clin Orthop. 1988;(226):292-8.
    8. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science.Clin Orthop. 2000;(371):10-27.
    9. Mathes DW, Bourget JL, Randolph MA, Solari MG, Wu A, Sachs DH, Lee WP. Tolerance to vascularized musculoskeletal allografts.Transplant Proc. 2001;33(1-2):616-7.
    10. Lee WP, Mathes DW. Hand transplantation: pertinent data and future outlook. J Hand Surg [Am]. 1999;24(5):906-13.
    11.裴国献,郑小飞.异体手移植.中华手外科杂志;2001;17(2):99-101.
    12. Salama R. Xenogeneic bone grafting in humans [J]. Clin Orthop,1983,174(4): 113~124.
    13.夏胜利,杨庆秋,胡侦明.复合异种骨研究进展.中国矫形外科杂志.2003:11(9):622-623.
    14.赵建华,廖维宏,陈建梅.聚乳酸类骨修复材料的研究进展.创伤外科杂志.2003;5(3):232-234.
    15. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop. 1999 Mar;(360):71-86.
    16.曹谊林,商庆新.软骨、骨组织工程的现状与趋势.中华创伤杂志,2001,17(1):7-9.
    17.廖素三,崔福斋,张伟.组织工程中胶原基纳米骨复合材料的研制.中国医学科学院学报.2003;25(1) 36-38.
    18. Applequist,S.E., Keyna,U., Calvin,M.R., et al. Sequence of the rabbit glyceraldehyde-3-phosphate dehydrogenase-encoding cDNA. Gene. 1995; 163(2), 325-326.
    19. Prats,H., Kaghad,M., Prats,A.C., et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. Natl. Acad. Sci. U. S. A. 1989; 86 (6), 1836-1840.
    20. Nilsson OS, Urist MR, Dawson EG, et al. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg Br. 1986;68(4):635-42.
    21. Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg. 1998;9(4):310-6
    22. Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990 Jan;1(1):60-8
    23. Aaboe M, Pinholt EM, Hjorting-Hansen E. Unicortical critical size defect of rabbit tibia is larger than 8 mm.. J Craniofac Surg. 1994;5(3):201-3.
    24. Nyman R, Magnusson M, Sennerby L Membrane-guided bone regeneration. Segmental radius defects studied in the rabbit. Acta Orthop Scand. 1995;66(2): 169-73.
    25.张超,胡蕴玉,吕荣,徐建强.仿生活性人工骨修复兔桡骨节段性骨缺损的研究.中华实验外科杂志.2002;19(5):458-459.
    26.杨志明.组织工程.第1版.北京:化学工业出版社,2003.1-5.
    27. Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering. Clin Plast Surg. 2003;30(4):641-8.
    28. Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med. 1995; 1(12): 1322-4.
    29. Jadlowiec JA, Celil AB, Hollinger JO. Bone tissue engineering:recent advances and promising therapeutic agents. Expert Opin Biol Ther. 2003;3(3):409-23.
    30. Dalkyz M, Ozcan A, Yapar M, Gokay N, Yuncu M. Evaluation of the effects of different biomaterials on bone defects.Implant Dent. 2000;9(3):226-35.
    31. Zou L, Yang Z, Huang F. Implantation of allogenic osteoblast combined with calcium phosphate composites.Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1997; 11(5):300-4.
    32. Dong J, Uemura T, Shirasaki Y, Tateishi T. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells.Biomaterials. 2002; 23(23): 4493-502.
    33. Blum JS, Barry MA, Mikos AG. Bone regeneration through transplantation of genetically modified cells.Clin Plast Surg. 2003;30(4):611-20.
    34. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391): 1145-7.
    35. Aubin JE. Bone stem cells.J Cell Biochem Suppl. 1998;30-31:73-82.
    36. LaBarge, MA, Blau, HM, Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002;111: 589~601.
    37. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976; 4: 276-279.
    38. Prockop DJ. ,Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276: 71-4.
    39.方丽茹,翁文剑,沈鸽,等.骨组织工程支架及生物材料研究.生物医学工程学杂志;2003;20(1)148-152.
    40. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅰ. Traditional factors.Tissue Eng. 2001;7(6):679-89.
    41. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅱ. Rapid prototyping techniques.Tissue Eng. 2002;8(1): 1-11.
    42.姚康德,王向辉,侯信,等.组织工程相关生物材料,天津理工学院学报;2000;12(16) 1-5.
    43. Peppas NA, Lanser R. New challenges in biomaterials. Science. 1994, 263(1): 1715-1720.
    44. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001; 22: 1705-1711.
    45. Wiltfang J, Merten HA, Schlegel KA, et al. Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in Minipigs. J Biomed Mater Res. 2002, 63: 115-121.
    46. Handschel J, Wiesmann HP, Stratmann U, et al., TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials. 2002, 23: 1689-1695.
    47. Brown WE, Chow LC. A new calcium phosphate water-setting cement. American Ceramic Society, OH: Westerville. 1987, 352.
    48. Fukase Y, Eanes ED, Takagi S, et al. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res. 1990;69(12):1852-6.
    49. Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plant Surg. 1994, 21(3): 445-462.
    50. Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers.Arthroscopy. 1998;14(7):726-37.
    51. Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal cells maintained on type Ⅰ collagen matrix gels in vivo. Bone. 1997; 20(2):101-7.
    52.张建湘,汤健,徐斌等.壳聚糖钉固定兔胫骨近端截骨的实验研究.生物医学 工程学杂志.1998,15(2):179-182.
    53. Mukherjee DP, Tunkle AS, Roberts RA, et al. An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft aterial. J Biomed Mater Res. 2003;67B(1):603-9.
    54. Demers C, Hamdy CR, Corsi K, et al. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng. 2002; 12(1): 15-35.
    55. Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives-historical aspects.Biomaterials. 1998; 19(16): 1461-6.
    56.袁志,马平,胡蕴玉,等.复合rhBMP2的异种骨的研制及成骨活性.第四军医大学学报.2001;22(18)1633-1636.
    57. Ruiyun zhang, Peter X. Porous poly (1-lactic acid)/apatite composite created by biomimetic process. J Biomed Mater Res. 1999, 45: 285-293.
    58. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;(395):81-98.
    59. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001; 22: 1705-1711.
    60. Rodrigues CV, Serricella P, Linhares AB, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 2003;24(27):4987-97.
    61. Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press; 1989, 35-40.
    62. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001 Nov 23;294(5547):1684-8.
    63. Reddi AH. Morphogenesis and Tissue Engineering of Bone and Cartilage: Inductive Signals, Stem Cells, and Biomimetic Biomaterials. Tissue Engineering. 2000, 6: 351-359.
    64. Jones JR, Hench LL. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J Biomed Mater Res. 2004 15;68B(1):36-44.
    65. Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector.J Med Eng Technol. 2000;24(4): 149-53.
    66. Landers R, Hubner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23(23):4437-47.
    67. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363-78.
    68. Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering.Clin Plast Surg. 2003;30(4):641-8,
    69. Gospodarowic zD. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth .Nature, 1974,249:123-127.
    70. AbrahamJA, WhangMA. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science, 1986,233:545-546.
    71. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18(18):1201-25.
    72. Yun JK, McCormick TS, Judware R, et al. Cellular adaptive responses to low oxygen tension: apoptosis and resistance.Neurochem Res. 1997;22(4):517-21.
    73.邵君飞,王晨,蔡杰杨,等.bFGF对骨髓基质细胞的增殖作用及其临床意义.中国航天医药杂志 2002,4(6):1-3.
    74. CanalisE,CentrellaM,MccarthyT. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest, 1988,81:1572-1577.
    75. Kotev-EmethS,SavionN.Effect of maturation on the osterogenic response of cultured stromal bone marrow cells to basic fibroblast growth factor. Bone,2000,27(6):777-783.
    76. Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 2002;55(8):603-10.
    77. Zwaginga JJ, Doevendans P. Stem cell-derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering.Clin Exp Pharmacol Physiol. 2003;30(11):900-8.
    78.王素菊,曹景敏.碱性成纤维细胞生长因子的生物学特性研究进展.医学信息;1999,12 (8) 46-47.
    79. Nakamura K, Kurokawa T, Kato T, et al. Local application of basic fibroblast growth factor into the bone increases bone mass at the applied site in rabbits.Arch Orthop Trauma Surg. 1996;115(6):344-6.
    80. Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2.J Clin Endocrinol Metab. 2001;86(2):875-80.
    81. Wang JS. Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants.Acta Orthop Scand Suppl. 1996;269:1-33.
    82. Wang JS, Aspenberg P. Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats. J Orthop Res. 1996; 14(2):316-23.
    83. Vonau RL, Bostrom MP, Aspenberg P, et al. Combination of growth factors inhibits bone ingrowth in the bone harvest chamber.Clin Orthop. 2001;(386):243-51.
    84. Blum JS, Barry MA, Mikos AG. Bone regeneration through transplantation of genetically modified cells.Clin Plast Surg. 2003;30(4):611-20.
    85. Jullig M, Zhang WV, Stott NS. Gene therapy in orthopaedic surgery: the current status.ANZ J Surg. 2004;74(1-2):46-54.
    86.颜子颖,王海林译.精编分子生物学实验指南.第一版,北京:科学出版社,1998,274-323.
    87. Tolstoshev P. Gene therapy, concepts, current trials and future directions.Annu Rev Pharmacol Toxicol. 1993;33:573-96.
    88. Blum JS, Barry MA, Mikos AG. Bone regeneration through transplantation of genetically modified cells.Clin Plast Surg. 2003;30(4):611-20.
    89. Lipps HJ, Jenke AC, Nehlsen K, et al. Chromosome-based vectors for gene therapy.Gene. 2003 30;304:23-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700