壳聚糖/羟基磷灰石仿生骨材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
35亿年的生命演化过程优化了生物体的宏观与微观结构、形态和功能,是取之不竭的知识宝库。仿生就是学习和研究自然界生物的内在规律,并从中获得解决问题的方法。骨是由有序排列的胶原纤维和取向的纳米羟基磷灰石形成的有生命的复合材料,骨材料的复杂多级结构使其既具有羟基磷灰石的强度和硬度,又具有胶原的韧性。本文在详细分析骨组成、结构以及力学性能基础上提出以骨的组成和结构为模型,选择具有优异生物相容性和生物活性的壳聚糖与羟基磷灰石复合体系为研究对象,采用不同方法制备壳聚糖/羟基磷灰石仿生骨材料,并以骨材料为参照物研究壳聚糖/羟基磷灰石复合材料的微结构与性能之间的相关规律。
     1.原位沉析法制备壳聚糖/磷酸三钙和壳聚糖/羟基磷灰石复合材料采用原位沉析法制备了壳聚糖/磷酸三钙(CS/TCP)和壳聚糖/羟基磷灰石(CS/HA)复合材料,力学性能结果表明随着TCP(或HA)含量增加,复合材料的弯曲、剪切强度和吸水率均降低,而相应模量有所升高;并发现采用戊二醛交联—无机颗粒填充协同增强技术可使复合材料弯曲强度提高50%-60%。
     2.原位杂化法制备壳聚糖/羟基磷灰石纳米复合仿生材料原位杂化法的关键是采用预先沉积CS凝胶膜将含有HA前驱体的CS溶液与凝固液隔离。当pH值改变时,CS凝胶膜同时控制壳聚糖沉析与羟基磷灰石生成过程缓慢且有序地进行。通过XRD和TEM测试证实CS/HA复合材料中原位生成的羟基磷灰石颗粒长为100nm,宽30~50nm。扫描电镜测试结果表明复合材料具有层状结构;其弯曲强度为86MPa,比原位沉析法的高26%,比松质骨的高4倍。戊二醛交联—纳米HA填充协同增强技术可使复合材料弯曲强度达到102MPa,与未交联相比提高了19%,比原位沉析法制备CS/HA复合材料的高50%,可与自然骨材料性能相媲美。
     3.原位杂化法制备壳聚糖/四氧化三铁纳米复合材料
     在原位杂化法制备CS/HA复合材料中,纳米HA分布是无规的,而骨中羟基磷灰石是呈取向排列。在有外加磁场作用下通过原位杂化法制备了壳聚
Biology evolvement during the past 350 million years designed and is designing the macrostructure and microstructure, shape and function of biology organs, which is the thesaurus of ideas and knowledge. Biomimetics referenced to learning from nature to explore the basic law of natural process and find solution to designed problem. Bone is composed of assembled collagen fibers and ordered hydroxyapatite nanoparticles, especially bone is living material. It is the hierarchal structure that contributes to the excellent mechanical properties of bone, such as strength and hardness of hydroxyapatite, and toughness of collagen. Chitosan and hydroxyapatite were widely used in biomedical application, especially bone reparation materials due to their biocompatibility and bioactivity. On the base of evaluation composing, structure and mechanical properties of bone, bone was chosen as the prototype to design chitosan/hydroxyapatite biomimetic composite via various methods, and the relationship between microstructure and performance of composite is disccussed.1. Chitosan/tri-calcium phosphate and chitosan/hydroxyapatite composite prepared by in situ precipitationIn order to endow chitosan with osteoinductive and ostoeconductive ability, chitosan/tri-calcium phosphate (CS/TCP) and chitosan/hydroxyapatite (CS/HA) composite were generated through in situ precipitation. The results of mechanical properties of composite indicate that bending strength and shear strength decrease as the TCP (or HA) content increase, at same time the modulus of composite is improved. The bending strength of chitosan/inorganic filler composite is significantly improved as high as 50%-60% when incorporation the crosslink and inorganic fillers simultaneously, which is defined as the synergetic enhancing effect.2. Chitosan/hydroxyapatite nanocomposite via in situ hybridizationIn order to solve the problem of hydroxyapatite nanoparticles aggregation in chitosan matrix, in situ hybridization technology was chosen to prepare CS/HA nanocomposite. The key of in situ hybridization is that a pre-precipitated CS hydrogel membrane was used to obstruct the CS/HA precursor from NaOH aqueous solution. The CS hydrogel membrane controlled the process of CS precipitation and transformation of HA from the HA precursor simultaneously and tardily when changing the pH of the system. XRD, TEM and SEM were performed to investigate
    CS/HA nanocomposite. Results indicated that the in-situ formed calcium phosphate in CS was exactly HA, and that nano-size HA granules were dispersed in CS matrix uniformly, and that the structure of CS/HA composite prepared by in-situ hybridization is layered structure. The bending strength of CS/HA and CS/HA modified by cross-linking were 86MPa and 102MPa, respectively, which is much higher than that of cancellous bone.3. Chitosan/magnetite nanocomposite via in situ hybridizationHA particles were distributed in chitosan matrix homogenously through in situ hybridization, however the HA granules of bone are oriented under the control of collagen fibers. Chitosan/magnetite nanocomposite was synthesized via in situ hybridization induced by magnetic field in ambient condition. XRD and TEM results indicated that magnetite particles with the size of approximately 10-20nm were dispersed in chitosan homogenously, and even assembled to form nanowire under the influence of the external magnetic field which mimetic the magnetite chain inside of magnetotatic bacteria. The result of magnetization indicated that magnetite nanoparticles were superparamagnetic.4. Chitosan/hydroxyapatite/magnetite nanocomposite via in situ hybridizationOn the base of experience from preparing the CS/HA and CS/magnetite nanocomposite, the superparamagnetic CS/HA/magnetite nanocomposite was prepared via in situ hybridization, and the inorganic fillers were oriented when applying the external magnetic field. The bend strength of composite is 105MPa, and is as high as 77% strength of fresh femoral bone of rabbit.5. Chitosan hydrogel with biomimetic structure prepared by in situ precipitation The chitosan was labeled by fluorescein isothiocyanate (FITC) as fluorescentprobe, which enable FITC labeled chitosan to be visible in the laser scanning confocal microscopy (LSCM). The fluorescence spectrum was chosen to confirm that the FITC were labeled on chitosan successfully. The scanning electron micrograph (SEM) and LSCM were carried out to characterize the microstructure of FITC labeled chitosan/chitosan hydrogel prepared by in situ precipitation. Chitosan hydrogel with hierarchal architecture, i. e. the chitosan hydrogel is not only composed a series of concentric ring similar to annul ring of wood, but also the spoke wire pattern of chitosan fibers along the gradient of OH'. It is the first time to find the Liesegang ring phenomenon in ordered chitosan hydrogel system when prepared by in situ precipitation. The chitosan hydrogel with biomimetic structure can be illustrated by
    Liesegang ring.6. Biomineralization of chitosan via alternate soakingThe hydroxyapatite dispersant in the natural bone varies with the function of the part, and the rich HA content surface of implant can enhance the bone formation due to easy formation bone-like apatite after implantation. Alternate soaking was investigated to precipitation hydroxyapatite on chitosan hydrogel with biomimetic structure. HA layer with gradient distribution was coated chitosan hydrogel tightly in a short period of time, and the thickness of HA coating can be controlled by cycles of alternate soaking.
引文
[1] Dorozhkin, S.V. and Epple, M. (2002) Biological and medical significance of calcium phosphates. Angewandte Chemie-International Edition 41, 3130-3146.
    [2] Garita, B. and Rapoff, A.J. (2003) Biomimetic designs from bone.Experimental Techniques 27, 36-39.
    [3] Schmoekel, H.G., Weber, F.E., Hurter, K., Schense, J.C., Seiler, G., Rytz, U., Spreng, D., Schawalder, P. and Hubbell, J. (2005) Enhancement of bone healing using non-glycosylated rhBMP-2 released from a fibrin matrix in dogs and cats. Journal of Small Animal Practice 46, 17-21.
    [4] Peng, H.R., Usas, A., Gearhart, B. and Huard, J. (2004) VEGF enhances bone formation and bone healing elicited by transduced muscle-derived stem cells expressing human BMP2. Molecular Therapy 9, S337-S337.
    [5] Wang, X.D., Bank, R.A., TeKoppele, J.M. and Agrawal, C.M. (2001) The role of collagen in determining bone mechanical properties. Journal of Orthopaedic Research 19, 1021-1026.
    [6] Doblare, M., Garcia, J.M. and Gomez, M.J. (2004) Modelling bone tissue fracture and healing: a review. Engineering Fracture Mechanics 71, 1809-1840.
    [7] Ito, M., Koga, A., Nishida, A., Shiraishi, A., Saito, M. and Hayashi, K. (2001) Evaluation of mechanical properties of trabecular and cortical bone. In: Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone, pp. 47-56.
    [8] Jiang, Y.B., Zhao, J., Rosen, C., Geusens, P. and Genant, H.K. (1999) Perspectives on bone mechanical properties and adaptive response to mechanical challenge. Journal of Clinical Densitometry 2, 423-433.
    [9] LaMothe, J.M. and Zernicke, R.F. (2004) Mechanical loading rate and strain gradients positively relate to periosteal bone formation rate. Faseb Journal 18, A782-A782.
    [10] Tezuk, K., Wada, Y., Takahashi, A., Yoshida, T. and Kikuchi, M. (2003) A stress-adaptive bone remodeling model based on reaction-diffusion system. Bone 32, S197-S197.
    [11] Currey, J.D. (2004) Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. Journal of Biomechanics 37, 549-556.
    [12] Dobson, C.A., Sisias, G., Langton, C.M., Phillips, R. and Fagan, M.J. (2000) Adaptive strain remodelling in a stochastic simulation of cancellous bone resorption. Osteoporosis International 11, S54-S54.
    [13] Draenert, K.D., Draenert, Y.L., Krauspe, R. and Bettin, D. (2005) Strain adaptive bone remodelling in total joint replacement. Clinical Orthopaedics and Related Research, 12-27.
    [14] Wang, X.B. and Dumas, G.A. (2002) Simulation of bone adaptive remodeling using a stochastic process as loading history. Journal of Biomechanics 35,375-380.
    [15] Stanford, C.M. and Brand, R.A. (1999) Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. Journal of Prosthetic Dentistry 81,553-561.
    [16] Einhorn, T.A. (2004) Stimulation of bone healing. Osteoporosis International 15, S2-S2.
    [17] Lim, S.H. and Hudson, S.M. (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science-Polymer Reviews C43,223-269.
    [18] Xin, M.H., Li, M.C. and Yao, K.D. (2003) H-bond in chitosan-based hydrogels. Macromolecular Symposia 200, 191-197.
    [19] Van de Velde, K. and Kiekens, P. (2004) Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state C-13 NMR. Carbohydrate Polymers 58,409-416.
    [20] Lavertu, M., Xia, Z., Serreqi, A.N., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M.D. and Gupta, A. (2003) A validated H-l NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis 32, 1149-1158.
    [21] Sorlier, P., Viton, C. and Domard, A. (2002) Relation between solution properties and degree of acetylation of chitosan: Role of aging. Biomacromolecules 3, 1336-1342.
    [22] Schatz, C, Viton, C., Delair, T., Pichot, C. and Domard, A. (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4, 641-648.
    [23] Knaul, J.Z., Kasaai, M.R., Bui, V.T. and Creber, K.A.M. (1998) Characterization of deacetylated chitosan and chitosan molecular weight review. Canadian Journal of Chemistry-Revue Canadienne De Chimie 76,1699-1706.
    [24] Varma, A.J., Deshpande, S.V. and Kennedy, J.F. (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers 55,77-93.
    [25] Kurita, K. (1998) Chemistry and application of chitin and chitosan. Polymer Degradation and Stability 59,117-120.
    [26] Struszczyk, M.H. (2002) Chitin and chitosan - Part III. Some aspects of biodegradation and bioactivity. Polimery 47,619-629.
    [27] Chirkov, S.N. (2002) The antiviral activity of chitosan (review). Applied Biochemistry and Microbiology 38,1-8.
    [28] VandeVord, P.J., Matthew, H.W.T., DeSilva, S.P., Mayton, L., Wu, B. and Wooley, P.H. (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research 59, 585-590.
    [29] Senkoylu, A., Simsek, A., Sahin, F.I., Menevse, S., Ozogul, C., Denkbas, E.B. and Piskin, E. (2001) Interaction of cultured chondrocytes with chitosan scaffold. Journal of Bioactive and Compatible Polymers 16,136-144.
    [30] Bonina, P., Petrova, T., Manolova, N. and Rashkov, I. (2004) PH-sensitive hydrogels composed of chitosan and polyacrylamide: Enzymatic degradation. Journal of Bioactive and Compatible Polymers 19,197-208.
    [31] Tachaboonyakiat, W., Serizawa, T. and Akashi, M. (2002) Inorganic-organic polymer hybrid scaffold for tissue engineering - II: Partial enzymatic degradation of hydroxyapatite-chitosan hybrid. Journal of Biomaterials Science-Polymer Edition 13, 1021-1032.
    [32] Zhang, H. and Neau, S.H. (2002) In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials 23,2761-2766.
    [33] Zhang, H. and Neau, S.H. (2001) In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials 22,1653-1658.
    [34] Lu, Y.H., Wei, G.S. and Peng, J. (2004) Radiation degradation of chitosan in the presence of H_2O_2. Chinese Journal of Polymer Science 22,439-444.
    [35] Chang, K.L.B., Tai, M.C. and Cheng, F.H. (2001) Kinetics and products of the degradation of chitosan by hydrogen peroxide. Journal of Agricultural and Food Chemistry 49,4845-4851.
    [36] Azad, A.K., Sermsintham, N., Chandrkrachang, S. and Stevens, W.F. (2004) Chitosan membrane as a wound-healing dressing: Characterization and clinical application. Journal of Biomedical Materials Research Part B-Applied Biomaterials 69B, 216-222.
    [37] Akbuga, J. and Bergisadi, N. (1999) Effect of formulation variables on cis-platin loaded chitosan microsphere properties. Journal of Microencapsulation 16, 697-703.
    [38] Dhiman, H.K., Ray, A.R. and Panda, A.K. (2005) Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials 26,979-986.
    [39] Yeo, Y.J., Jeon, D.W., Kim, C.S., Choi, S.H., Cho, K.S., Lee, Y.K. and Kim, C.K. (2005) Effects of chitosan nonwoven membrane on periodontal healing of surgically created one-wall intrabony defects in beagle dogs. Journal of Biomedical Materials Research Part B-Applied Biomaterials 72B, 86-93.
    [40] Chen, F., Wang, Z.C. and Lin, C.J. (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters 57, 858-861.
    [41] Murugan, R. and Ramakrishna, S. (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25, 3829-3835.
    [42] Zhang, L., Li, Y.B., Yang, A.P., Peng, X.L., Wang, X.J. and Zhang, X. (2005) Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. Journal of Materials Science-Materials in Medicine 16, 213-219.
    [43] Ong, J.L. and Chan, D.C.N. (2000) Hydroxyapatite and their use as coatings in dental implants: A review. Critical Reviews in Biomedical Engineering 28, 667A-707A.
    [44] Itoh, S., Kikuchi, M., Takakuda, K., Koyama, Y, Matsumoto, H.N., Ichinose, S., Tanaka, J., Kawauchi, T. and Shinomiya, K. (2001) The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. Journal of Biomedical Materials Research 54, 445-453.
    [45] Specchia, N., Pagnotta, A. and Greco, F. (2000) Can porosity influence the osteoconductive properties of synthetic hydroxyapatite? In: Bioceramics, pp. 355-358.
    [46] Rigo, E.C.S., Boschi, A.O., Yoshimoto, M., Allegrini, S., Konig, B. and Carbonari, M.J. (2004) Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 24, 647-651.
    [47] Bigi, A., Boanini, E., Bracci, B., Facchini, A., Panzavolta, S., Segatti, F. and Sturba, L. (2005) Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26,4085-4089.
    [48] Stigter, M., de Groot, K. and Layrolle, P. (2002) Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials 23, 4143-4153.
    [49] Habibovic, P., Barrere, F., van Blitterswijk, C.A., de Groot, K. and Layrolle, P. (2002) Biomimetic hydroxyapatite coating on metal implants. Journal of the American Ceramic Society 85, 517-522.
    [50] Costantini, A., Luciani, G, Branda, F., Ambrosio, L., Mattogno, G. and Pandolfi, L. (2002) Hydroxyapatite coating of titanium by biomimetic method. Journal of Materials Science-Materials in Medicine 13, 891-894.
    [51 ] Dai Honglian, Li Shipu, Yan Yuhua, Lu Xuhui, Jiang Xi, Zheng Qixin and Du Jingyuan (2003) Study on the metabolic process of porous tricalcium phosphate ceramics in vivo. Jounal of The Chinese Ceramic Society 31, 1161-1165.
    [52] Mukherjee, D.P., Tunkle, A.S., Roberts, R.A., Clavenna, A., Rogers, S. and Smith, D. (2003) An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. Journal of Biomedical Materials Research Part B-Applied Biomaterials 67B, 603-609.
    [53] Ito, M., Hidaka, Y., Nakajima, M., Yagasaki, H. and Kafrawy, A.H. (1999) Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research 45, 204-208.
    [54] Muzzarelli, R.A.A., Ramos, V., Stanic, V., Dubini, B., Mattioli-Belmonte, M., Tosi, G and Giardino, R. (1998) Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydrate Polymers 36,267-276.
    [55] Zhao, F., Yin, Y.J., Lu, W.W., Leong, J.C., Zhang, W.J., Zhang, J.Y., Zhang, M.F. and Yao, K.D. (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23,3227-3234.
    [56] Yin, Y.J., Zhao, F., Song, X. F., Yao, K.D., Lu, W.W. and Leong, J.C. (2000) Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite. Journal of Applied Polymer Science 77, 2929-2938.
    [57] Ge, Z.G, Baguenard, S., Lim, L.Y., Wee, A. and Khor, E. (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25,1049-1058.
    [58] Itoh, S., Yamaguchi, I., Suzuki, M., Ichinose, S., Takakuda, K., Kobayashi, H., Shinomiya, K. and Tanaka, J. (2003) Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Research 993,111-123.
    [59] Xu, H.H.K., Quinn, J.B., Takagi, S. and Chow, L.C. (2004) Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 25,1029-1037.
    [60] Huang, L.Y., Xu, K.W. and Lu, J. (2000) A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. Journal of Materials Science-Materials in Medicine 11,667-673.
    [61] Hu, H.B., Lin, C.J., Lui, P.P.Y. and Leng, Y. (2003) Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants. Journal of Biomedical Materials Research Part A 65A, 24-29.
    [62] Jiang, T., Cheng, X.R. and Wang, Y.N. (2003) Preparation of chitosan/calcium phosphate composite coatings on titanium by a biomimetic method. Journal of Dental Research 82, 332-332.
    [63] Redepenning, J., Venkataraman, G, Chen, J. and Stafford, N. (2003) Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. Journal of Biomedical Materials Research Part A 66A, 411-416.
    [64] Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y, Takakuda, K., Monma, H. and Tanaka, J. (2000) Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. In: Bioceramics, pp. 673-676.
    [65] Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y, Takakuda, K., Monma, H. and Tanaka, T. (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research 55, 20-27.
    [66] Yamaguchi, I., Iizuka, S., Osaka, A., Monma, H. and Tanaka, J. (2003) The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces a-Physicochemical and Engineering Aspects 214,111-118.
    [67] Taguchi, T., Muraoka, Y, Matsuyama, H., Kishida, A. and Akashi, M. (2001) Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials 22, 53-58.
    [68] Taguchi, T., Kishida, A. and Akashi, M. (1998) Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chemistry Letters, 711-712.
    [69] Taguchi, T., Kishida, A. and Akashi, M. (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process (III): Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. Journal of Biomaterials Science-Polymer Edition 10, 795-804.
    [70] Taguchi, T., Kishida, A. and Akashi, M. (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. Journal of Biomaterials Science-Polymer Edition 10, 331-339.
    [71] Tachaboonyakiat, W., Serizawa, T. and Akashi, M. (2001) Hydroxyapatite formation on/in biodegradable chitosan hydrogels by an alternate soaking process. Polymer Journal 33,177-181.
    [72] Rhee, S.F. (2004) Bone-like apatite forming ability on surface modified chitosan membrane in simulated body fluid. In: Bioceramics, Vol 16, pp. 501-504.
    [73] Beppu, M.M. and Santana, C.C. (2004) Direction of in vitro calcified chitosan membranes for technological applications. Chemical Engineering Communications 191,1147-1157.
    [74] Beppu, M.M. and Santana, C.C. (2003) PAA influence on chitosan membrane calcification. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23, 651-658.
    [75] Li, B.Q., Hu, Q.L., Wang, M. and Shen, J.C. (2004) Preparation of chitosan/hydroxyapatite nanocomposite with layered structure via in-situ compositing. Chemical Journal of Chinese Universities-Chinese 25,1949-1952.
    [76] Li, B.Q., Hu, Q.L., Qian, X.Z., Fang, Z.P. and Shen, J.C. (2002) Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture. Acta Polymerica Sinica, 828-833.
    [77] Ahmad, Z. and Mark, J.E. (1998) Biomimetic materials: recent developments in organic-inorganic hybrids. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 6,183-196.
    [78] Falini, C, Fermani, S. and Ripamonti, A. (2001) Oriented crystallization of octacalcium phosphate into beta-chitin scaffold. Journal of Inorganic Biochemistry 84, 255-258.
    [79] Kokubo, T., Kim, H.M., Kawashita, M. and Nakamura, T. (2004) Bioactive metals: preparation and properties. Journal of Materials Science-Materials in Medicine 15,99-107.
    [80] Liao, S.S., Cui, F.Z., Zhang, W. and Feng, Q.L. (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B-Applied Biomaterials 69B, 158-165.
    [81] Torricelli, P., Fini, M., Giavaresi, G, Botter, R., Beruto, D. and Giardino, R. (2003) Biomimetic PMMA-based bone substitutes: A comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure. Journal of Biomedical Materials Research Part A 64A, 182-188.
    [82] Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K. and Hoshi, K. (2002) Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. Journal of Bone and Mineral Research 17, 1814-1821.
    [83] Bessmeltsev, S.S., Gonchar, V.A., Balashova, V.A., Lavrushina, T.S. and Davydova, N.I. (1998) In vitro effects of alternative magnetic field on immunocompetent blood cells and colony-forming ability of bone marrow cells. Gematologiya I Transfuziologiya 43,12-15.
    [84] Sun Shuzhen, Xu Xiaohong, Peng Changqi, Wu Hua and Potong, Z. (1994) Study and preparation of magnetic ceramic artifical bone material to stimulate the formation of new bone. Journal of Wuhan University and Technology 16,99-103.
    [85] Yan, Q.C., Tomita, N. and Ikada, Y. (1998) Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics 20, 397-402.
    [86] Liu, Y.L., Hunziker, E.B., Layrolle, P., De Bruijn, J.D. and De Groot, K. (2004) Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Engineering 10,101-108.
    [87] Yang, X.B., Tare, R.S., Partridge, K.A., Roach, H.I., Clarke, N.M., Howdle, S.M., Shakesheff, K.M. and Oreffo, R.O. (2003) Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: Osteoconductive biomimetic scaffolds for tissue engineering. Journal of Bone and Mineral Research 18,47-57.
    [88] Sivakumar, M., Manjubala, I. and Rao, K.P. (2002) Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres. Carbohydrate Polymers 49, 281-288.
    [89] Matsuda, A., Kobayashi, H., Itoh, S., Kataoka, K. and Tanaka, J. (2005) Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials 26,2273-2279.
    [90] Song, H.J.M., Nacamuli, R.P., Fang, T.D. and Longaker, M.T. (2004) The bone regenerative effect of chitosan microsphere encapsulated growth hormone, chitosan microsphere on consolidation in mandibular distraction osteogenesis of a dog model. Discussion. Journal of Craniofacial Surgery 15, 312-313.
    [91] De Campos, A.M., Sanchez, A. and Alonso, M.J. (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. International Journal of Pharmaceutics 224,159-168.
    [92] Mi, F.L., Tan, Y.C., Liang, H.C., Huang, R.N. and Sung, H.W. (2001) In vitro evaluation of a chitosan membrane cross-linked with genipin. Journal of Biomaterials Science-Polymer Edition 12, 835-850.
    [93] Hu Qiaoling, Qian Xiuzhen, Li Baoqiang and Shen Jiacong (2003) Study of chitosan rod prepared by in situ precipitation. Chemical Journal of Chinese Universities-Chinese 24, 528-531.
    [94] Khor, E. and Lim, L.Y. (2003) Implantable applications of chitin and chitosan. Biomaterials 24,2339-2349.
    [95] Cherng, A., Takagi, S. and Chow, L.C. (1997) Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. Journal of Biomedical Materials Research 35, 273-277.
    [96] Khairoun, I., Driessens, F.C.M., Boltong, M.G, Planell, J.A. and Wenz, R. (1999) Addition of cohesion promoters to calcium phosphate cements. Biomaterials 20, 393-398.
    [97] Takechi, M., Ishikawa, K., Miyamoto, Y, Nagayama, M. and Suzuki, K. (2001) Tissue responses to anti-washout apatite cement using chitosan when implanted in the rat tibia. Journal of Materials Science-Materials in Medicine 12, 597-602.
    [98] Takechi, M., Miyamoto, Y, Ishikawa, K., Toh, T, Yuasa, T., Nagayama, M. and Suzuki, K. (1998) Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 19, 2057-2063.
    [99] Takechi, M., Miyamoto, Y., Momota, Y, Yuasa, T., Tatehara, S., Nagayama, M., Ishikawa, K. and Suzuki, K. (2002) The in vitro antibiotic release from anti-washout apatite cement using chitosan. Journal of Materials Science-Materials in Medicine 13, 973-978.
    [100] Wang, X.H., Ma, J.B., Wang, Y.N. and He, B.L. (2002) Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials 23,4167-4176.
    [101] Zhang, Y. and Zhang, M.Q. (2002) Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Journal of Biomedical Materials Research 61,1-8.
    [102] Zhang, Y. and Zhang, M.Q. (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. Journal of Biomedical Materials Research 62, 378-386.
    [103] Leong, K.W., Mao, H.Q., Truong-Le, V.L., Roy, K., Walsh, S.M. and August, J.T. (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. Journal of Controlled Release 53,183-193.
    [104] Chen, X., Shao, Z.Z., Huang, Y.F., Huang, Y, Zhou, P. and Yu, T.Y. (2000) Influence of crosslinking agent content on structure and properties of glutaraldehyde crosslinked chitosan membranes. Acta Chimica Sinica 58,1654-1659.
    [105] Crescenzi, V., Francescangeli, A., Taglienti, A., Capitani, D. and Mannina, L. (2003) Synthesis and partial characterization of hydrogels obtained via glutaraldehyde crosslinking of acetylated chitosan and of hyaluronan derivatives. Biomacromolecules 4,1045-1054.
    [106] Mi, F.L., Shyu, S.S., Wu, Y.B., Lee, S.T., Shyong, J.Y. and Huang, R.N. (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22,165-173.
    [107] Kulak, Z., Niekraszewicz, A. and Struszczyk, H. (2001) Application of chitosan as sorbent of heavy metal ions. Polimery 46,48-52.
    [108] Zhang Jianxiang, Tang Jian, Xu Bin, Cai Keqing, Ma Weidong, Fang Yue'e, Shi Tianyi and Jun, W. (1998) Journal of Biomedical Engineering 15,179-182.
    [109] Zhang, Y, Ni, M., Zhang, M.Q. and Ratner, B. (2003) Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Engineering 9, 337-345.
    [110] Ito, M., Hidaka, Y, Yagasaki, H. and Kafrawy, A.H. (1997) Effect of hydroxyapatite content on physical properties of a chitosan-hydroxyapatite composite membrane. Journal of Dental Research 76,2530-2530.
    [111] Spence, M.L. and Mccord, M.G. (1997) A novel composite for bone replacement. Proceeding of the 1997 16th Southern Biomedical Engineering Conference, 257-259.
    [112] Xu, H.H.K. and Simon, C.G. (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26,1337-1348.
    [113] Sivakumar, M. and Rao, K.P. (2003) Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres. Journal of Biomedical Materials Research Part A 65 A, 222-228.
    [114] Zhang, Y. and Zhang, M.Q. (2004) Cell growth and function on calcium phosphate reinforced chitosan scaffolds. Journal of Materials Science-Materials in Medicine 15, 255-260.
    [115] Kaminski, W. and Modrzejewska, Z. (1997) Application of chitosan membranes in separation of heavy metal ions. Separation Science and Technology 32, 2659-2668.
    [116] Honda, H., Kawabe, A., Shinkai, A. and Kobayashi, T. (1998) Development of chitosan-conjugated magnetite for magnetic cell separation. Journal of Fermentation and Bioengineering 86,191-196.
    [117] Saravanan, M., Bhaskar, K., Maharajan, G and Pillai, K.S. (2004) Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres. International Journal of Pharmaceutics 283, 71-82.
    [118] Kim, D.K., Mikhaylova, M, Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y, Tsakalakos, T. and Muhammed, M. (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chemistry of Materials 15,4343-4351.
    [119] Shimomura, M., Togashi, R., Oshima, K., Yamauchi, T. and Miyauchi, S. (2004) Immobilization of glucose oxidase on magnetite particles modified by grafting acrylic acid-acrylamide copolymer - Effect of pH on activity of immobilized glucose oxidase. Kobunshi Ronbunshu 61,133-138.
    [120] Huang, Z.B. and Tang, F.Q. (2004) Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. Journal of Colloid and Interface Science 275,142-147.
    [121] Sinha, A., Chakraborty, J., Joy, P.A. and Ramachandrarao, P. (2004) Magnetic field-induced biomimetic synthesis of superparamagnetic poly (vinyl alcohol)-maghemite composite. Journal of Materials Research 19,1676-1681.
    [122] Kohler, N., Fryxell, GE. and Zhang, M.Q. (2004) A bifunctional polyethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of the American Chemical Society 126, 7206-7211.
    [123] Spanova, A., Horak, D., Soudkova, E. and Rittich, B. (2004) Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 800,27-32.
    [124] Mornet, S., Vekris, A., Bonnet, J., Duguet, E., Grasset, F., Choy, J.H. and Portier, J. (2000) DNA-magnetite nanocomposite materials. Materials Letters 42, 183-188.
    [125] Pan, B.F., Gao, F. and Gu, H.C. (2005) Dendrimer modified magnetite nanoparticles for protein immobilization. Journal of Colloid and Interface Science 284, 1-6.
    [126] Cheng, F.Y., Su, C.H., Yang, Y.S., Yeh, C.S., Tsai, C.Y, Wu, C.L., Wu, M.T. and Shieh, D.B. (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26,729-738.
    [127] McCartney, M.R., Lins, U., Farina, M., Buseck, P.R. and Frankel, R.B. (2001) Magnetic microstructure of bacterial magnetite by electron holography. European Journal of Mineralogy 13, 685-689.
    [128] Lee, H., Purdon, A.M., Chu, V. and Westervelt, R.M. (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Letters 4, 995-998.
    [129] Sinha, A., Chakraborty, J., Das, S.K., Das, S., Rao, V. and Ramachandrarao, P. (2001) Oriented arrays of nanocrystalline magnetite in polymer matrix produced by biomimetic synthesis. Materials Transactions 42,1672-1675.
    [130] Hu, Q.L., Li, B.Q., Wang, M. and Shen, J.C. (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials 25, 779-785.
    [131] Bhatia, S.C. and Ravi, N. (2000) A magnetic study of an Fe-chitosan complex and its relevance to other biomolecules. Biomacromolecules 1,413-417.
    [132] Bhatia, S.C. and Ravi, N. (2003) A Mossbauer study of the interaction of chitosan and D-glucosamine with iron and its relevance to other metalloenzymes. Biomacromolecules 4, 723-727.
    [133] Gupta, A.K. and Wells, S. (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. Ieee Transactions on Nanobioscience 3, 66-73.
    [134] Kokubo, T. (2003) Novel inorganic materials for biomedical applications. In: Bioceramics 15, pp. 523-528.
    [135] Landfester, K. and Ramirez, L.P. (2003) Encapsulated magnetite particles for biomedical application. Journal of Physics-Condensed Matter 15, S1345-S1361.
    [136] Song, L.G., Liu, T.B., Liang, D.H., Wu, C.H., Zaitsev, V.S., Dresco, P.A. and Chu, B. (2002) Coupling of optical characterization with particle and network synthesis for biomedical applications. Journal of Biomedical Optics 7,498-506.
    [137] Lacava, L.M., Garcia, V.A.P., Kuckelhaus, S., Azevedo, R.B., Sadeghiani, N., Buske, N., Morais, P.C. and Lacava, Z.GM. (2004) Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. Journal of Magnetism and Magnetic Materials 272-76,2434-2435.
    [138] Hanft, J.R., Landsman, A., Surprenant, M.S. and Goggin, J. (1998) The role of combined magnetic field (CMF) bone growth stimulator as an adjunct in the treatment of neuroarthropathy Charcot joint. Diabetes 47, A392-A392.
    [139] Saban, K.V., Jini, T. and Varghese, G (2003) Influence of magnetic field on the growth and properties of calcium tartrate crystals. Journal of Magnetism and Magnetic Materials 265,296-304.
    [140] Ignatius, A., Blessing, H., Liedert, A., Schmidt, C, Neidlinger-Wilke, C, Kaspar, D., Friemert, B. and Claes, L. (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26, 311-318.
    [141] Kis, A.C., Leventouri, T. and Thompson, J.R. (2005) Magnetic and structural properties of ferrimagnetic bioceramics. In: Materials Science, Testing and Informatics Ii, pp. 117-122.
    [142] Ngah, W.S.W., Ab Ghani, S. and Kamari, A. (2005) Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology 96,443-450.
    [143] Sipos, P., Berkesi, O., Tombacz, E., Pierre, T.G. and Webb, J. (2003) Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. Journal of Inorganic Biochemistry 95, 55-63.
    [144] Martins, A.O., da Silva, E.L., Carasek, E., Goncalves, N.S., Laranjeira, M.C.M. and de Favere, V.T. (2004) Chelating resin from functionalization of chitosan with complexing agent 8-hydroxyquinoline: application for metal ions on line preconcentration system. Analytica Chimica Acta 521,157-162.
    [145] Burke, A., Yilmaz, E., Hasirci, N. and Yilmaz, O. (2002) Iron(III) ion removal from solution through adsorption on chitosan. Journal of Applied Polymer Science 84, 1185-1192.
    [146] Huang, M., Khor, E. and Lim, L.Y. (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharmaceutical Research 21, 344-353.
    [147] Huang, M., Ma, Z.S., Khor, E. and Lim, L.Y. (2002) Uptake of FITC-chitosan nanoparticles by a549 cells. Pharmaceutical Research 19,1488-1494.
    [148] Ma, Z.S. and Lim, L.Y. (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: A comparison between chitosan molecules and chitosan nanoparticles. Pharmaceutical Research 20,1812-1819.
    [149] Onishi, H. and Machida, Y. (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20,175-182.
    [150] Wang, P.F., Wu, S.K., Shi, X.Y., Deng, B.M. and Sun, C. (1998) The aggregation behaviour of chitosan bioelectret in aqueous solution using a fluorescence probe. Journal of Materials Science 33,1753-1757.
    [151] Endo, T., Zhang, F., Kitagawa, R., Hirotsu, T. and Hosokawa, J. (2000) Formation of hydrogen-bonds between particles of fine cellulose powder to yield a transparent cellulose plate. Polymer Journal 32,182-185.
    [152] Nishiyama, T. (2003) New interpretations on Liesegang ring-like structures in petrology. Geochimica Et Cosmochimica Acta 67, A339-A339.
    [153] Lebedeva, M.I., Vlachos, D.G and Tsapatsis, M. (2004) Pattern formation in porous media via the Liesegang ring mechanism. Industrial & Engineering Chemistry Research 43, 3073-3084.
    [154] Toramaru, A., Harada, T. and Okamura, T. (2003) Experimental pattern transitions in a Liesegang system. Physica D-Nonlinear Phenomena 183,133-140.
    [155] Stefan C. Muller, Sholchl Kal and Ross, J. (1982) Periodic Precipitation Patterns in the Presence of Concentration Gradients. I: Dependence on Ion Product and Concentration Difference. J. Phys. Chem. 86,4078-4087.
    [156] Shreif, Z., Al-Ghoul, M. and Sultan, R. (2002) Effect of competitive complex formation on patterning and front propagation in periodic precipitation. Chemphyschem 3, 592-598.
    [157] George, J. and Varghese, G (2005) Intermediate colloidal formation and the varying width of periodic precipitation bands in reaction-diffusion systems. Journal of Colloid and Interface Science 282, 397-402.
    [158] Chacron, M. and L'Heureux, I. (1999) A new model or periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A 263, 70-77.
    [159] Okuyama, K., Noguchi, K., Miyazawa, T., Yui, T. and Ogawa, K. (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30, 5849-5855.
    [160] Legeros, R.Z., Mijares, D. and Rohanizadeh, R. (2002) Biomimetic growth of calcium phosphate crystals on biological surfaces. Journal of Dental Research 81, A194-A194.
    [161] Byrne, M.E. and Peppas, N.A. (2001) Biomimetic materials for drug targeting and drug delivery. Abstracts of Papers of the American Chemical Society 222, U420-U421.
    [162] Shin, H., Jo, S. and Mikos, A.G (2003) Biomimetic materials for tissue engineering. Biomaterials 24,4353-4364.
    [163] Vincent J. F, V. (2001) Stealing Ideas from Nature (Chapter 3 in Deployable structures, pp. 51-58, Springer-Verlag.
    [164] Cazalbou, S., Eichert, D., Drouet, C, Combes, C. and Rey, C. (2004) Biological mineralisations based on calcium phosphate. Comptes Rendus Palevol 3, 563-572.
    [165] Taguchi, T., Kishida, A. and Akashi, M. (2000) Fabrication of polymer-apatite composites by using a novel alternate soaking process. Kobunshi Ronbunshu 57, 324-335.
    [166] Schliephake, H., Scharnweber, D., Dard, M., Rossler, S., Sewing, A. and Huttmann, C. (2003) Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible. Journal of Biomedical Materials Research Part A 64A, 225-234.
    [167] Ijima, H., Ohchi, T., Ono, T. and Kawakami, K. (2004) Hydroxyapatite for use as an animal cell culture substratum obtained by an alternate soaking process. Biochemical Engineering Journal 20,155-161.
    [168] Tanaka, S., Sakane, M., Tanaka, J., Yamaguchi, I., Shimojo, H., Kato, K., Tateishi, T. and Miyanaga, Y. (2000) Apatite coating in/on rabbit tendons using an alternate soaking process. In: Bioceramics, pp. 479-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700