中国森林生态系统异戊二烯排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光化学烟雾和对流层臭氧浓度的日益增加已经直接威胁着人类的生存环境。光化学烟雾和大气臭氧形成的重要前体物之一——非甲烷烃(NMHC)的排放受到研究者的热切关注。异戊二烯(isoprene)(C_5H_8)是对流层中重要的NMHC,也是植被释放最多的挥发性有机化合物(VOC),其排放量占植物烃类总排放量的一半,特别是在农村和边远地区大气边界层中含量很高,往往对局地大气环境,如臭氧浓度有很大的影响。
     本论文在系统总结国内外异戊二烯排放研究的基础上,采用封闭式采样方法和带有光离子化检测器(PID,Photo-ionization detector)的气相色谱,对长江三角洲65种优势物种的异戊二烯排放进行了观测,得到了40种排放物种的异戊二烯排放潜力,以毛竹为例对估算异戊二烯排放的Guenther方程进行了验证。并结合前人的观测结果和全国森林资源普查,利用Guenther方程估算得到全国主要森林优势树种的异戊二烯排放量为0.03-8.6Tg/yr,上限值约占全球年排放总量的1.5~4.3%,并分析了中国森林生态系统异戊二烯排放的时空分布规律,这将为进一步了解大气环境变化过程,提高各种大气污染模式的模拟效果和制定更有效的减排措施,降低对流层臭氧对生态系统和人类生存环境的危害,提供科学基础。
Zhangli (Climatology) Directed by Prof. Qilong Miao, Xiaoke Wang and Zhiyun Ouyang
    The increasing of photo-chemical smog and ozone concentration has directly threaten the human's living environment. As one important predecessor of photo-chemical smog and ozone, non-methane hydrocarbon's (NMHC) emission is paid great attention. Isoprene is one kind of important NMHC, and also the most abundant volatile organic compound releases from vegetation in troposphere. Its emission accounts for half of the hydrocarbons' total one, and especially is very high in the rural and well vegetated areas, which greatly influences the regional environment such as ozone concentration.
    Based on literature review of isoprene emission, the preponderant species' emissions in Yangtze Delta were observed by enclosure sampling method and GC-PID (Gas Chromatograph Photo-ionization Detector). Isoprene emission factors of 40 species were detected, and Guenther's model, which had been used to estimate isoprene emission, was also validated. Coupling with other's measurements and the national forest census data, isoprene emission of the main forest tree species of China were estimated about 0.03-8.6Tg/yr with Guenther's model and then the temporal and spatial distribution characters were analyzed, which are expected to provide the basis for deeper understanding atmospheric environment change process, improving the results of atmospheric pollution model, and making more effective measure to control the pollution's emission to ecosystem and human living environment.
引文
[1] Singh HB,Zimmerman PR, Atmospheric distribution and sources of nonmethane hydrocarbons. Nriagu JO. Gaseous Pollutants: Characterization and Cycling. New York: John Wiley and Sons, 1992
    [2] McGarvey D. J. and Groteau R., Terpenoid metabolism, The Plant Cell, 1997, 7:1015~1026
    [3] Guenther A., P. Zimmerman, and M. Wildermuth,Natural volatile organic compound emission rate estimates for U. S. Woodland landscapes, Atmospheric Environment, 1994, 28(6): 1197~1210
    [4] Guenther A., C. Nicholas Hewitt, D. Erickson,et al,A global model of natural volatile organic compound emissions,J. Geophysical Research, 1995,100(D5): 8873~8892
    [5] 唐孝炎、李金龙、栗欣等1990,大气环境化学,高等教育出版社,第一版,51
    [6] 王明星,大气化学,气象出版社,1991
    [7] Shelby M.D., Result of NTP-Sponsored Mouse Cytogenic Studies in Mice. Mutagenesis, 1988, 3:141~146
    [8] Gervasi P.G. et al, Metabolism and Mutagenicity of Isoprene. Enviromental Health Perspectives, 1990, 86:85~87
    [9] Gervasi P.G. et al, Mutagenicity and Chemical Reactivity of Epocidic Intermediates of the Isoprene Metabolism and Other Structurally Related Compounds. Mutat. Res.,1985,156:77~82
    [10] Dahl A. R. et al, The Fate of Isoprene Inhaled by Rats: Comparison to Butadiene. Toxical. Appl. Pharmacal., 1987, 89:237~248
    [11] Dahl A. R. et al, Species Differences in the Metabolism and Disposition of Inhaled 1, 3-Butadiene and Isoprene. Environmental health Perspectives, 1990, 86:65~69
    
    
    [12] Del Monte M. et al, Isoprene Metabolism by liver Microsomal Monooxygeases. Xenobiotica, 1985, 15:591~597
    [13] Melnick R. L. et al, Inhalation Toxicology of Isoprene in F344 Rats and B6C3F1 Mice Following Tow-Week Ecposures. Environmental Health Perspectives, 1990, 86: 93~98
    [14] Roger L. Tanner and Barvara Zielinska, Determination of the Biogenic Emission Rates of Species Contributing to VOC in the San Joaquin Valley of California. Atmospheric Environment, 1994, 6:1113~1120
    [15] Brian Lamb, Alex Guenther, David Gay and Hal Westberg, A National Inventory of Biogenic Hydrocarbon Emissions. Atmospheric Environment, 1987,21(8): 1695~1705
    [16] Lamb B., Westberg H. and Allwine G.,Isoprene Emission Fluxes Determined by an Atmospheric Tracer Technique. Atmospheric Environment, 1986, 20:1~8
    [17] 李金龙,白郁华,胡建信等,油松排放菇烯类化合物浓度的日变化及排放速率的研究,中国环境科学,1994,14(3):165~169
    [18] 牟玉静,宋文质,张晓山等,落叶阔叶树异戊二烯排放研究,环境化学,1999,18(1):21~27
    [19] 张福珠,苗鸿,鲁纯,落叶阔叶林释放异戊二烯的研究,环境科学,1994,15(1):1~6
    [20] 白建辉,王明星,John Graham,Ronald G.Prinn,亚热带森林非甲烷碳氢化合物的研究:Ⅱ.日变化,气候与环境研究,2001,6(4):456~466
    [21] 李庆军,Lee F.Kinger,中国不同气候带植被挥发性有机化合物通量与生态系统演替的相关性,植物学报,2001,43(10):1065~1071
    [22] Tingey D. T., M. Manning, L.C. Grothaus, and W.F. Burns, Influence of light and temperature on monoterpene emission lages from Slash Pine,Plant Physiol., 1980, 65: 797~801
    [23] Guenther A. B., Moson R., Fall R., Isoprene and monoterpene emission rage variability: Observations with Eucalyptus and emission rage algorithm development, J. Geophysical Research, 1991, 96(D6): 10799~10808
    [24] Schuh G., Heiden A. C., Hoffmann Th., Kahl J., Rocket P., Rudolph J., and Wildt J., Emission of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity, J. Atmos. Chem., 1997, 27:291~318
    [25] Staudt M. and Berlin N., Light and tem, perature dependency of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves, Plant. Cell Environ., 1998, 21:385~395
    [26] Tingey D.T.M. Manning, L.C. Grothaus, and W.F. Burns, The influence of light and temperature on isoprene emission from live oak, Physiol. Plant, 1979, 47:112~118
    [27] Tingey D. T., Evans R., and Gumpertz M., Effects of environmental conditions on isoprene synthesis in three live oak (Quercus virginiana), Planta, 1981,152:565~570
    [28] Tingey D. T., Evans R., Bates E. H. and Gumpertz M., Isoprene emissions and photosynthesis in three ferns-the influence of light and temperature, Physiologia plantarum, 1987, 69:609~616
    [29] 张继文,植物为什么排放异戊二烯
    [30] Sharkey T D, Singaas E L, Why plants emit isoprene?, Nature, 1995, 374:769
    [31] Jones C. A., and R. A. Rasmussen, Production of isoprene by leaf tissue, Plant Physiology, 1975, 55:982~987
    [32] Thomas D. Sharkey, Francesco Loreto and Charles F. Delwiche, The Biochemistry of Isoprene emission from Leaves during photosynthesis, Trace Gas Emissions by Plants,
    
    1991:153~185
    [33] Monson R.K., Guenther A.B., and Fall R., Physiological reality in relation to ecosystem-and global-level estimates of isoprene emission, in T. D. Sharkey E. A. Holland, and H. A. Mooney (eds), Trace Gas Emissions from Plants, Academic Press, San Diego, 1991, 185~207
    [34] Loreto F. and Sharkey T. D., Isoprene emission by plants is affected by transmissible wound signals, Plant. Cell Environ, 1993a, 16:563~570
    [35] Loreto F. and Sharkey T. D., On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions, Planta 1993b, 189:420~424
    [36] Guenther A. B., Zimmermann P., Harley P. C., Monson R. K., and Fall R., Isoprene and monoterpene emission variability: Model evaluations and sensitivity analysis, J. Geophys. Res., 1993, 89:12609~12617
    [37] Monson R. K., Harley P. C., Litvak M. E., Wildermuth M., Guenther A. B.,
    Zimmerman P.R., and Fall R., Environmental and developmental controls over the
    seasonal pattern of isoprene emission from aspen leaves, Oecologia, 1994, 99: 260~270
    [38] Fuentes J. D., D. Wang, G. Den Hartog, H. H. Neumann, T. F. Dann, and K. J. Pu(?)kett, modeled and field measurements of biogenic hydrocarbon emission s from a Canadian deciduous forest, Atmos. Environ., 1995, 29(21): 3003~3017
    [39] Pier P. A., Isoprene emission rates from northen red oak using a whole-tree chamber, Atmos. Environ., 1995, 29(12): 1347~1353
    [40] Goldstein A.H., Michael L. Goulden, J.William Munger, and Steven C. Wofsy, Christopher D. Geron, Seasonal course of isoprene e(?)ssion from a midlatiude deciduous forest, J.Geophysical Research, 1998, 103(D23): 31045~31056
    [41] Evans R.,E. Tingey, and M. Gumpertz, Interspecies variation in terpenoid emissions from Engchnann and Sitka spruce seedlings, For. Sci., 1985, 31:132~142
    [42] Chameides W.L., R. W. Lindsay, J. Richardson, and C. S. Kiang, The role of biogenic hydrocarbons in urban photochemical smog: Atlanda as a cas(?) study, Science, 1988, 241:1473~1475
    [43] Pierce T., and P. Waldruff, PC-BEIS: A personal computer version of the biogenic emissions inventory system, J. Air Waste Manage. Assoc., 1991, 41: 937~941
    [44] Geron C. D., Guenther A. B., and Pierce T. E., An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States, J. Geophysical Res., 1994, 99(D6): 12773~12791
    [45] Pier P. A., and C. M(?)Duffie, Jr., Seasonal isoprene emission rates and model comparisons using whole-tree emissions from white oak, J. Geophysical Res., 1997,102(D20): 23963~23971
    [46] Guenther A., B. Baugh, G. Brasseur, J. Greenberg, P. Harley, L. Klinger, D. Serca, and Lee Viering, Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain, J. Geophysical Res., 1999, 104(D23): 30625~30639
    [47] Guenther A., C. Nicholas Hewitt, D. Erickson, et al, A global model of natural volatile organic compound emissions,J. Geophysical Research, 1995, 100(D5): 8873~8892
    [48] 唐孝炎,李金龙,栗欣等,1990,大气环境化学,高等教育出版社,第一版,51
    [49] Zimmerman P. R., Determination of emission rates of bydrocarbons from indigenous species of vegetation in the Tampa/St. Petersburg, Florida area., Appendix C. Tampa
    
    Bay area Photochemical oxidant study. 1979, EPA-904-9-77,U.S. Environmental Protection Agency, Region Ⅳ, Atlanta, Georgia.
    [50] Lamb B.,D. Gay, and H. Westberg, A biogenic hydrocarbon emission inventory for the U.S.A using a simple forest canopy model, Atmospheric Environment, 1993, 27A (11): 1673~1690
    [51] Andreani-Aksoyoglu S., and J. Keller, Estimates of Monoterpene and isoprene emissions from the forests in Switzerland, J. Atmospheric Chemistry, 1995, 20:71~87
    [52] Guenther A., Seasonal and spatial variations in natural volatile organic compound emissions, Ecological Applications, 1997, 7(1): 34~35
    [53] Kellomaki S., Ismo Rouvinen, Heli Peltola, Harri Strandman, Density of foliage mass and area in the boreal forest cover in Finland, with applications to the estimation of monoterpene and isoprene emissions, Atmospheric Enviroment, 2001,35:1491~1503
    [54] Duce R.A., V. A. Mohnen, P. R. Zimmerman, D. Grosjean, W. Cautreels, R. Chatfield, R. Jaenicke, J. A. Ogren E. D. Pellizari, and G. T. Wallace, Organic material in the global troposphere, Rev. Geophys. Space Phys., 1983, 21:921~952
    [55] Singh H., Zimmerman P., Atmospheric distribution and sources of nonmethane hydrocarbons, In: Nriagu, J.O. (Ed.) Gaseous Pollutants: Characterization and Cycling. Wiley, New York, 1992:177~235
    [56] Fehsenfeld FC, Calvert J, Fall R et al, Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles, 1992, 6:389~430
    [57] Went F. W., Organic matter in the atmosphere and its possible relation to petroleum formation, Proc. Nat. Acad. Sci. U.S.A., 1960a, 46:212~221
    [58] Went F. W., Blue hazes in the atmosphere, Nature, 1960b, 187:641~643
    [59] Rasmussen R. A. and Went E W., Volatile organic material of plant origin in the atmosphere, Proc. Natl. Acad. Sci. U.S.A., 1965, 53:215~220
    [60] Robinson E., and Robbins R., Sources, abundance and fate of gaseous atmospheric pollytants, Final Rep., 1968, PR-6757, Stanford Research Institude, Menlo Park, California
    [61] Rasmussen R.A. and Khalil M.A.K.,Isoprene Over the Amazon Basin, Journal of Geophysics Research, 1988, 93:1417~1421
    [62] Warneck P.,Chemistry of the Natural Atmosphere ,Academic Press, 1988, San Diego
    [63] Dignon J. and Logan J., Biogenic emissions of isoprene: A global inventory, EOS, Trans. AGU, 1990, 71: 1260
    [64] TaylorJ., Zimmermann P., and Erickson D., A 3-D modeling study of the sources and sinks of atmospheric carbon monoxide, CRES Works, Pap. 199013, Aust. Nat. Univ., Canberra
    [65] Turner D., Baglio J., Pross D., Wones A., McVeety B., Vong R., and Philips. D., Climate change and isoprene emissions from vegetation, Chemosphere, 1991, 23:37~56
    [66] Mueller J. F., Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res., 1992, 97: 3787~3804
    [67] Allwine G., Lamb B., and Westberg H., Cited in Fehsenfeld et al (1992), Global Biogeochem, Cycles, 1992, 6:389~430
    [68] 彭立新,唐孝炎,白郁华,李金龙,天然源排放碳氢化合物对广州地区光化学污染的影响,中国环境科学,2000,20(2):132~135
    
    
    [69] Pierce T., Christopher Geron,Lucille Bender, Robin Dennis, Gail Tonnesen, and Alex Guenther, The influence of increased isoprene emissions on regional ozone modeling, Journal of Geophysical Research, 1998, 103(D19): 25611~25629
    [70] 朱彬,李子华,肖辉,黄美元,非甲烷碳氢化合物的光化学臭氧生成潜势的数值模拟研究,南京气象学院学报,2000,23(3):338~345
    [71] 彭立新,典型城市光化学污染研究[D],北京:北京大学环境科学中心,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700