褐煤基颗粒活性炭的绿色制备及其变压吸附分离CH_4/N_2的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气是一种非常规天然气,它的直接排放,不但造成了资源的浪费,也引起了严重的环境及安全问题。对煤层气的综合开发利用,有利于优化我国能源结构,减少大气污染和安全问题。煤层气利用的关键其主要成分甲烷和氮气的分离。变压吸附(PSA)是分离煤层气中甲烷和氮气的有效技术之一,其关键是吸附剂。而活性炭由于具有较大的孔容,能克服吸附容量的限制,且孔径较大,扩散速率较快,比较适合于煤层气的变压吸附分离。
     本研究以低煤阶的褐煤为原料,采用煤焦油、聚丙烯酰胺和可溶淀粉作粘结剂制备了浓缩CH_4/N_2中CH_4的活性炭吸附剂,建立了考虑资源负荷、环境负荷和产品性能的评价体系,对各种粘结剂做了选择性评价,筛选出了污染物排放少、分离性能较好、强度高的粘结剂—可溶淀粉。在综合评价的基础上,详细讨论了工艺条件,如原料预处理方式、致孔剂的添加、活化温度、升温速率、活化水用量等对活性炭分离CH_4/N_2效果的影响,指出可溶淀粉作粘结剂制备颗粒活性炭的最佳工艺为:600℃炭化1h,800℃活化2h,升温速率10℃/min,活化水用量1.9~2.0ml/min;当可溶淀粉用量为40g/200g(褐煤)时,按照上述工艺制备的样品变压吸附分离CH_4/N_2的效果可稳定在25~30%。
     对其他淀粉替代可溶淀粉作粘结剂的可行性研究显示,由于较低的污染物排放量,较高的强度和良好的分离效果,使得由磷酸酯化淀粉制备的颗粒活性炭的综合评价高于可溶淀粉样品,综合第一次评价结果,在选择制备褐煤基颗粒活性炭的粘结剂时,首先推荐磷酸酯化淀粉,其次是可溶淀粉。
     粘结剂的种类对活性炭的物理性质和表面化学性质具有明显的影响,对由不同粘结剂制备出的分离CH_4/N_2效果较好的样品的分析表明:GAC-ES(磷酸酯化淀粉)的堆密度、颗粒密度和强度均高于其他样品;GAC-T(可溶淀粉)具有更高的微孔孔容,样品微孔的差异主要体现在0.45~0.6nm;GAC-C(煤焦油)和GAC-T的表面含氧官能团的相对含量高于GAC-P(聚丙烯酰胺)。另外,GAC-C、GAC-P和GAC-T的热重分析表明:GAC-C和GAC-P除了0~100℃的明显失重过程外,分别在300℃左右和700~800℃还有一个明显的失重过程。
     粘结剂的用量对活性炭的孔结构也具有较大的影响,以由市售食用淀粉制备的样品为例的孔结构表征显示:样品孔结构参数均随着淀粉淀粉用量的增加呈先降低后增高的趋势;TS-0.2、TS-0.25和TS-0.3全孔径分布的差异主要体现在20~50nm、2~20nm和0.4~2nm范围内。
     GAC-C、GAC-P和GAC-T对CO_2、CH_4和N_2的吸附性能有较大差异,这主要是由三者的孔结构和表面化学性质的差异引起的。活性炭表面酮、醛、酸、酯及酸酐类的C=O和C-O含量越高,越有利于CH_4/N_2的变压吸附分离。同时活性炭变压吸附分离CH_4/N_2效果与其微孔孔容和分布有密切关系,微孔越发达越有利于CH_4/N_2的分离;模拟结果显示,0.6nm以上的微孔均能实现CH_4/N_2的吸附分离,0.7nm的微孔最有利于CH_4/N_2的吸附分离;但数值分析结果显示,小于0.6nm的微孔也能实现CH_4/N_2的吸附分离。原因在于10-4-3模型的相关参数只与温度相关,没有考虑压力的影响,而Knudsen准则很好地解释了这一现象。
Coal bed methane is an unconventional nature gas. Because of its planless discharge, there are many environmental and secure problems, and resources is wasted. The utilization of coal bed methane is beneficial to optimization of energy structure and decrease of atmospheric pollution and incidents in our country. The key of utilizing coal bed methane is separation of methane and nitrigen which are the main compositions of coal bed methane. Pressure swing adsorption is one of technologies that separate effectually methane and nitrogen. And adsorbent is one of the most crucial factors which influence pressure swing adsorption performance. Due to the higher pore volume, bigger pore size, faster diffusion rate and neglecting limit of loading capacity, activated carbon is more suitable for separation of coal bed methane by pressure swing adsorption.
     In this paper, active carbon adsorbents used for concentrating methane from CH_4/N_2 were prepared from lignite by using coal tar, tragantine and PAM as binders, respectively. A comprehensive evaluation system consisted of enviromental index, resources index and performance index is established, and used to evaluate the three binders. The results show that soluble starch is the best binders, and its advantages are low discharge of contamination and high separation effect and strength. On the basic of evaluation results, the effects of technologcial conditions, such as pretreatment methods of lignite, kinds of pore-foaming agents, activation temperature, heating rate, dosage of activation water, on separation performance are discussed. The optimized technics is carbonizing at 600℃for 1 hour, activation at 800℃for 2 hour, heating rate of 10℃/min and activation water dosage of 1.9~2.0ml/min. While 40g soluble starch is added in 200g lignite, the separation performances of samples prepared by optimized technics are 25~30%.
     The feasibility study of other starches replacing soluble starch show that duo to lower discharge of contamination, higher strength and better separation performance, sample from starch monoester phosphate is superior to soluble starch sample. In sum, starch monoester phosphate is the top-priority binder, and soluble starch is the second choice when granular activated carbon is prepared from lignite.
     The influence of binders kinds on physical appearance and surface chemical properties of activated carbons is enormous. The characterizations of samples from differfent binders which have the better separation performance indicate that bulk density, pellet density and strength of GAC-ES(starch monoester phosphate) are higher than other samples while GAC-T(soluble starch) has the maximal micropore volume. The difference of micropore distribution is mainly in 0.45~0.6nm. The surface oxygen-containing functional groups relative concentrations of GAC-T and GAC-C(coal tar) are greater than GAC-P(polyacrylamide). In addition, besides the weightlessness in 0~100℃, GAC-T and GAC-C has another weightlessness in 300℃and 700~800℃, respectively.
     The dosages of binder are obviously influenced the pore structure of samples. Samples from commercial salep as examples, pore structure parameters are to reduce, and then to increase with the raise of salep dosage. The pore distribution difference by DFT method of TS-0.2, TS-0.25 and TS-0.3 is in 20~50nm, 2~20nm and 0.4~2nm.
     Because of the differences of pore structure and surface chemical properties, adsorptive properties on CO2, CH_4 and N_2 of GAC-C, GAC-P and GAC-T are discrepant. The contents of C=O from ketone, aldehyde, organic acid, ester and estolide, and phenol C-O are greater, the separation performance of CH_4/N_2 is better. At the same time, it is advantageous to separate CH_4/N_2 that activated carbons have more micropore volume. The results of simulation by 10-4-3 model show that the micropore from 0.6nm to 2.0nm could separate CH_4/N_2, and micropore about 0.7nm is the best pore to separate CH_4/N_2. But, numerical analysis of different range micropore volumes and separation performances indicate the micropore of which pore width is less 0.6nm could also separate CH_4/N_2. The reason is that energy parameters of 10-4-3 model are only correlated with temperature,and influence of pressure is not included. However, Knudsen roles explains best the difference。
引文
[1]鲜学福.我国煤层气开发基础研究方面的一些进展与展望[R].第七届全国渗流力学会报告,2004:1-20.
    [2]司光耀,蔡武,张强.国内外煤层气利用现状及前景展望[J].中国煤层气, 2009, 6(2): 44-46.
    [3] Guo-Feng Zhao, etc. The modification of activated carbons and the pore structure effect on enrichment of coal- bed methane. Asia-Pac. J. Chem. Eng. 2008; 3: 284-291.
    [4]颜文涛,陈建文,范德江.天然气水合物对全球气候变化、海平面旋回性的影响[J]. 2007, 23(3):28-30.
    [5]江世忠,谭显华,邓峰,等.利用手持技术探究甲烷的温室效应[J].化学教育, 2006, (12):40-41
    [6] LARRY HUGHES, SANDY SCOTT. CANADIAN GREENHOUSE GAS EMISSIONS: 1990-2000. Energy Conversion and Management, Volume 38, Issue 3, February 1997, Pages 217-224.
    [7]钱伯章.国内外开发利用煤层气步伐加快[J].煤炭加工与综合利用, 2005, (2):37.
    [8]王志勇.在产业结构调整中伴生煤层气的回收利用[J].山西财经大学学报,2006,28(S2): 97.
    [9]张凤麟.论煤层气资源开发与我国的能源消费结构[J].中国国土资源经济, 2009, (3):16-17.
    [10] Simone Cavenati, Carlos A. Grande, Alírio E. Rodrigues. Layered pressure swing adsorption for methane recovery from CH4/CO2/N2 streams. Adsorption, 2005; 11: 549-554.
    [11]马伟,杨胜强,王延林.浅谈我国煤层气的CDM应用[J].能源技术与管理, 84-86.
    [12]刘馨,黄盛初.煤矿区煤层气CDM项目发展前景[J].中国煤炭,2002,28(4): 28-30.
    [13]马争艳,杨昌明.美国煤层气产业化的成功经验与启示[J].中国国土资源经济,2007(4):29-31.
    [14]钱伯章,朱建芳.世界非常规天然气资源和利用进展[J].天然气与石油,2007,25(2):28-32.
    [15]郭东.低浓度煤层气资源利用现状及效益分析[J].中国煤层气, 2008,5(3):42-46(41).
    [16] Pilarczyk Erwin,Knoblauch Karl. Gas separation processes by pressure swing adsorption using carbon molecular sieves[C]//Li N,Strathmann H(eds.). Separation Technology,Proc. Eng. Found. Conf,2nd. New York:Eng Foundation,1988.522-550.
    [17] Doong S J, Yang R T. Bulk separation of multi-component gas mixture by pressure swing adsorption: pore/surface diffusion and equilibrium models [J]. AIChEJ, 1986, 32(3): 397-410.
    [18] Pahade R F,Saunders J B,Maloney J J.Process for separating methane and nitrogen:US,4592767[P].1986.
    [19]陶鹏万,王晓东,黄建彬.低温法浓缩煤层气中的甲烷[J].天然气化工, 2005, 30(4) :43-46.
    [20]西南化工研究设计院.煤层气低温分离提浓甲烷工艺:中国,1718680A[P].2006.
    [21]北京科瑞赛斯气体液化技术有限公司.含空气煤层气液化工艺及设备:中国,1952569A[P].2007.
    [22]北京科瑞赛斯气体液化技术有限公司.含空气煤层气液化工艺及设备:中国,1908559A[P].2007.
    [23]杨克剑.含空气煤层气液化分离工艺及设备:中国,200610103425.0[P]. 2007-02-07.
    [24] US EPA. EPA Coal bed Methane Outreach Program Technical Options Series. United States Environmental Protection Agency, Office of Air and Radiation 6202J; November 1998.
    [25] Austin GT. Shreve’s chemical process industries. 5th ed. New York: McGraw-Hill; 1984.
    [26] Kirk-Othmer Encyclopedia of Chemical Technology. Cryogenics. New York: Wiley; 1993.
    [27] Ali Elkamel, Richard D. Noble. A statistical mechanics approach to the separation of methane and nitrogen using capillary condensation in a microporous membrane [J]. Journal of Membrane Science, 1992,65(1-2):163-172.
    [28] Lokhandwala Kaaei. Membrane-augmented cryogenic methane/nitrogen separation [J]. Applied Thermal Engineering, 1998, 18(6):150.
    [29] Patrice Tremblay, Martine M. Savard, Jonathan Vermette, et al. Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus [J]. Journal of Membrane Science, 2006, 282( 1-2, 5):245-256.
    [30] Bhide B D,Voskericyan A,Stern S A. Hybrid processes for the removal of acid gases from natural gas [J]. Journal of Membrane Science,1998,140(1):27-49.
    [31] Huang Y,Paul D R. Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes[J].Ind. Eng. Chem. Res.,2007,46(8):2342-2347.
    [32] Asad Javaid,Michael P Hughey,Varuntida Varutbangkul,et al. Solubility-based gas separation with oligomer-modified inorganic membranes[J].Journal of Membrane Science,2001,187(1-2):141-150.
    [33] Richard W Baker,Kaacid A Lokhandwala,Johannes G Wijmans,et al. Tow step process fornitrogen removal from natural gas:US,6425267 B1[P]. 2002-07-30.
    [34] Richard W Baker.Future directions of membrane gas separation technology [J]. Membrane Technology, 2001,(138):5-10.
    [35] Lokhandwala KA, et al. Membrane systems for nitrogen rejection, GPA Annual Convention, Dallas, USA; 2002. See also www.mtrinc.com.
    [36] Lokhandwala KA, Jacobs ML. New membrane applications in gas processing. GPA Annual Convention, Atlanta, USA; 2000.
    [37] Lokhandwala KA, Schurmans M, Jacobs ML. Use membranes for improved gas processing. GPA European Chapter Meeting, Barcelona, Spain; 2000.
    [38] Yuv R Mehra.Utilizing the mehra process for processing and BTU upgrading of nitrogen-rich natural gas streams:US,4623371[P]. 1986-11-18.
    [39] Dwayne T Friesen,Walter C Babcock,David J Edlund,et al. Liquid absorbent solutions for separating nitrogen from natural gas:US,6136222[P]. 2000-10-20.
    [40] Beath AC. Mine gas quality improvement: methane purification, ACARP Project C11025. CSIRO Exploration and Mining Report 1109F, Brisbane, Australia; July 2003.
    [41] US EPA. Technical and economic assessment of potential to upgrade gob gas to pipeline quality. United States Environmental Protection Agency, Office of Air and Radiation (6202J), 430-R-97-012; December 1997.
    [42] Olajossy A.Methane separation from coal mine methane gas by vacuum pressure swing adsorption[J].Chemical Engineering Research and Design,2003,81(4):474-482.
    [43] Buczek B.Development of texture of carbonaceous sorbent for use in methane recovery from gaseous mixtures[J].Inzynieria Chemiczna I Procesowa,2000,21:385-392.
    [44]辜敏,鲜学福.矿井抽放煤层气中甲烷的变压吸附提浓[J].重庆大学学报,2007,30(4):29-33.
    [45]辜敏,鲜学福,张代均,等.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报,2002,27(2):197-200.
    [46] Mitariten M. The molecular gate system for the removal of gas-phase impurities from coal seam and coal mine methane. Second annual Australian coal seam and coal mine methane conference, Brisbane, Australia. See also www.engelhard.com.
    [47] Ruthven D M. Past progress and future challenges in adsorption research [J]. Ind. Eng. Chem. Res., 2000, 39(1):2127.
    [48]聂李红,徐绍平,苏艳敏,等.低浓度煤层气提纯的研究现状[J].化工进展,2008,27(10):1505-1511.
    [49]郭璞,李明.煤层气中CH4/N2分离工艺研究进展[J].化工进展,2008,7(7):963-967(982).
    [50] Shi Su, Andrew Beath, Hua Guo, et al. An assessment of mine methane mitigation and utilisation technologies [J]. Progress in Energy and Combustion Science, 2005, 31(2): 123-170.
    [51] R. T. Yang,“Gas separation by adsorption process”[M], Butterworth: Boston, MA, 1987; Reprinted by Imperial College Press, London, 1997.
    [52] Olajossy, A. Gawdzik, Z. Budner, J. Dula. Methane Separation from Coal Mine Methane Gas by Vacuum Pressure Swing Adsorption. Chemical Engineering Research and Design, 2003, 81(4): 474-482.
    [53]辜敏,鲜学福.提高煤层气甲烷浓度的吸附剂的选择研究[J].矿业安全与环保,2006,33(3):11-12.
    [54] C. Béchaud, S. Mélenc, D. Lasseux, et al. Stability analysis of a pressure swing adsorption process[J]. Chemical Engineering Science, 2001, 56 (10):3123–3137.
    [55]何东荣.变压吸附回收乙烯(乙烷)的实验与模拟[D].天津:天津大学硕士学位论文,2009.
    [56]秦映心.真空脱附和变压吸附处理挥发性有机气体的实验研究及其过程模拟[D].长沙:中南大学硕士学位论文,2009.
    [57]王大伟.变压吸附处理Vocs中的热质传递[D].武汉:华中农业大学硕士学位论文,2009.
    [58] Vincent G. Gomes , Mirza M. Hassan. Coalseam methane recovery by vacuum swing adsorption[J]. Separation and Purification Technology, 2001, 24(1-2):189-196.
    [59] C. Béchaud, S. Mélen, D. Lasseux,et al. Stabilityanaly sis of a pressure swing adsorption process[J].Chemical Engineering Science, 2001, 56 (10):3123–3137.
    [60] SETH P. KNAEBEL, DAEHO KO, LORENZ T. BIEGLER. Simulation and Optimization of a Pressure Swing Adsorption System: Recovering Hydrogen from Methane[J]. Adsorption, 2005,11(1):615-620.
    [61]刘克万,辜敏,鲜学福.变压吸附浓缩甲烷/氮气中甲烷的研究进展[J].现代化工,2007,27(12):15-18.
    [62]西南化工研究院.变压吸附法富集煤矿瓦斯气中甲烷:中国,85103557[P].1986-01-27.
    [63]雷利春.煤矿乏风中低浓度甲烷的变压吸附提纯[D].大连:大连理工大学硕士学位论文,2010.
    [64]王琰.空气中低含量甲烷的变压吸附分离[D].天津:天津大学硕士学位论文,2004.
    [65]张福凯.改性煤变压吸附浓缩煤层气中甲烷的研究[D].重庆:重庆大学硕士学位论文,2005.
    [66]杨明莉.煤层甲烷变压吸附浓缩的研究[D].重庆:重庆大学博士学位论文,2004.
    [67]徐龙君,鲜学福,杨明莉.煤矿区煤层气浓缩净化方面的基础研究[J].中国煤层气,2005,2(4):11-15.
    [68] OLAJOSSY, A. GAWDZIK, Z. BUDNER, et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption[J].Chemical Engineering Research and Design,2003,81(4):474-482.
    [69] Grande,Carlos A.Carbon molecular sieves for hydrocarbon separations by adsorption [J]. Industrial and Engineering Chemistry Research, 2005,44(18): 7218-7227.
    [70] Balys M, Buczek B, Zietkiewicz J. Modelling study of PSA process for methane recovery from mine gases[J].Inzynieria Chemiczna I Procesowa,1999,18:205-210.
    [71] Dong Fei, Lou Hongmei, Kodama A. New concept in the design of pressure swing adsorption processes for multicom ponent gas mixtures[J]. Industrial & Engineering Chemistry Research,1999,38(1): 233-239.
    [72] Dong Fei,Lou Hongmei,Kodama A,et al.The Petlyuk PSA process for the separation of ternary gas mixtures:Exemplification by separating a mixture of CO_2-CH_4-N_2[J].Separation and Purification Technology, 1999,16: 159-166
    [73]管英富. CBM甲烷回收吸附剂研究进展[J].化工进展,2010,29(s):341-344.
    [74]天津大学.高表面活性炭变压吸附分离甲烷/氮气混合物的方法(P) :中国,02117916.6[P].2003-01-04.
    [75] Zhou Li,Guo Wencai,Zhou yaping.A feasibility study of separating CH_4/N_2 by adsorption[J].Chinese J Chem Eng,2002,10(5):558-561
    [76]辜敏,刘克万,鲜学福,等.烟煤制备成型活性炭及其PSA浓缩CH_4/N_2中CH_4的性能研究[J].功能材料,2010,41(2):204-207.
    [77] Baksh MSA,Yang RT,Chung D DL.Composite sorbents by chemical vapor deposition on activated carbon[J].Carbon,1989,27(6):931-934.
    [78]杨晓霞.神府煤基活性炭和氢气联合制备的新方法研究[D].西安:西安科技大学硕士学位论文,2009.
    [79]许钦一.高比表面积成型活性炭的制备及其性能研究[D].大连:大连理工大学硕士学位论文,2010.
    [80]许绍平,郭树才.炭分子筛制备技术研究[J].煤炭转化,1995,18(3):43-47.
    [81]张艳,尤隆渤,胡浩权.酚醛树脂基CMS的研究[J].新型炭材料,2000,15(3):55-88.
    [82] M. Nakashima, S. Shimada, M. Inagaki, et al. On the adsorption of CO2 by molecular sieve carbons—Volumetric and gravimetric studies[J]. Carbon, 1995, 33( 9):1301-1306.
    [83] Toshihide Horikawa, Jun’ichi Hayashi, Katuhiko Muroyama. Preparation of molecular sieving carbon from waste resin by chemical vapor deposition, Carbon , 2002, 40 (5):709–714.
    [84] Silvia Villar-Rodil, Amelia Martínez-Alonso and Juan M. D. Tascón. Carbon Molecular sieves for Air Separation from Nomex Aramid Fibers. Journal of Colloid and Interface Scienee,2002,254(2):414-416.
    [85] P.J.M. Carrott , I.P.P. Cansado, M.M.L. Ribeiro Carrott. Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2 [J]. Applied Surface Science,2006, 252(17): 5948-5952 .
    [86] D. Lozano-Castello, J. Alcaniz-Monge, D. Cazorla-Amorós, et al. Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis[J]. Carbon, 2005, 43(8):1643-1651.
    [87] E. David, A. Talaie, V. Stanciu, et al. Synthesis of carbon molecular sieves by benzene pyrolysis over microporous carbon materials [J]. Journal of Materials Processing Technology, 2004, 157-158:290-296.
    [88] S.N. Vyas, S.R. Patwardhan, S. Vijayalakshmi, et al. Synthesis of carbon molecular sieves by activation and coke deposition [J]. Fuel, 1993, 72(4): 551-555.
    [89] T. Orfanoudaki, G. Skodras, I. Dolios, et al. Production of carbon molecular sieves by plasma treated activated carbon fibers [J]. Fuel, 2003, 82(15-17): 2045-2049.
    [90] P. Samaras, X. Dabou, G.P. Sakellaropoulos. Production, characterization and applications of carbon molecular sieves from a high ash Greek lignite [J]. Studies in Surface Science and Catalysis, 1999, 120(1):425-457.
    [91] Xing W,Yan Z. F. Synthesis and characterization of novel multifunctional carbon molecular sieve. Reprint of 220th ACS National Meeting, Devision of Fuel Chemistry. Washington,America 2000,45:527-530.
    [92]孙利,沈本贤.石油焦制备炭质吸附剂的研究[J].华东理工大学学报,2004,30(l):15-18
    [93]孙新,查庆芳,吴名铂,等.炭分子筛的制备及表面结构[J].燃料化学学报, 2003,31(06):569-573.
    [94] Gy(o|¨)rgy Onyestyák, Zsolt (o|¨)tv(o|¨)s, Katalin Papp. Mass transport dynamics of N2 and O2 in wood-based carbon molecular sieves affected by pre-treatments and comminution[J]. Microporous and Mesoporous Materials, 2008, 110(1):86-91.
    [95] C. Nguyen, D. D. Do. Preparation of carbon molecular sieves from macadamia nut shells[J]. Carbon, 1995, 33(12):1717-1725.
    [96] Jaan Soon Tan, Farid Nasir Ani. Carbon molecular sieves produced from oil palm shell for air separation[J]. Separation and Purification Technology, 2004, 35(1):47-54.
    [97] Zhonghua Hu, E. F. Vansant. Carbon molecular sieves produced from walnut shell[J].Carbon, 1995, 33(5):561-567.
    [98]徐绍平,王涛,江山,等.杏核壳制炭分子筛研究[J].大连理工大学学报,1999,39(1):69-72.
    [99]夏智勇,郭树才.椰壳制备空分炭分子筛的研究[J].大连理工大学学报,1998,38(1):34-37(57).
    [100]闵振华,曹敏,王永刚.炭分子筛的制备和应用[J].材料科学与工程学报,2006,24(3):466-471
    [101] Tae-Hwan Kim, Seok-Jin Son, et al. A study of microporosity and gas separation properties of carbon molecular sieves prepared from bamboo shoot and coconut shell[C]. International Conference on Carbon, Korea, July 4~7, 2005.
    [102]高翔.成型活性炭用有机-无机复合胶粘剂的研究及应用[D].上海:上海交通大学硕士学位论文,2008.
    [103] Ruth Ubago-Pérez,Francisco Carrasco-Marín,David Fairén-Jiménez,et al.Granular and monolithic activated carbons from KOH-activation of olive stones[J].Microporous and Mesoporous Materials,2006,92(1-3):64-70.
    [104]李建刚,李开喜,凌立成,等.成型活性炭的制备及其甲烷吸附性能的研究[J].新型炭材料,2004,19(2):114-117.
    [105]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅰ.高比表面积多孔炭的制备[J].炭素技术,2003,6:2-5.
    [106]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅱ.粉状多孔炭的成型及其二次活化[J].炭素技术,2004,23(1):2-5.
    [107]袁爱军,查庆芳,李兆丰,等.天然气储存用多孔炭的研究Ⅲ.成型多孔炭储存天然气的研究[J].炭素技术,2004,23(2):2-4.
    [108]张香兰,王向龙,李科,等.以聚乙烯醇为粘结剂制备成型活性炭的研究[J].洁净煤技术,2008,(3):23-25.
    [109] A.P. Carvalho, A.S. Mestre, J. Pires, et al. Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours. Microporous and Mesoporous Materials, 2006, 93 (1-3), 28: 226-231.
    [110] [42]Danh Nguyen-Thanh,Teresa J.Bandosz.Activated carbons with metal containingbentonite binders as adsorbents of hydrogen sulfide[J].Carbon,2005,43(2):359-67.
    [111] M.Yates,J.Blanco,M.A.Martin-Luengo,et al.Vapour adsorption capacity of controlled porosity honeycomb monoliths[J].Microporous and Mesoporous Materials, 2003,65(2-3):219-231.
    [112] [46]M.Yates,J.Blanco,P.Avila,et al.Honeycomb monoliths of activated carbons for effluent gas purification[J].Microporous and Mesoporous Materials,2000,37(1-2): 201-208.
    [113]苏伟.椰壳基微孔活性炭制备与表征研究[D].天津:天津大学博士学位论文,2003.
    [114] TENG H,TIEN S. HSUL Y. Preparation of activated carbon from bituminous coal with phosphoric acid activation[Jl.Carbon,1998,36(9):1387.
    [115]林庆文.煤基碳分子筛的制备与孔结构调整[D].合肥:安徽建筑工业学院,2010.
    [116]梁逵,李兵红,刘国标,等.煤基碳纳米材料的研究进展[J].电子元件与材料,2005,24(3):63-65.
    [117]徐绍平,郭树才,朱春艳,等.褐煤两步炭化法制炭分子筛[J].煤炭转化,1996,19(2):66-69.
    [118]王志高,蒋剑春,邓先伦,等.脱色用木质颗粒活性炭的制备研究[J].林产化学与工业,2005,25(2):39-42.
    [119]近藤精一,石传达雄,安部郁夫.李国希译.吸附科学(第二版)(M).北京:化学工业出版社,2005.
    [120]代晓东.石油焦基活性炭的制备、修饰与应用基础研究[D].东营:中国石油大学博士学位论文,2008.
    [121]吴玉玲,董寅生,林萍华,等.球形成型活性炭的制备及性能研究[J].应用化工,2009,38(5):691-694.
    [122] Lopez M, Labady M, Laine J. Preparation of actived carbon from wood monolith[J].Carbon, 1996, 34(6): 825-827.
    [123] Alejandro Amaya, Natalia Medero, Néstor Tancredi, et al. Activated carbon briquettes from biomass materials[J]. Bioresource Technology, 2007, 98(8): 1635-1641.
    [124] A.P. Carvalho, A.S. Mestre, J. Pires, et al. Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours[J]. Microporous and Mesoporous Materials, 2006, 93(1-3): 226-231.
    [125]宋燕,凌立成,李开喜,等.成型活性炭对甲烷吸附性能研究[J].新型炭材料,2000,15(4):13-16.
    [126] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, et al. Activated carbon monoliths for methane storage: influence of binder[J]. Carbon, 2002,40(15): 2817-2825.
    [127] M. Ahmedna, W.E. Marshall, R.M. Rao. Surface properties of granular activated carbons from agricultural by-p roducts and their eYork: McGraw-Hill, 1996: 49~127.
    [130] Henrik Wenzel, Michael Hauschild, Leo Alting.Environmental Assessment of Products. London:Chapman &Hall, 1997-1998: 21~128.
    [131]向东,张根保.绿色产品及其评价指标体系研究.计算机集成制造, 1999, 5 (4): 14~19.
    [132]曾建春,蔡建国.面向产品生命周期的环境、成本和性能多指标评价[J].中国机械工程,2000,11(9):975-978.
    [133]徐莉燕.绿色建筑评价方法及模型研究[D].上海:同济大学硕士学位论文,2006.
    [134]李因果,李新春.综合评价模型权重确定方法研究[J].辽东学院学报(社会科学版),2007,9(2):92-97.
    [135]陈平.清洁生产指标评价方法[J].化工环保,2004,24(1):55-57.
    [136]姚伯元,黄广民,窦智峰,等.海南椰壳与椰壳渣制备高比表面积活性炭原料脱灰工艺[J].化工学报,2006,57(6):1458-1463.
    [137]汪友森,张文峰,曹高萍,等.预氧化法制备石油焦基活性炭[J].石油学报(石油加工),2007,23(4):100-105.
    [138]孙康,蒋剑春.国内外活性炭的研究进展及发展趋势[J].林产化学与工业,2009,29(6):98-104.
    [139]赵丽媛,吕剑明,李庆利,等.活性炭制备及应用研究进展[J].科学技术与工程,2008,8(11):2914-2919.
    [140]闫新龙,刘欣梅,乔柯,等.成型活性炭制备技术研究进展[J].化工进展,2008,27(12):1868-1872.
    [141]王春迎,杜志明,丛晓民,等.碱式炭酸镁的热分解研究[J].应用化工,2008,37(6):657-660.
    [142]王秀芳,田勇,张会平.高比表面积煤质活性炭的制备与活化机理[J].化工学报,2009,60(3):733-737.
    [143]李永锋,凌军,刘燕珍,等.高比表面积活性炭研究进展[J].热带作物学报, 2008, 29(3):396-402.
    [144] Laishuan Liu, Zhenyu Liu, Jianli Yang, et al. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith [J]. Carbon, 2007, 45(14): 2836-2842.
    [145]韩彬,周美华,荣达.稻草秸秆活性炭的制备及其表征[J].农业环境科学学报,2009, 28(4):828-832.
    [146] B.Pendya Y, M. M. Johns, W. E. Marshall, et al. The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons[J]. Bioresource Technology, 1999, 68: 247-254.
    [147]甘琦,周听,赵斌元,等.颗粒活性炭的制备研究进展[J].材料导报,2006,20(1):61-63.
    [148] Chilton Ng, Jack N.Losso, Wayne E.Marshall, et al. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin[J]. Bioresource Technology, 2002,84: 177–185.
    [149] J. Pastor-Villegasa, J.M. Meneses Rodrígueza, J.F. Pastor-Vallea, et al. Adsorption–desorption of water vapour on chars prepared from commercial wood charcoals, in relation to their chemical composition, surface chemistry and pore structure[J]. Journal of Analytical and Applied Pyrolysis, 2010,88:124–133.
    [150] Peter Branton, An-Hui Lu, Ferdi Schüth. The effect of carbon pore structure on the adsorption of cigarette smoke vapour phase compounds [J]. Carbon,2009,47:1005-1011.
    [151]吴明铂.多孔炭的制备及其孔结构、表面官能团的调控[D].大连:大连理工大学博士学位论文,2003.
    [152] M.Ahmedna, W.E.Marshall, R.M.Rao. Production of granular activated carbons from select agricultural by-products and evaluation of their physical,chemical and adsorption properties[J]. Bioresource Technology, 2000,71: 113-123.
    [153]刘克万,辜敏,林文胜,等.炭分子筛的微结构表征[J].材料科学与工程学报,2008,26(6):984-989.
    [154]王秀芳.高比表面积活性炭的制备、表征及应用[D].广州:华南理工大学博士学位论文,2006.
    [155]房俊卓,李媛媛,徐崇福.物理吸附分析仪单点BET方法误差分析[J].中国测试技术,2006,32(5):42-44.
    [156]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [157] Sun Jian. Pore size distribution model derived from a modified DR equation and simulated pore filling for nitrogen adsorption at 77 K[J]. Carbon, 2002, 40(7): 1051-1062.
    [158] De Boer JH, Lippens BC, Linsen BG, et al. The t-curve of multimolecualr N2-adsorption[J]. J. Colloid Interface Sci., 1966, 21:405.
    [159] Lowell S, Shields J E. Powder surface area and porosity[M]. New York: Chapman and hall, 1991.
    [160] Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon[J]. J Chem Eng Japan, 1983, 16(8): 470~475.
    [161] Mietek Jaroniec, Jerzy Choma, Michal Kruk. Assessment of reliability of the Horvath/Kawazoe pore size analysis method using argon adsorption isotherms on ordered mesoporous silicas[J]. Colloids and Surfaces A:Physicochem.Eng.Aspects , 2003, 214:263-269.
    [162]陈凤婷,曾汉民.几种植物基活性炭材料的孔结构与吸附性能比较—(I)孔结构表征[J].离子交换与吸附,2004,20(2):104-112.
    [163] Piotr Kowalczyk, Artur P.Terzyk, Piotr A.Gauden, et al. Numerical Analysis of the Horvath-Kawazoe Equation-The Adsorption of Nitrogen,Argon,Benzene,Carbon Tetrachloride and Sulphur Hexafluoride[J]. Adsorption Science&Technology , 2002, 20 (3 ): 295-305.
    [164] Kilduff, J. E., Karanfil, T. Trichloroethylene adsorption byactivated carbon preloaded with humic substances:Effect of solution chemistry[J]. Water Res., 2002, 36: 1685–1698.
    [165] Stoeckli F., López-Ramón M.V., Moreno-Castilla,C. Adsorption of phenolic compounds from aqueous solutions,by activated carbons,described by the Dubinin–Astakhov equation[J]. Langmuir, 2001, 17: 3301–3306.
    [166] Shaoying Qi. Use of Dubinin–Astakhov Equation to Describe Preloading Effect of Natural Organic Matter[J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2004, 130(4 ): 472-477.
    [167] Groen J C, Peffer L A, Javier P R. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60: 1-17.
    [168]张超,高才,鲁雪生,等.多孔活性炭孔径分布的表征[J].离子交换与吸附,2006,22(2):187-192.
    [169] Barrett E P, Joyner L G, Halenda P P . The determination of pore volume and area distributions in porous substances I, Computations from nitrogen isotherms[J]. Journal of American Chemistry Society, 1951, 73(1) : 373-380.
    [170]杨侃,陆现彩,刘显东,等.基于探针气体吸附等温线的矿物材料表征技术:Ⅱ.多孔材料的孔隙结构[J].矿物岩石地球化学通报,2006,25(4):362-368.
    [171]郑青榕,蔡振雄,陈武,等.非局域密度泛函理论表征活性炭孔径分布的改进算法[J].低温与超导,2010,38(1):80-84.
    [172]杜嬛.天然植物基多孔炭材料的制备及其电化学性能研究[D].天津:天津大学博士学位论文,2009.
    [173] Hu Zhong hua, Srinivasan M P, Ni Ya ming. Novel activation process for preparing highly microporous and mesoporous activated carbons[J].Carbon, 2001, 39(6):877-886.
    [174]吴开金.竹节制备提金活性炭及其表征[J].林业科学,2009,45(12):124-128.
    [175]周志平,张际亮,盛维琛,等.新型功能性介孔吸附材料的表征与吸附性能[J].江苏大学学报(自然科学版),2010,31(1):45-48(103).
    [176]韩磊,杨儒,刘国强,等.汉麻杆基活性炭表面织构与储氢性能的研究[J].无机化学学报,2009,25(12):2097-2104.
    [177]闫新龙,刘欣梅,乔柯,等.不同种类粉状活性炭制备成型活性炭的研究[C]//中国化学会催化委员会.第六届全国环境催化与环境材料学术会议论文集.成都:,2009:441-442.
    [178]解强,李兰亭,李静,等.活性炭低温氧/氮等离子体表面改性的研究[J].中国矿业大学学报,2005,34(6):688-693.
    [179]宋燕,凌立成,李开喜,等.粘结剂添加量及后处理条件对成型活性炭甲烷吸附性能的影响[J].新型炭材料,2000,15(2):6-10.
    [180]胡林,冉景煜,张力,等.活性炭纤维脱除二氧化炭的实验研究[J].环境工程学报,2010,4(1):169-172.
    [181] Thakur P.C.,Litle H.G.,Karis W.G.,et a1.Global coalbed methane recovery and use[J].Energy Convers.Mgmt.,1996,37(4):789-799.
    [182]王玉新,苏伟,周亚平.不同结构活性炭对CO2、CH4、N2及O2的吸附分离性能[J]. 2009,28(2):206-209.
    [183] Ambalavanan J.,Arturo J.,Hernandez M.,et al.Clinoptilolites for nitrogen/methane separation[J].Chemical Engineering Science,2004,59(12):2407-2417.
    [184]周亚平,杨斌.气体超临界吸附研究进展[J].化学通报,2000, 63(9):8-13.
    [185] Zhou L.Progress and problems in hydrogen storage methods[J].Renew. Sust. Energ. Rev.,2005,9(4):395-408.
    [186]张双全,罗雪岭,郭哲,等. CO_2吸附量与活性炭孔隙结构线性关系的研究.中国矿业大学学报,2008, 27(4):575-578.
    [187] VALER M M, ZHANG Y, GRAHITE E J, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample . Fuel, 2005, 84(1):105-108.
    [188]陆安慧, SCHMIDT W, SCHUTH F.结构有序、双重孔隙中孔炭材料的合成与表征.新型炭材料, 2003, 18 (3): 181-185.
    [189]张文辉,李书荣,王岭.金属化合物对煤岩显微组分所制活性炭吸附性能的影响.新型炭材料, 2005, 20 (1): 63-66.
    [190]解强,张香兰,,李兰廷,等.活性炭孔结构调节:理论、方法与实践.新型炭材料, 2005, 20(2):183-190.
    [191] LOZANO-CASTELL D, CAZORLA-AMORS D, LINARES-SOLANO A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003, 41(10): 765-775.
    [192]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,(3):23-28.
    [193]陈孝云,林秀兰,魏起华,等.活性炭表面化学改性及应用研究进展[J].科学技术与工程,2008, 8(19):5463-5467
    [194] M. S. A. Baksh, R. T. Yang. Unique Adsorption Properties Energy Profiles of Microporous and Potential Pillared Clays[J]. AIChE Journal, 1992, 38(9):1357-1368
    [195]侯梅芳,崔杏雨,李瑞丰.沸石分子筛在气体吸附分离方面的应用研究[J].太原理工大学学报,2001,32(2):135-139
    [196]张薄,辜敏,鲜学福,等. CH_4,N_2,CO_2在椰壳活性炭内的吸附平衡及扩散[J].煤炭学报,2010,,3(8):1341-1346
    [197]辜敏.提高抽放煤层气中甲烷浓度的变压吸附基础研究[D].重庆:重庆大学,2000.
    [198] Steele WA. The Interaction of Gases with Solid Surface[M]. Oxford:Pergamon, 1974.
    [199]李言浩,马沛生,王延儒.由气体粘度提供Lennard-Jones (12-6)势能参数[J].化学工程,2003, 31(1):53-56
    [200]石小燕,曾丹苓,蔡治勇.不同Lennard-Jones模型参数对分子动力学模拟的影响[J].热科学与技术,2005,4(3):195-198
    [201] F. Y. Wang, Z. H. Zhu, P.Massarotto, et al. Mass transfer in coal seams[J]. AIChE Journal, 2007, 53(4): 1028-1049
    [202] Xiaojun Cui, R.Marc Bustin, Gregory Dipple. Selective transport of CO_2,CH_4and N_2 in coals:insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3):293-303
    [203] Daan Frenkel,Berend Smit. Understanding molecular simulation: from algorithms to applications [M]. Amsterdam: Academic Press, 2002
    [204] Clarkson C R,Bustin R M.Binary gas adsorption-desorption isotherms:effect of moisture and composition upon carbon dioxide selective over methane[J].International Journal of Coal Geology,2000,42(4): 241-272
    [205]吴志强,刘志平.巨正则系综Monte Carlo模拟CO/H2在炭纳米狭缝孔内的吸附和分离[J].北京化工大学学报(自然科学版),2009,36(4):1-6.
    [206] P. Kluson, S. Scaife, N.Quirke, The design of microporous graphitic adsorbents for selective separation of gases[J]. Separation and Purification Technology, 2000, 20(1): 15-24.
    [207] Hisa C,Pierre G R S.Isotope Study on diffusion in CaSO4 formedduring sorbent-flue gas reaction[J].AIChE J,1995,41(10):2337-2345.
    [208]博德R B,斯图沃特W E,莱特富特E N.传递现象[M].北京:化学工业出版社,2004.
    [209]王桂荣,辛峰,王富民,等.反应条件下多孔催化剂上有效扩散系数及曲节因子的分析计算[J].化学反应工程与工艺,2001,17(3):216-221.
    [210] Hirschfelder O,Curtiss C F,Bird R B.Molecular theory of gases and liquids[M].New York:Willey,1964.
    [211]张雷,田园,程世庆,等.贝壳型脱硫剂内部气体扩散特性探讨[J].中国电机工程学报, 2008, 28(11): 54-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700