纤维沥青及其混合料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合料的性能是决定混合料性能的重要因素,纤维沥青的性能对纤维沥青混合料的性能有重要的影响。深入研究纤维沥青的低温抗裂性能和高温粘滞性,分析纤维沥青性能与纤维沥青混合料性能之间的关系,对设计纤维沥青混合料有重要的意义。
     通过大尺寸纤维沥青低温拉伸断裂试验,总结纤维沥青低温断裂破坏的特点,并得到纤维桥联应力的实测值;建立单根纤维从沥青中拔出时的抗拉拔力学模型,改进桥联应力公式计算空间均匀分布的短纤维在沥青断裂时的桥联应力;由力学模型和公式计算出的桥联应力值能较好地拟合纤维沥青桥联应力的实测值,证明了力学模型和公式的合理性;通过混合料低温弯曲断裂试验的灰熵关联性分析发现纤维沥青的桥联应力值与混合料低温抗裂性能有很好的相关性,用桥联应力越大的纤维沥青拌制的混合料低温抗裂性能越高。
     多种试验分析纤维沥青粘滞性,发现沉锥试验适于研究纤维沥青粘滞性;以沉锥试验得到的剪切强度分析纤维沥青粘滞性,提出了剪切强度敏感性系数α;混合料高温车辙试验的灰熵关联性分析发现纤维沥青粘滞性试验指标α和τ30℃与混合料车辙试验结果有很好的关联性,采用α绝对值越小的纤维沥青拌制的混合料动稳定度越高,采用剪切强度τ30℃越大的纤维沥青拌制的混合料动稳定度越高。
     提出了基于纤维沥青高低温性能的纤维沥青混合料设计方法。以纤维沥青低温抗裂性能指标为主,兼顾纤维沥青高温粘滞性指标,确定最佳的纤维沥青构成,而后通过混合料试验确定所选纤维沥青的用量。
Performance of the binder which can decide mixture is an important factor.So performance of fiber asphalt has important influence to the performance of mixture of fiber asphalt. It is of important significance that intensive studying on crack resistance at low temperature and stickiness at high temperature of fiber asphalt,analyzing the relation between the performance of fiber asphalt and the performance of mixture of fiber asphalt.
     The author summarizes the characteristic fiber asphalt cracking at Low temperature and gets bringing stress measuredvalue after stretching and crack test on the jumbo size fiber asphalt at low temperature. Then creates the mechanics model of tensile resistance of single fiber which been pulled out of the asphalt,and improve bridging stress of evenly distributed brief fibers in bridging stress formula computation space when asphalt cracking.The bridging stress measuredvalue calculated from the mechanical model and formula is fitting for bridging stress measuredvalue of fiber asphalt.This proves the rationality of the mechanical model and the formular. Relativity between bridging stress measuredvalue of fiber asphalt and crack resistance at low temperature of mixture is been finded out after greyrelation entropy of mixture through bending crack test at Low temperature. If the bridging stress measuredvalue of the used fiber asphalt is higher,the crack resistance at low temperature of mixture will be better.
     After analyzing the stickiness of fiber asphalt through tests, it can ben finded that wimble penetration test is fit for studying the stickiness offiber asphalt.Then analyze stickiness of fiber asphalt using shear strength value from wimble penetration test and propose a to be sensibility coefficient of shear strength. It is finded that it is interrelated between the index a, i3o℃from stickiness of fiber asphalt test and wheel rutting test result on mixture after greyrelation entropy of mixture wheel rutting test at high temperature.The dynamic stability of the mixture will be higher if using the fiber asphalt whose absolute value of a is less,or using the fiber asphalt whose shear strength t30℃is higher.
     The author designs the method on how to confect mixture of fiber asphalt to guarantee performance of fiber asphalt at low temperature or at high temperature. First crack resistance index at low temperature of fiber asphalt is the primary consideration to get the best constitute of fiber asphalt.At the same time stickiness at high temperature index should be considered.Then determine the dosage of the fiber asphalt after mixture testing.
引文
[1]公路工程沥青与沥青混合料试验规程(JTJ052-2000).北京:人民交通出版社,2000.
    [2]蔡四维.短纤维复合材料理论与应用.人民交通出版社,1994.
    [3]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [4]D.赫尔.复合材料导论[M].中国建筑工业出版社,1989.
    [5]李海军.纤维在SMA中的作用机理分析与试验研究[D].[硕士论文]同济大学,1998.
    [6]李学梅.玻璃纤维/环氧复合材料界面性能研究[D].[硕士论文]武汉理工大学,2004.
    [7]陈华鑫.纤维沥青混凝土路面研究[D].[硕士论文].西安公路交通大学,2002.
    [8]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D].[博士论文]武汉理工大学,2007.
    [9]张争奇等.纤维和矿粉对沥青胶浆性能的影响[J].长安大学学报(自然科学版),2005(5):15-18.
    [10]Hoope. Theory of Mechanical Properties of Fiber Strengthened Materials [J]. Mech. Phy. Solids,1965(4):189-198.
    [11]Dow. Stress and Strain Fields in Short Fiber Reinforced Composite. [J]. Fiber Sci. Tech,1974 (7):129-130.
    [12]黎永皆,陈华鑫.纤维沥青胶浆的高温性能研究[J].上海公路,2006(1):41-44.
    [13]封基良.沥青混合料增强机理及其性能研究[D].[博士论文]东南大学,2006.
    [14]Sugjoon Lee, Long Term Performance Assessment of AC Pavements Using Third Scale Model Mobile Loading Simulator and Fiber Reinforced AC[D]:[Ph. D.]: North Carolina State University.2003
    [15]V. C. Li, Y Wang, S Backer. A Micromechanical Model of Tension Softening and Bridging Toughening of Short Random Fiber Reinforced Brittle Matrix Composites [J].J. Mech. Phys. Solids,1991,5(39):607-625.
    [16]V.C.Li, Y Wang, S Backer. Effect of Inclining Angle Bundling and Surface Treatment on Synthetic Fibre Pull-out From A cement Matrix [J]. Composites, 1990(21):132-140.
    [17]V.C.Li, S Wang, Microstructure Variability and Macroscopic Composite Properties of High Performance Fiber Reinforced Cementitious Composites [J]. Probabilistic Engineering Mechanics,2006(21):201-206.
    [18]Y Wang, S Backer, V. C. Li. Micromechanical Model of Tension softening and Bridging Toughening of Short Random Fiber Reinforced Brittle Matrix Composites [J]. Compsoites,1989(20):265-274.
    [19]杜明干.纤维混凝土细观力学模型与应用[D].[硕士论文].清华大学,2004.
    [20]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社.2001
    [21]熊锐,杨锡武等.纤维沥青混合料高温稳定性影响因素的灰关联熵分析[J].重庆大学学报(自然科学版),2008(10):743-747.
    [22]M. R. Piggott. The Interfacial Phenomena in Composite Materials [M]. Oxford, 1911.
    [23]Reed B Freemam et al. Polyester fibers in asphalt paving mixtures, AAPT, 1989(58).
    [24]杨庆生.复合材料细观结构力学与设计[M].中国铁道出版社,2000.
    [25]沃丁柱.复合材料大全[M].化学工业出版社,2001.
    [26]张洁,任予峡.美国高新技术软纤维路面加强筋的推广与发展[J].山西交通科技,2001(06):35-42.
    [27]史建方.软纤维加筋沥青混凝土性能研究[D].[硕士论文].河北工业大学,2001.
    [28]黄彭.木质素纤维在沥青混合料中的应用研究[J].石油沥青,1998.12(4):9-15.
    [29]陈华鑫等.纤维沥青路用性能机理[J].长安大学学报,2002.22(6):5-7.
    [30]倪良松,陈华鑫等.纤维沥青混合料增强作用机理分析[J].合肥工业大学学报,2003(5):1033-1037.
    [31]董振英,李庆斌.纤维增强脆性复合材料细观力学若干进展[J].力学进展,2001313(4):555-581.
    [32]杜善义,王彪.复合材料细观力学[M].北京:科学技术出版社,1998.
    [33]Cox H L etal.The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics,1952,3:72-79.
    [34]武贤慧,张登良.纤维增强沥青混凝土低温性能研究[J].公路交通科技,2005,22(2):7-9.
    [35]徐世娘,混凝土断裂力学研究[M].大连:大连理工大学出版社,1991.
    [36]邓聚龙.灰色控制系统[M].华中理工大学出版社,1992
    [37]张歧山,郭喜江,邓聚龙.灰关联熵分析方法[J].系统工程理论与实践,1996(8).
    [38]Wang Y J, Li V C, Backer S. Modeling of fibre pull-out from a cement matrix. TheInternational Journal of Cement Composite and Lightweight Concrete,1988,10(3):143-149.
    [39]Hsueh C H. Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part VI:Interpretation of fiber pull-out curves. Materials Science and Engineering,1991, A145:11-18.
    [40]Hsueh C H. Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part VII:improved analysis for bonded interfaces. Materials Science and Engineering,1992, A154:125-132.
    [41]Hsueh C H. Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part VIII:the energy-based debonding criterion. Materials Science and Engineering,1992, A159:65-72.
    [42]董振英.纤维混凝土细观机理及应用研究[D].[博士论文].北京:清华大学.
    [43]冼杏娟.纤维增强复合材料界面的力学行为[J].力学进展,1992,22(4):464-478.
    [44]蔡四维,蔡敏等.短纤维对基体微裂纹扩展的阻滞效应分析[J].复合材料学报,1995.12(3):101-107.
    [45]Wang Y, Li V C,Backer S P. An experimental study of synthetic fiber reinforcedcementitiouscomposites. Journal of Materials Science,1987, 22:4281-4291.
    [46]张红州.纤维混凝土界面性能及纤维作用机理研究[D].[硕士论文].广东工业大学.
    [47]Zhou L M, Kim J K, Mai Y W. Interfacial debonding and fibre pullout stresses, PartⅡ:Anew model based on the fracture mechanics approach. Journal of Materials Science,1991,27:3155-3166.
    [48]Kim J K, Baillie C, Mai Y W. Interfacial debonding and fibre pullout stresses, PartⅢ:Interfacial properties of cement matrix composites. Journal of Materials Science,1993,28:3923-3930.
    [49]Kim J K, Lu S, Mai Y W. Interfacial debonding and fibre pull-out stresses, Part IV:Influence of interface layer on the stress transfer. Journal of Materials Science,1994,29:554-561
    [50]Kim J K, Zhou L M, Mai Y W. Effects of fibre volume fraction on the stress transfer in fibre pull-out tests. Composites,1994,25(7):470-475
    [51]Chanvillard N. Modeling the pullout of the wire-drawn steel fibers. Cement and Concrete Research,1999,29(3):1027-1937
    [52]Alwan J M, Naaman A E. Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Science and Engineering,1999,1 (3):15-25.
    [53]Sujivorakul C, Waas A M, Naaman A E. Pullout response of a smooth fiber with an end anchorage. Journal of Engineering Mechanics.2000,126(9).-986-993
    [54]Beyerlein I J, Zhu Y T, Mahesh S. On the influence of fiber shape in bone-shaped short-fiber composites. Composites Science and Technology,2001,61: 1341-1357.
    [55]Gao Y C, Mai Y W, Cotterell B. Fracture of fiber-reinforced materials. ZAMP, 1988,39:550-72.
    [56]Zhou L M, Kim J K, Mai Y W. On the single fibre pullout problem:effect of loading methods [J]. Composites Science and Technology,1992,45:153-60.
    [57]Zhang X, Liu H Y, Mai Y W. On steady-state fiber pull-out I:The stress field[J]. Composites Science and Technology,1999,55:2179-2189.
    [58]Nairn J A, Liu Y C. Stress transfer into a fragmented, anisotropic fibre though an imperfectinterface[J]. International Journal of Solids and Structures,1997,34:1255-81.
    [59]董振英,李庆斌等.钢纤维混凝土抗拉应力应变试验研究.水利学报,2002,5:47-50.
    [60]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].2006,23(5):16-22.
    [61]封基良.纤维沥青混合料增强机理及其性能研究[D].博士学位论文,南京:东南大学,2006.
    [62]ARA. Guideformeehanistie-emPiriealdesign[R].NationalCooPerativeHighway ResearehPrograml 37A. TransPortationResearchBoard,2004.
    [63]PellinenT. K. Investigation of the use of dynamic modulus as an indicator of hot-mix asphalt performance [D]. Ph. D Dissertation, ArizonaState University, 2001.
    [64]Tayebali, A. A., Rowe, GM., Sousa, J. B. Fatigue response of asphalt aggregate mixtures [J]. JournalofAsPhaltPavingTechnologists,1992,61:333-360.
    [65]郑健龙.Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报.1995,11(3):32-42.
    [66]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的试验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1—7.
    [67]彭妙娟,许志鸿.沥青路面永久变形的非线性本构模型研究[J].中国科学G辑:物理学力学天文学,2006,36(4):415—426.
    [68]邵腊庚,周晓青,李宇峙等.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报,22005,38(4):225—28.
    [69]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究工J].2006,23(5):16-22.
    [70]钱国平,郭忠印,郑健龙,等.环境条件下沥青路面热粘弹性温度应力计算[J].同济大学学报,2003,31(2):150一155.
    [71]李一鸣.沥青混合料的松弛劲度模量[J].石油沥青,1995,(1):17-22.
    [72]侯金成.纤维沥青混凝土粘弹性能研究[D].硕士学位论文.辽宁:大连海事大学,2007.3.
    [73]周立刚,陈立田,朱旭红等.德兰尼特沥青道路专用增强纤维在公路养护工程中的应用[J].公路,2002,9:33—38
    [74]张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨[J].西安公路交通大学学报,2001,1:29-32
    [75]高丹盈,刘建秀.钢纤维混凝土基本理论[M].科学技术文献出版社,1994
    [76]孙亚珍,赵颖华.新型纤维增强沥青路面的研究[J].华东公路,2002,9:22-26
    [77]孙略伦.聚酷纤维沥青混凝土动态模量的试验研究[D].大连海事大学,2006
    [78]邱欣.交通荷载对沥青混凝土路面早期破损的影响分析[D].沈阳建筑工程学院,2003.
    [79]钟阳.纤维沥青混合料路用性能分析[D].大连:大连理工大学,2006.
    [80]肖桂彰,郑传超.道路复合材料[M].北京:中国铁道出版社。1999
    [81]蔡四维.短纤维复合材料理论与应用[M].北京:人民交通出版社,1993
    [82]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,1999
    [83]沃丁柱,等.复合材料大全[M].北京:化学工业出版社,2000
    [84]沈观林.复合材料力学[M].北京:清华大学出版社,1996
    [85]胡更开.复合材料宏观性能的细观力学研究[M].力学与实践,1996,18:22-26.
    [86]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社.43—48.
    [87]舒翔,刘立新.沥青改性与掺加矿物纤维的差别与比较[J].公路,2005(9):1-5.
    [88]杨庆生,复合材料细观结构力学与设计[M],北京:中国铁道出版社,2000.
    [89]吴人洁.复合材料界面与其力学性能的关系[J].力学进展.1981,(02):129-137.
    [90]曾庆敦.复合材料的细观破坏机制与强度[M],北京:科学技术出版社,2002.
    [91]林小松,杨果林.钢纤维高强与超高强混凝土[M],北京:科学技术出版社,2002.
    [92]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M),北京:中国建筑工业出版社,2004.
    [93]邹祖讳.复合材料的结构与性能[M],北京:科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700