玉米耐旱性的遗传及耐旱材料创制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响粮食生产的主要非生物因素。据统计,从1950年至今,全国平均每年受旱面积达3.26亿亩,成灾1.34亿亩,直接减收粮食200亿斤以上,约占各种自然灾害造成粮食损失的60%。玉米在我国的栽培面积为2000多万公顷,占作物总面积的1/3,其中2/3是旱作,干旱造成的产量损失平均为15%,仅次于病虫害的危害。而玉米一生需水量大,对水分胁迫又非常敏感。因此,研究玉米耐旱性的遗传特性,对了解玉米耐旱机理,寻找耐旱基因,进而改良玉米自身的耐旱性,以及耐旱品种选育具有重要指导意义。
     本试验采用控制灌水措施,在土壤含水量略高于萎蔫系数的干旱条件下,鉴定了生产上常用的以及新近选育的57个玉米自交系的耐旱性。筛选强耐系和不耐系,以及与籽粒产量耐旱系数相关显著的耐旱性状指标。在此基础上,对耐旱性的基因效应和遗传模型进行了研究,并对强耐旱自交系在mRNA水平和蛋白质水平的表达差异进行了分析鉴定。为了对优良自交系的耐旱性进行改良,也为了获得研究耐旱性遗传的突变材料,我们结合物理化学诱变,对优良自交系愈伤组织进行了诱变筛选。主要结果如下:
     1.利用塑料大棚,在土壤含水量略高于萎蔫系数的干旱强度下(土壤绝对含水量为10%-12%),以籽粒产量耐旱系数为指标,鉴定了57个常用玉米自交系的耐旱性。耐旱系数变异幅度在0.810-0.048之间,以81565的耐旱性最强,R09和N87-1次之,200B、丹340、9526最弱。对其中耐旱性强、中等、弱的12个代表自交系的15个与耐旱性有关的生长发育和生理生化指标进行了调查和测定,根据其与正常灌水对照的差异计算耐旱系数,并与籽粒产量耐旱系数进行多元回归分析。结果表明,播种出苗期可用出苗率与生物学产量耐旱系数的乘积作为自交系耐旱性鉴定指标,成株期可用株高、雌雄花期间隔、出叶速度、根重等的耐旱系数预测自交系的耐旱性。对苗期与成株期耐旱性的相关分析表明,苗期出苗率与生物学产量耐旱系数的乘积与成株期单株籽粒产量耐旱系数的简单相关系数r=0.840~(**),达极显著水平,说明苗期耐旱性的强弱与成株期的耐旱性有显著相关性,可以通过苗期耐旱性鉴定来预测成株期的耐旱性。
     2.在耐旱性鉴定结果的基础上,选择耐旱性差异较大的亲本配成两对组合(81565×9526;R09×丹340),并组配成P1、P2、F1、F2、B1、B2六个世代群体。又选耐旱性不同的11个自交系,按Griffing完全双列杂交方法4,组配55个杂交组合。随机区组设计,三次重复,干旱处理同前。分别调查与耐旱性相关显著的耐旱指标株高、ASI、出叶速度、根重和单株籽粒产量,并分析和估计了这5个指标的基因效应、配合力和遗传力大小。结果表明:耐旱性的基因效应在不同指标和不同组合间变化较大。对于出叶速度,加性效应和显性效应表现相当,另外4个指标显性效应明显大于加性效应。
Drought is one of significant factors that restrict the production of foodstuff. According to the statistics of the State Information Center, there are more than 27 million ha plowland that have been bearing drought every year in china from 1950 year to today, and cutting harvest production was more than 100 hundred million kilogram, accounting for 60% of sum of many natural disasters. There are 20000 thousand ha areas that plant maize in our country, accounting for one third of sum of crops planting areas, and among that there are two third maize planted in dryland. Losing yield average were about 15% due to drought, only inferior to harm of plant diseases and insect pests. Maize needs much of water to complete its life, and it is very sensitive to short of moisture than other kinds of crops. Therefore, studying about inheritance of drought tolerance in maize is very important to understand drought tolerant mechanisms, find drought tolerant genes, and improve maize-self drought tolerance, breed drought tolerant varieties that can tolerate drought and get stable yield in stress of water deficiency.
    This trial identified and valued drought tolerance of 57 maize inbred lines that have been popularizing in China or breeding newly in recent years, with taking of control water irrigation according to soil moisture condition that was little higher than maize wilting coefficient in sandy loam soil. Then, the strong and sensitive drought tolerant germplasm, and drought tolerant indexes were selected. Based on these results, the gene effects and hereditary models of drought tolerance in maize were studied. The expressional differences of mRNA and proteins were displayed and analyzed with strong drought tolerance inbred line. In order to improving drought tolerance of excellent inbred line and gaining mutant material used to study on inheritance of drought tolerance, the embryonic calluses of excellent inbred line were mutated and screened with physical and chemical mutating method. The main results showed as follows.
    1. The 57 maize inbred lines were sown in a plastic roof to prevent rainfall. Under soil moisture was controlled at little higher than wilting coefficient (soil absolute moisture is 10%-12%),the drought tolerance of these materials was identified with drought tolerant coefficients of grain yield as indexes. Variational range of drought tolerant coefficients is from 0.810 to 0.048, and drought tolerance of inbred line "81565" belonged to the strongest
引文
1、 Alois S, Heribert H, Itute M. Plant PP2C phosphatases:emerging functions in stress signaling. Trends in Plant Science, 2004,19(5): 236-243.
    2、 Banzinger M, Edmeades G 0, Beck D, Bellon M. Breeding for drought and nitrogen stress tolerance in maize—from theory to practice. Mexico: CIMMYT, 2000, 23-31.
    3、 Banzinger M, Lafitte H R. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Science, 1997, 37:1110-1117.
    4、 Betran F J, Beck D, BanzigerM, Edmeades G 0. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Science. 2003, 43(3): 807-812.
    5、 Bolanos J and Edmeades G O. The importance of the anther ing-silking interval in breeding for drought tolerance in tropical maize. Field Crop Research, 1996,48:65-80.
    6、 Bolanos J and Edmeades G O. Value of selection for osmotic potential in tropical maize. Agronomy Journal, 1991, 83:948-956.
    7、 Bolanos J and Edmeades G O. Eight cycles of selection for drought tolerance in lowland tropical maize: I. Response in yield, biomass and radiation utilization. Field Crop Research, 1993a, 31:233-252.
    8、 Bolanos J and Edmeades G O. Eight cycles of selection for drought tolerance in lowland tropical maize: II. Response in reproductive behavior. Field Crop Research, 1993b, 31:253-268.
    9、 Bolanos J, Edmeades G O, Martinez L. Eight cycles of selection for drought tolerance in lowland tropical maize: III. Responses in drought-adaptive physiological and morphological traits. Field Crop Research, 1993, 31:269-286.
    10、 Bolwell GP, Bozak K, Zimmerlin A. Plant cytochrome P450. Phytochemistry, 1994,37:1491-1506.
    
    11、 Boyer J S. Leaf enlargement and metabolic rates in corn .soybean, and sunflower at various leaf water potentials. Plant Physiology, 1970, 46:233-235.
    
    12、 Bray E A. Plant response to water deficit. Trends Plant Sci, 1997, 2(1): 48-54.
    13, Byrne P E, Bolanos J, Edraeades G 0, Eaton D L. Grains from selection under drought versus multilocation testing in related tropical maize populations. Crop Science, 1995, 35:63-69.
    
    14, Campbll S A, Crone D E, Ceccardi T L, et al. 40kDa maize (Zea mays L)embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol Biol, 1998, 38(3):417-423.
    
    15, Chapman S C. Edmeades G O. Selection Improves Drought Tolerance in Tropical Maize Populations. II. Direct and Correlated Responses among Secondary Traits.Crop Sci.1999,39:1315-1324.
    
    16, ClassenMM, ShawRH. Water deficit effects on corn: II. Grain components. Agronomy Journal, 1970, 62:652-655.
    
    17, Davies WJ , Zhang J . Root signals and the regulation of growth and development of plants in drying soil. A nnu Rev Plant PhysiolPlant Mol Boil, 1991, 42 :55-76.
    
    18, Deleu C, Coustaut M, Niogert MF, Larher F. Three new osmotic stress-regulated cDNA identified by differential display polymerase chain reaction in rapeseed leaf discs. Plant Cell and Environment, 1999,22:979-988.
    
    19, Denmead O T and Shaw R H. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agronomy Journal, 1960,52:272-274.
    
    20, Deping-Xu. Expression of a late embryogenesis abundant protein gene, Bval, from barley confers tolerance to water deficit and salt stress in transgenic rice plant physiol, 1996, 110:249.257
    
    21, Dip. Scieenze Ambientali. Identification and mapping of a puptative stress reponse regulator gene in barely. Plant Mol Biol, 2002, 50(1): 143-152.
    
    22, DuPiessis D P and Dijkhuis F J. The influence of time lag between pollen shedding and silking on the yield of maize. South African Journal of Agricultural Science, 1967, 10:667-674.
    
    23, Edmeades G. O., J. Bolanos, M. Banziger, S. C. Chapman, A. Ortega C., H. R. Lafitte K, Fischer S , Pandey S. Recurrent selection under managed drought stress improves grain yields in tropical maize. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996a, 415-425.
    24、 Edmeades G O, Bolanos J, Chapman S C. Value of secondary traits selecting for drought tolerance in tropical maize. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996b, 222-234.
    25、 Edmeades G O, Banziger M, Bolanos J, Beck D L, Ortega A C. Development and per se performance of CIMMYT maize populations as drought tolerant sources. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996c, 254-262.
    26、 Edmeades G O, Banziger M, Beck D L, Chapman S C, Cortes M C. Drought and low N testing networks—past, present and future. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996d, 405-409.
    27 、 Edmeades G O, Banziger M, Cortes M C, Ortega A C. From stress tolerant populations to hybrids: The role of source germplasm. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996e, 263-273.
    28、 Edmeades G O, Bolanos J, Chapman S C, Lafitte H R, Banziger M. Selection improves drought tolerance in tropical maize populations: I. Grains in biomass, grain yield and harvest index. Crop Science, 1999,39:1306-1315.
    29、 Edmeades G O, Bolanos J, Banziger M, Ribaut J M, White J W, Reynolds M P, Lafitte H R. Improving crop yields under water deficits in the tropics. Proceedings of 2nd international crop science congress, New Delhi :0xford and IBH, 1998,437-451.
    30、 Edmeades G O. Causes for Silk Delay in a Lowland Tropical Maize Population, Crop Sci., 1993, 33(5):1029-1035.
    31、 Edwards R . S-adenosyle-L-methionine metabolism in alfalfa cell cultures following treatment with fungal elicitors. Phytochemistry, 1996,43: 1163-1169.
    32、 Feldmann Kenneth A . Cytochrome P450s as genes for crop improvement. Curr Opin Plant Biol, 2001, 4:162-167.
    
    33、 Fischer K S, Edmeades G O, Johnson E C. Selection for improvement in maize yield under moisture deficits. Field Crop Research, 1989, 22:227-243.
    34、 Gao M W, Cheng X Y. Effect of in vitro mutagenesis on the frequency of romaclonal variation in wheat. Cereal Research Communication, 1991, 19(1-2): 77-89.
    35、 Goday A, Jensen, AB, Culianez-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M . The maize abscisic acid-responsive protein Rab 17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell , 1994, 6:351-360.
    36、 Grant R F, Jackson B S, Kiniry J R, Arkin G F. Water deficit timing effects on yield components in maize. Agronomy Journal, 1989, 81:61-65.
    37、 Guei R. G., Wassom C. E. Inheritance of some drought adaptive traits in maize: I. Interrelationships between yield, flowering and ears per plant. Maydica 1992:37:157-164.
    38、 Guei, R. G., Wassom, C. E . Genetics of osmotic adjustment in breeding maize for drought tolerance. Heredity , 1993, 15 (4) :436-441.
    39、 Guerrero F D, Jones J T, Mullet JE. Turgor responsive gene transcription and levels increase rapidly when Pea shoots are wilted, sequence and expression of three inducible genes. Plant Mol Biol, 1990, 15:11-26.
    40、 Grant R F, Jackson B S, Kiniry J R, Arkin G F. Water deficit timing effects on yield components in maize. Agronomy Journal, 1989, 81:61-65.
    41、 Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Hosseini Salakdeh G . Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005, 5:950-960.
    42、 Hall A E. Physiological ecology of crops in relation to light, water, and temperature. Agroecology. New York:Mc Graw Hill Publishing Company, 1990, 191-233.
    43、 Hartung W, Zhang J, Davies W J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil. Journal of Experimental Botany, 1994, 45:221-226.
    44、 Herrero M. P. Johnson R. R. Drought Stress and Its Effects on Maize Reproductive Systems , Crop sci. 1981,21(1):105-110.
    45、 Hodges D. M., Andrews C. J. .Johnson D. A. and Hamilton R. I. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plant, 1996,98:685-692.
    46、 Hoon Kim, John Ralph, Fachuang Lu, Gilles Pilate, Jean-Charles Leple, Brigitte Pollet, and Catherine Lapierre. Identification of the Structure and Origin of Thioacidolysis Marker Compounds for Cinnamyl Alcohol Dehydrogenase Deficiency in Angiosperms. J. Biol. Chem., 2002,277(49): 47412-47419.
    47、 Hsiao T C, Acevedo E , Henderson D W. Maize leaf elongation : Continuous measurement and close dependence on plant water status. Science, 1970,168:590-591.
    48、 Huo(?) SP, Song GY, Xu ML Inheritance of drought resistance and character selection for drought resistant varieties in maize. Maize Sci , 1995, 3:18-20.
    49、 Ibarra-Caballero J, Villanueva-Verduzco C, Molina-Galan J, Sanchez-de-Jimenez E. Proline accumulation as a symptom of drought stress in maize: a tissue differentiation requirement. Journal of Experimental Botany, 1988,39:889-897.
    
    50、 Ingram J, Bartels D. Annual review of plant physiology. Plant Mol Biol, 1996, 47:377-403.
    51、 Isabel S, Jose A, Roberto S. The influence of UV-B radiation on the superoxide dismutase of maize, potato, sorghum, and wheat leaves. Canadian Journal of Botany, 1999, 77:70-76.
    52、 Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of cis-reulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abescisic acid and requirs protein synthesis. Mol Gen Genet, 1995, 247(4):391-398.
    53、 Jensen AB, Goday A, Figueras M, Jessop AC, Pages M . Phosphorylation mediates the nuclear targeting of the maize Rabl7 protein. Plant J. 1998, 13:691-697.
    54、 John M , David M, Malley O, et al. Inheritance, gene expression, and lignin characterization in a mutant Pine deficient in cinnamyl alcohol dehydrogenase [J] Plant Biology, 1997, 94: 8 255~8 260.
    55、 Jona K C, Kiegerl S, et al. Stress signaling in plant, aMA P kinase pathway is activated by cold and drought [J]. Proc Natl Acad Sci USA, 1996, 93: (11) 274- 278.
    56、 Kazuko Yamaguci-Shinozaki, Mie Kasuga, Qiang Liu et al. Biologial mechanisms of drought stress response. JIRCAS Working Report, 2002,1-8.
    57、 Larosa P C, Chen Z P. Osmotin gene exp ression is posttranscrip tionally regulated [J]. Plant Physiol, 1992, 100: 409- 415.
    58、 Leung J, Micehelle BD, Morris PC, et al. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Sci, 1994, 264: 1448-1451.
    59、 Levitt J. Response of plants to environmental stress . water, radiation, salt and other stresses. New York: Academic Press, 1980, 325-358.
    60、 Lin C Y. Index selection for genetic improvement of quantitative characters. Theoretical and Applied Genetics, 1978, 52:49-56.
    61、 Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 2005, 10: 1-5.
    62、 Maurel C. Aquaporins and water permeability of plant membranes. Annu. Rev Plant Physiol Plant Mol Biol, 1997, 48:399-429.
    63、 Meskiene I, Bogre L, Glaser W, et al. MP2C, a plant protein phosphatase 2C, function as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA, 1998 , 95(4) :1938-1943.
    
    64、 Michel BE, Kaufmann MR . The osmotic potential of polyethylene glycol 6000. Plant Physiol, 1973, 51:914-916.
    
    65、 Miyazaki S, Koga R, Bohnert H J, Fukuhara T. Tissue and environmental response specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet, 1999, 261(2):307-316.
    
    66、 Mizoguchit, Hirayama T, Hayashshidan, et al. A gene encoding a mitogen-activated protein kinase and an S6 ribosomal p rotein kinase by touch, cold and water stress in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1996, 93:765- 769.
    
    67、 Mullarkey M. Jones P. Isolation and analysis of thermotolerant mutants of wheat. Journal of Experimental Botany, 2000, 51: 139-142.
    
    68、 Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki, K. A nuclear gene, erd1 encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J. 1997, 12 (4) : 851-861.
    
    69, Nelson DR . Cytochrome P450 and the individuality of species. Arch Biochem Biophys, 1999,369:1-10.
    
    70, Nesmith D. S. and Ritchie J T. Effects of soil water-deficits during tassel emergence on development and yield components of maize (Zea mays L). Field Crop Research, 1992, 28:251-256.
    71、 O' Regan B P, Cress W A, Staden J. Van root growth, water relations, abscisic acid and proline level of drought resistant and drought sensitive maize cultivars in response to water stress. South African Botany, 1993, 59(1): 98-104.
    72、 Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol, 1993, 3:327-332.
    73、 Patharkar O R, et al. A stress-induced calcium-dependent from Mesembranthemmum crystallinum phosphorylates a two-component pseudo-response regulator[J]. Plant J, 2000,24: 679-691.
    74、 Passioura J B. Roots and drought resistance. Agric Water Management, 1983,7:265-280.
    75、 Perez-Molphe-Bach E, Gidekel M, Segura-Nieto M, Herrera-Estrella L, Ochoa-Alejo N . Effects of water stress on plant growth and root proteins in three cultivars of rice (Oryza sativa) with different levels of drought tolerance. Physiol. Plant, 1996, 96: 284-290.
    76、 Pestenaacz A, Erdei L. Calcium dependendent protein kinase in maize and sorghum induced by polyethylene glycol. Physiol Plant, 1996,97:360-364.
    77、 Ralph J, Lundquist K, Brunow G, Lu F, Kim Hoon, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev, 2004, 3: 29-60.
    78、 Riccardi F, Gazezu P, de Vienne D, Zivy M . Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol ,1998,117: 1253-1263.
    79、 Ristic R. and Cass D D. Dehydration avoidance and damage to the plasma and thylakoid membranes in lines of maize deffering in endogenous leaves of abscisic acid. Journal of Plant Physiology, 1993, 142:759-764.
    80、 Roger RL. Pressure regulation of the electrical properties of growing Arabidopsis thaliana root hairs. Plant Physiol, 1996,112:1089-1100.
    81、 Rosen S and Scott L. Famine grips sub-saharian Africa. Agr Outlook,1992.191: 20-24.
    82、 Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J . Proteomic analysis of rice leaves during drought stress and recovery. Proteomics,2002,2: 1131-1145.
    83、 Saneoka H , Premachandra GS, Kanaya M and Ogata S. Cultivar differences in drought tolerance in maize[J]. Japan Grassl. Sci. 1989.35:234-240.
    84、 Schussler J R and Westgate M E. Assimilate flux determines kernel set at low water potential in maize. Crop Science, 1995,35:1074-1080.
    85、 Schweighofer A, Hirt H, Meskiene I, Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science, 2004, 9(5): 236-243.
    
    86、 Seger R , Krebs EG. The MAPK signaling cascade. FAS EB J , 1995, 9:726-735.
    87、 Sheen J. Ca~(+2) dependent protein kinase and stress transduction in plants [J]. Science,1996, 274:1900-1902.
    88、 Sheng L. Protein phosphatases in plants. Annaual Review of Plant Biollogy, 2003,54:63-92.
    89、 Shinozaki K , Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997,115(2): 327-334.
    90、 Shinozaki, K. and Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Current Opinion Biotechnology, 1996, 7:161-167.
    91、 Singh NN, Zaidi PH, Mehta M and P Yadav. Abiotic stresses- the major constraints limiting maize production and productivity in South and Southeast Asia. In PH Zaidi, L Harrington, J de Meyer, NN Singh, (eds.) Improving maize productivity under abiotic stresses. ICAR and CIMMYT Hyderabad, India, 2004, 1-23.
    92、 Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes AP2 domain-containing transcription activator that binds to the c-repeat/DRE. a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94(3):1035-1040.
    93、 Tahtiharju S, Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J, 2001, 6(4): 461-470.
    94、 Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. New York:Cold Spring Harbor Laboratory Press, 1994, 807-834.
    
    95、 Tian R H. Zhang G Y, Yah C H, Dai Y R. Involvement of poly(ADP ribose) polymerase and activation of caspase — 3 — Like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Letters, 2000, 474: 11-15.
    
    96、 Vercammen D, van de Cotte B, De Jaeger G, et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine Journal of Biology and Chemistry, 2004, 279(44): 45329-45336.
    
    97、 Verslues PE, Sharp RE. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. 11. metabolic source of increased proline deposition in the elongation zone. Plant Physiol, 1999,119: 1349-1360.
    98、 Vogel J, Hubschmann T, Borner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. J Mol Biol, 1997, 270(2):179-87.
    99、 Vogel J, Borner T, Hess W R. Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Research, 1999, 27(19):3866-3874.
    
    100、 Vranova E, Langebartels C, Montagu MV, et al, Plants and the environment. Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C. J Experi Botany, 2000,51:1763-1764.
    
    101、 Wanek W, Richter A . Biosynthesis and accumulation of D-ononitol in Vigna umbellate in response to drought stress. Physiol Plant, 1997, 101: 416-424.
    
    102、 Yang FY. Climate condition assessment for maize production. China climate impact assessment, Baijing: Meteorology Press, 2004, 73-79.
    103、 Yoshiba Y, Kiyosue T. Correlation between the induction of a gene for δ ' -pyrrodine-5-carboxy latesynthetase and the accumulation of proline in A.thaliana under osmotic stress [J]. Plant J, 1995, 7 (5): 751-760.
    
    104、 Zhang J, Schurr U, Davies W J. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. Journal of Experimental Botany, 1987,38:1174-1181.
    105、Zheng J, Zhao J, Tao Y, et al. Isolation and analysis of water stress induce genes in maize seedling by subtractive PCR and cDNA macroarray. Plant Mol Biol, 2004, 55(6): 807-823.
    106、鲍巨松,杨成书,薛吉全.玉米在水分胁迫条件下脯氨酸变化与抗旱性的关系。陕西农业科学,1990,(增刊):37-39.
    107、陈军,顾慰莲,戴俊英.干旱对玉米叶片膜透性及膜脂肪酸组分的影响。植物生理学通讯,1990,6:39-41.
    108、陈军,戴俊英,沈秀英,徐世昌.不同玉米杂交种孕穗、开花和灌浆期抗旱性研究。沈阳农业大学学报,1993,24(1):1-5.
    109、陈秋方,王彩莲,吕忆梅等.水稻花药培养辐照处理诱发突变育种研究。浙江农业学报,1996,8(4):202~207.
    110、成雄鹰.叠氮化钠及其与γ射线复合处理对水稻的生理及诱变效应。原子能农业应用,1987,(1):7—14.
    111、戴俊英,顾慰莲,沈秀英,郑波等.玉米不同品种各生育时期对生育及产量的影响。沈阳农业大学学报,1990,21(3):181-185.
    112、丁雷,王学臣.干旱胁迫下ABA对气孔运动的作用机制。干旱地区农业研究,1993,11(2):50-56.
    113、董永华,吉史平,韩发民.干旱对玉米幼苗PEP羧化酶活性的影响。玉米科学,1995,3:54-57.
    114、杜娟.超氧化化物歧化酶基因(Mnsod)和抗逆相关转录因子基因(dreb)在玉米中的表达研究[学位论文]。四川雅安,四川农业大学,2004.
    115、裴英杰,郑家玲,王金胜.用于玉米品种抗旱性鉴定的生理生化指标。华北农学报,1992,7(1):31-35.
    116、付凤玲,潘光堂.我国主要玉米自交系和杂交种苗期耐旱性鉴定。中国种业,2001,(3):26.
    117、高明尉.作物诱变育种的横向渗透,核农学报,1987,(3):1-7.
    118、高明尉,成雄鹰,梁竹青,胡天赐.小麦体细胞组织离体诱变效应研究。作物学报,1994,20(1):18-25.
    119、高世斌,冯质雷,李晚忱,荣廷昭.干旱胁迫下玉米根系性状和产量的QTLs分析。作物学报,2005,31(6):718-722.
    120、高之仁.《数量遗传学》。四川成都,四川大学出版社,1986,7-121;314-385.
    121、郭宾会,高双成,景蕊莲等.小麦苗期水分胁迫诱导差异表达cDNA的研究。生物技术通报,2003,(2):40-44.
    122、何宝坤,李德全.植物渗调蛋白的研究进展。2002,2:6-10.
    123、何瑞锋,丁毅,张剑锋,余金洪.植物叶片蛋白质双向电泳技术的改进与优化。遗传,2000,5:319-321.
    124、洪法水,张帆.玉米幼苗萎蔫过程中某些理化性质变化的研究。西北植物学报,1999,19(1):71-75.
    125、候建华,吕凤山.玉米苗期抗旱性鉴定研究。华北农学报,1995,10(3):89-93.
    126、黄宜祥.四川玉米生产减轻干旱危害的科技途径。四川农业科技,1998,3:3-7.
    127、霍仕平,晏庆九.玉米抗旱性的遗传和抗旱品种的性状选择.玉米科学,1997,5(4):8-18.
    128、蒋明义,荆家海.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响。植物生理学报,1991,17(1):80-84.
    129、荆家海,肖庆德.玉米叶片生长部位渗透调节和生长的生物物理参数变化。植物生理学报,1988,14(4):385-390.
    130、娄成后,王学臣.植物渗透胁迫调节基因表达的调控.《作物产量形成的生理学基础》.中国农业出版社,2000年,87-94.
    131、李波,贾秀峰,高美玲,贲文伟。诱变苜蓿愈伤组织抗寒性研究,草地学报,2004,12(2):95-97.
    132、李广敏,关军锋。作物抗旱生理与节水技术研究。气象出版社,2001.6,北京.
    133、李锦树,王洪春,王文英等.干旱对玉米叶片细胞渗透性及膜脂的影响。植物生理学报,1981,9(3):223-228.
    134、李社荣.γ射线与NaN_3复合处理冬小麦的诱变效应,核农学报。增刊,1989:155-164.
    135、李社荣,王琳清,施巾幅。1991,叠氮化钠处理预辐照冬小麦适宜方法的研究,核农学报,5(2):65-71
    136、李晚忱,付凤玲,袁佐清.玉米苗期耐性鉴定方法研究。西南农业学报,2001,14(3):29-32.
    137、李兴军,李三玉,吕均良,汪国云.GA3对杨梅叶片木质素水平及其相关酶活性和成花的影响。园艺学报,2001,28(2):156~158.
    138、刘纪麟.玉米育种学(第二版).北京:中国农业出版社,2002,105-106.
    139、刘尊英,姜微波.常温下GA3处理对绿芦笋采后木质化的影响。中国农业科学,2005,38(2):383-387.
    140、罗淑平,员海燕,山军建,袁照年.玉米耐旱性的生理生化和遗传育种理论与方法。作物杂志,1998(增刊):86-94.
    141、马惠平,赵永亮,杨光宇。诱变技术在作物育种中的应用。遗传,1998,20 (4):48-50
    142、马秀灵,王增兰,戚元成,赵彦修,张慧。硫腺苷甲硫氨酸合成酶基因的克隆及其在盐胁迫条件下的不同表达。Acta Botanica Sinica(植物学报:英文版),2003,45(11):1359-1365
    143、马媛媛.抗旱基因LEA的克隆及其序列解析[学位论文]。黑龙江哈尔滨,东北林业大学,2003年.
    144、毛炎麟.叠氮化钠与γ射线诱变效应的比较。原子能农业应,1981,(4):1—7.
    145、潘建伟,陈虹,顾青,朱睦元.环境胁迫诱导的植物细胞程序性死亡。遗传,2002,24(3):385-388.
    146、荣廷昭.西南生态区玉米育种.北京:中国农业出版社,2003,119-126.
    147、荣廷昭,李晚忱,潘光堂.新世纪初发展我国玉米遗传育种科学技术的思考。玉米科学,2003,11(专刊):42-53.
    148、山军建,王鸿钧,罗淑平.缺水条件下玉米子粒产量及其干旱指数的遗传.第二届全国青年作物遗传育种学术会文集,1992:126-130.
    149、山军建,罗淑平.缺水条件下玉米籽粒产量和抗旱系数的遗传分析。甘肃农业科技,2001,(6):17-19.
    150、陕西省农业局科教处.农业科学实验技术手册。西安:陕西科学技术出版社,1982,44.
    151、尚忠林,傅晓瑞,李云荫.干旱和ABA对同核异质冬小麦叶片蛋白的影响。西北植物学报,2001,6:1147-1151.
    152、沈银柱,刘植义,赵松山等.诱发小麦花药愈伤组织及其再生植株抗盐性变异的研究。遗传,1997,19(6):7-11.
    153、四川省农业区划办公室和四川省政府救灾办公室.四川农业灾害与减灾对策。四川成都,四川科学技术出版社,1999,98.
    154、孙彩霞,沈秀英,郝建军.玉米果穗性状和生理生化指标与抗旱性相关分析。沈阳农业大学学报,1998,29(4):291-296.
    155、田少华.诱变与组培相结合诱发水稻耐盐突变的初步研究,核农学报,1988,2(2):65-72
    156、翁华,冉亮,魏群.植物蛋白磷酸酶及其在植物抗逆中的作用.植物学通学报,2003,20(5):609-615
    157、王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系。植物生理学报,1989,15(1):46-51.
    158、王彩莲,慎玫,徐刚,赵孔南,陈秋方.~(137)Cs γ射线与NaN_3复合处理水稻的诱变效应。核农学报,1993,7(1):21~28.
    159、王畅,林秋萍,贡冬花,李普安,张赞平,付国占.夏玉米的干旱适应性及其生理机制的研究。华北农学报,1990,5(4):54-60.
    160、王磊,赵军等.玉米Cat1基因顺式作用元件ABRE2结合蛋白ABP9基因克隆及功能分析.科学通报,2002,45(15):1167-1171
    161、王秀全,刘昌明,余先驹.玉米抗旱性的相关研究。玉米科学,1997,5:8-18.
    162、王西瑶.与拟南芥突变体lpt1、lks1性状相关蛋白质的分离、鉴定与功能分析[学位论文]。北京,中国农业大学,2005.
    163、王泽立,李新征,郭庆法等.玉米抗旱性遗传与育种。玉米科学,1998,3:9-13.
    164、吴义新.土壤干旱下玉米叶片游离脯氨酸的积累及其与抗旱性的关系。玉米科学,1996,4(1):55-58.
    165、席章营.玉米抗旱性生理生化指标及利用价值分析。河南农业大学学报,2000,34(1):7-12.
    166、夏英武,吴殿星,舒庆尧.植物诱变育种技术的研究进展及其新的领域.核农学通报(现已合并为核农学报),1995,16(1):39-42,4.
    167、徐刚,王彩莲,慎玫,陈秋方,赵孔南。γ射线与NaN_3复合处理对水稻成熟种胚培养的效应,浙江农业学报,1992,4(增刊):15-20.
    168、杨洪强,贾文锁,张大棚。植物水分胁迫信号识别与转导。植物生理学通讯,2001,37(2):149-154.
    169、杨洪全,胡延玉。NaN3处理对水稻体细胞培养及再生植株后代表现的效应,四川农业大学学报,1992,10(1):99-104.
    170、栾升.高等植物中的蛋白磷酸酶与信号传递途径。植物学报,1998,40(10):883-889
    171、余涛,支立峰,彭论,李阳生,朱英国.烟草中一条新的S-腺苷甲硫氨酸合成酶基因的克隆及表达分析。武汉植物学研究,2004,4:277-283.
    172、余歆.水孔蛋白与植物对干旱和低温胁迫响应关系的研究[学位论文]。上海,中国科学院上海生命科学研究院,2004.
    173、俞嘉宁,山仑.LEA蛋白与植物的抗旱性。生物工程进展,2002,22(2):10-14.
    174、袁照年,罗淑平,吴光成.玉米两个生育时期抗旱性鉴定指标的研究。西北农业大学学报,1995,23(增刊):1-6.
    175、张宝石,徐世昌,宋凤斌,张威,戴俊英.玉米抗旱基因型鉴定方法和指标的探讨。玉米科学,1996,4(3):19-22.
    176、张劲松,谢灿,吴晓雷等.烟草两组分信号系统基因NTHK2。科学通报,2000,45(20):2190-2195.
    177、张宪政.作物生理研究法。北京,中国农业出版社,1992,131-207.
    178、张再军,范树国,刘林等。~(60)Co-γ射线与NaN_3复合处理对珍汕97A的诱变效应,西北植物学报,2000,20(2):229-233.
    179、张彦芹,贾玮珑,杨丽莉等.不同玉米品种苗期抗旱性研究。干旱地区农业研究,2001,19(1):83-86.
    180、张正斌.作物抗旱节水的生理遗传育种基础.北京,科学出版社,2003,174-189.
    181、赵永亮.利用药粉化学诱变快速创造玉米新种质[学位论文]。北京,中国农业大学,1998.
    182、钟伯雄.水稻蛋白质双向电泳分析新方法。浙江农业大学学报,1997,23(2):128-132.
    183、周建明,朱群,白永延等.水分胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析。科学通报,1998,43(22):2419-2422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700