高层钢—混凝土混合结构研究和设计的若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-混凝土混合结构充分发挥了钢和混凝土结构的各自优势,其优越性逐步为人们所认识并在实际工程中证明是一种经济、有效的结构体系,正越来越广泛地应用到各类建筑中。
     本文第一章回顾了混合结构体系的发展史,国内、外有关组合构件规范的特点,介绍了这种结构体系力学分析方法和设计要点,同时指出了混合结构的优缺点和尚待解决的一些问题。介绍论文的背景工程和主要研究内容。
     第二章详细介绍了建立在样条函数、变分原理和弹塑性应变理论基础上的QR法。通过选择合适的样条函数,利用QR法构建了钢框架-混凝土剪力墙混合结构静力弹塑性分析的计算格式,用MATLAB语言编制了相应的QR方法程序。QR分析方法程序的工程算例表明,该方法未知数少、计算简单、收敛快,编程容易。
     第三章将QR法与Pushover分析方法相结合,提出了高层建筑结构静力弹塑性分析的Pushover-QR(PO-QR)法。该方法改进了常规Pushover方法进行抗震结构静力弹塑性分析的实施思路,用QR法代替Pushover分析方法中的有限元部分,充分利用这两种方法的优点,使得抗震结构静力弹塑性分析的计算得到较大的简化。用MATLAB语言编制了相应的PO-QR方法程序,PO-QR分析方法程序的工程算例表明,该法是一种经济、有效、可行的分析方法。
     第四章基于结构抗震耗能的原理、破坏机制、控制概念、抗震体系和能力设计法等结构抗震的原理,结合混合结构协同工作的特点,提出了混合结构体系能力设计法思路和混合结构构件基于性能要求的抗震设防准则。通过对抗侧力体系间能力差的控制,实现主体抗侧力结构对整体结构在地震作用下的位移模式和破坏机制控制,使得整体结构的弹塑性地震响应和耗能分布的规律便于把握和确定,解决了混合结构体系基于性态/位移抗震设计方法的关键问题。在此设计理念基础上,为满足混合结构高层住宅的抗震性能要求,结合背景工程,研究和论述了其延性设计的原理和方法。
     第五章在研究钢材与核心混凝土的热工性能和在高温下的力-热本构关系的基础上,阐述了建立在火灾时钢管混凝土构件温度场的数值分析方法。通过研究在ISO—834标准火灾升温情况下钢—混凝土混合结构体系框架子结构的力学性能,用有限元程序分析单根CFST柱构件和CFST柱钢框架—混凝土剪力墙结构体系受火性能的差异后,提出现行规范中基于单根柱用不变的初始荷载来确定框架构件的抗火要求是偏于保守,框架的CFST柱受火时刚度变化引起的荷载变化是构件抗火要考虑的重要因素,应考虑到受火后的荷载重分布及构件间的相互作用。钢框架采用刚性连接有利于整体抗火性能提高,而钢框架与混凝土墙体的连接可采用铰接,对抗火性能影响不大。应根据构件的重要性和耐火要求,对各种类型构件的防火材料进行优选,使结构体系整体抗火性能的协调。
     第六章研究了钢-混凝土混合结构体系在重力荷载作用下,钢(管混凝土)柱与混凝土墙(筒)体的竖向差异缩短问题。分析中考虑了混凝土的收缩和徐变的影响,分别采用了简化计算和整体结构模拟施工模式的有限元程序SAP2000计算。经对比,简化计算可作为概念设计的依据。背景工程的计算结果表明,由于高层钢-混凝土混合结构体系住宅建筑功能的特殊性,其100m高竖向构件差异缩短可达55mm以上。提出了可通过钢管柱内浇灌混凝土形成钢管混凝土柱、调整结构布置、墙柱之间采用适宜的连接构造措施、合理安排施工顺序和进行不同方式的现场调整等方法以减少变形差异的影响。
Fully taking the advantages of both steel and concrete, steel-concretehybrid structure has been proved to be an economic and efficientstructural system. This paper begins with reviewing the history of hybridstructure and current composite structures design codes of China andother countries. Its mechanics analysis method and design principle areintroduced. Its advantages, disadvantages and some of the unansweredquestions are pointed out. The background project and researchedcontents are also presented in this chapter.
     Chapter 2 introduces QR method based on news spline basicfunction, variational principle and elasto-plastic stress theory. Then theelasto-plastic computing equations of steel frames-concrete shear wallsbasing on the QR method are derived, and a corresponding program isdesigned using MATLAB. Some project examples are analyzed with thisprogram and results are compared with that of ANSYS, the chapterconcludes the QR method has gathered all the merits of strongadaptability, few unknown parametric variations, high precision andsimple computation.
     Chapter 3 deals with Pushover-QR (PO-QR) method for staticelasto-plastic analysis of high-rise buildings, which combines the QRmethod and the Pushover analysis method. The PO-QR method still hiresthe methodology of regular Pushover method in static elasto-plasticanalysis of seismic structures. By replacing the part of finite elementanalysis with the QR method in the process of Pushover analysis andmaking full use of the advantages of both methods, PO-QR methodgreatly simplifies the calculation of static elasto-plastic analysis ofseismic structures. Examples adopting the procedure of the PO-QRmethod show that it is an economic, efficient and feasible analysis method.
     In the fourth chapter, the system capacity design approach andperformance-based seismic design criteria of members are put forward,which combines the feature of steel-concrete hybrid structure with theenergy theory, failure mechanism control concept. By controlling theseismic resistance capacity difference between substructures, thedisplacement mode and failure mechanism of the whole structure can bedetermined by the main substructure. Therefore, the inelastic seismicresponse and energy dissipation distribution pattern, which is the keyproblem in performance/displacement based seismic design, can bedetermined. Using an actual project as example, the ductility designapproach is finally presented, which can meet the seismic resistancecapacity demand of steel-concrete hybrid structure in high-rise residentialbuildings.
     Chapter 5 focuses on the numerical analysis method of thetemperature field of concrete-filled steel tubular (CFST) components infire, based on the performance andσ-ε-T constitutive relationsstudies of steel as well as core concrete at high temperature. Throughstudying the mechanics behavior of fame in steel-concrete hybridstructure under ISO-834 standard fire, and simulating the differentbehavior between single CFST column and integral CFST frames ofsteel-concrete hybrid structure under fire using nonlinear finite elementmethod, it has been concluded that the fire resistance requirement for theintegral frames in current code, which is based on the fire test of thesingle column under, is conservative. Changing of load caused by thechange of stiffness of CSFT column in the frame under fire is a veryimportant factor, and the redistribution of loads and interaction betweendifferent members during fire should be considered. The rigid connectionof steel frame can improve the fire performance of the integral structure,while hinged connection between frames and shear wall is good enough.
     Chapter 6 is dedicated to the analysis of differential shorteningbetween steel columns and reinforced concrete walls/cores, based on ahigh-rise residential building of steel-concrete hybrid structural systemsubjected to gravity loads. Taking the concrete creep and shrinkage intoaccount, the simplified method and the software SAP2000, of which thevertical loads are applied to the structure floor by floor to simulate theconstruction process, are used to calculate the differential shortening.Results showed that the differential shortening is more than 55mm for a 100-meter-high residential building with steel-concrete hybrid structuralsystem because of its architectural function characteristics. With the useof CFST columns, reasonable arrangement of framing system, properconnections between beams and columns/walls, and appropriateconstruction procedures, the differential shortening between columns andwalls/cores can be decreased significantly.
引文
[1] 李丕宁,罗汉军.创新思维推动建筑结构理论研究和应用[J].重庆建筑,2003(6).
    [2] Walter P. Moore Jr., Ph. D,, An Overview of Composite Construction in the United States [C]. In: Edited by C. Dale Buckner and Ivan M. Viest. Composite Construction in Steel and Concrete. New York: Published by the American Society of Civil Engineers Composite Construction in Steel and Concrete, 1988. 1~8.
    [3] 刘大海,杨翠如.高楼钢结构设计[M].北京:中国建筑工业出版社,2003.
    [4] 陈福松,等.结构设计结合施工法在摩天乡林[J].台湾土木技术,1998(3).
    [5] Seismology Committee. Structural Engineers Association of California, Recommended Lateral Force Requirements and Commentary (Blue Book) [R]. 1996, Sixth Edition.
    [6] Uniform Building Code[S]. 1991, 1994, & 1997.
    [7] 李国强.我国高层建筑钢结构发展的主要问题[J].建筑结构学报,1998.2.
    [8] 建设部文件:关于《建设部2004年科学技术项目计划》的通知[J].建设科技2004(9).
    [9] 钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [10] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [11] 韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [12] 矩形钢管混凝土结构技术规程(CECS159:2004)[S].北京:计划出版社,2004.
    [13] Architectural Institute of Japan. Design Recommendations for Composite Constructions [S]. Feb. 1985 (in Japanese).
    [14] 天津市工程建设标准:天津市钢结构住宅设计规程(DB29-57—2003)[S].2003.
    [15] Bungale S. Taranath. Steel, Concrete, and Composite Design of Tall Buildings[M]. New York, McGraw-Hill Book Co., Inc., 1998. Second Edition.
    [16] 高层建筑混凝土结构技术规程(J073—2002)[S].北京:中国建筑工业出版社,2002.
    [17] 周向明,李国强.高层钢-混凝土混合结构弹塑性地震反应简化分析模型[J].建筑结构,2002(5).
    [18] 李国强.高层建筑钢-混凝土混合结构分区耦合分析模型及开裂层位移参数分析[J].建筑结构,2002(2).
    [19] 刘坚.基于超级单元的钢-混凝土结构动力特性及地震反应研究[J].地震工程与工程振动,2003(1).
    [20] 秦荣.计算结构非线性力学[M].南宁:广西科学技术出版社,1999.
    [21] 秦荣.计算结构动力学[M].桂林:广西师范大学出版社,1997.
    [22] 秦荣.计算结构力学[M].北京:科学出版社,2001.
    [23] 李丕宁,秦荣.钢-混凝土混合结构综述与研究[J].昆明理工大学学报(理工版),2004,29(4A).
    [24] 高层建筑混凝土结构技术规程(JGJ 3-2002)[S].北京:中国建筑工业出版社,2002.
    [25] 龚炳年.钢-混凝土混合结构模型动力特性的方式研究[J].建筑结构,1995(6).
    [26] 李国强.高层建筑钢-混凝土混合结构模型模拟地震振动台试验研究[J].建筑结构,2001(4).
    [27] 高层民用建筑钢结构技术规程(JGJ 99—98)[S].北京:中国建筑工业出版社,1998.
    [28] Akihiko Kawano, Chiaki Matsui. The Deformation Capacity of Trusses with Concrete Fill Tubular Chords[R]. In: National Science Foundation Symposium, Banff, Alberta, Canada, 2000.
    [29] Li Pining, Qin Rong. Design of Steel-Concrete Hybrid Structure in High-Rise Residential Buildings[C]. In: Proceeding of 8th international conference for ASCCS.2006.
    [30] 建筑结构抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [31] Bertero V V. Overview of seismic risk reduction in urban areas: role,importance,and reliability of current U.S. seismic codes performance-based engineering[A]. China-U.S. Bilateral Workshop on Seismic Codes, Guangzhou,Dec., 1996.
    [32] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(6)).
    [33] Tso W K. Pushover analyses: A tool performance-based seismic design [A]. The 5th Conference on Tall Buildings[C].Hongkong, 1998.
    [34] Eberhard M O,Sozen M A. Behavior-based method to determine design shear in earthquake-resistant walls [J]. Journal of Struct.,Eng., ASCE, 1993, 119(2): 619-640.
    [35] 谢晓健,蒋永生,梁书亭,等.基于结构功能设计理论的发展综述[J].东南大学学报,2000,30(4).
    [36] 马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12).
    [37] 罗文斌,钱稼茹.特征延性系数谱及RC框架的目标位移[J].建筑结构,2004(10).
    [38] 钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移的抗震设计的分析工具[J].建筑结构,2000(6).
    [39] 秦荣.结构力学的样条函数方法[M].南宁:广西人民出版社,1985.
    [40] 秦荣.工程结构非线性[M].北京:科学出版社,2006.
    [41] 张克纯.高层建筑结构静力弹塑性分析的Pushover-QR法[D],南宁:广西大学,2005.46-51.
    [42] 王青.钢筋混凝土剪力墙弹塑性分析的QR法[D],南宁:广西大学,2005.8-18.
    [43] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有线元理论与应用[M].上海:同济大学出版社.1999.
    [44] Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. Concepts and Applications of Finite Element Analysis [M]. John Wiley & Sons Inc, fourth edn. ISBN 0-471-35605-0, 2001.
    [45] 李兆凡.改进型钢结构梁柱结点非线性有线元分析[J].建筑结构,2002(9).
    [46] 王新堂.半刚性连接平面钢结构弹性分析的普遍模型[J].建筑结构,2002(12).
    [47] Simoes L M C. Optimization of frame with semi-rigid connections [J]. Computers & Structures,1996, 60(4).
    [48] Federal Emergency Management Agency. Guidelines and Commentary for the Seismic Rehabilitation of Buildings FEMA274.1998.
    [49] 张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.
    [50] 扬桂通.弹塑性力学引论[M].北京:清华大学出版社,2004.
    [51] Nayak G C, Zienkiewicz O C, Elastic-Plastic Stress Analysis: A Generalization for Various Constitutive Relations Including Strain Softening [J]. International Journal of Numerical Methods in Engineering, 1972,5: 113-115.
    [52] 李海涛,邓樱.MATLAB程序设计教程[M].北京:高等教育出版社,2002.
    [53] 张志涌.精通MATLAB 6.5[M].北京:北京航天航空大学出版社,2003.
    [54] 汪梦甫,周锡元.高层建筑结构抗震弹塑性简化方法的研究及其应用[J].计算力学学报,2000,19(4).
    [55] 季征宇.结构弹塑性静力分析(NSP nonlinear stoic proceeding)在宽肢异型柱结构设计中的应用[J].建筑结构,2003(9).
    [56] 刘军进.静力弹塑性分析(Push-over)方法在模拟伪静力试验方面的应用[J].建筑结构,2002(8).
    [57] 朱杰江,吕西林.扬震.高层建筑结构推覆分析的对比研究[J].建筑结构,2004(10).
    [58] 扬志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法[J].建筑结构学报,2003,24(3).
    [59] 方鄂华,钱稼茹,赵作周.弹塑性静力分析与时程分析[A].第十五届全国高层建筑结构学术交流会论文集,1998.
    [60] 熊向阳.建筑结构弹性静力分析pushover方法[D].上海:同济大学,2001.
    [61] 吴培浩.Pushover分析法的研究和工程应用[D].广州,华南农业大学,2002.
    [62] 叶燎原,潘文.Pushover分析原理和实例[J].建筑结构学报,2003,1.
    [63] 董艳秋,刘俊玲.评估结构抗震能力的PUSHOVER方法[J].黑龙江工程学院学报,2003,17(4)24-26.
    [64] Mehdl Salidl. Simple Nonlinear Seismic Analysis of R/C Structures [J].ASCE,1981,107.
    [65] Helmut Krawinkler, Seneviratna G D P K. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation [J].EngineeringStructuers, 1998.20(2).
    [66] Tysh Shang Jan, Ming Wei Liu, Ying Chieh Kao. An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings[J]. Engineering Structrues, 2004, 26, 117-128.
    [67] R.Scott Lawson. Nonlinear Static Push-over Analysis-Why, When, and How?[A]. 5th U.S National Conference Earthquake Engineering[C]. 1994.
    [68] Peter Fajfar. Simple Push-over Analysis of Building Structures [A]. 11th World Conference on earthquake Engineering[C]. 1996.
    [69] Giuseppe Faella. Evaluation of the RC Structures Seismic Response by Means of Nonlinear Static Push-over Analysis [A]. 11th World Conference on Earthquake Engineering[C]. 1996.
    [70] J.L.Humar. Concept of Overstrength in Seismic Design [A]. 11th World Conference on Earthquake Engineering[C]. 1996.
    [71] A.S.Moghadam. Pushover Analysis for Asymmetric and Set-back Multi-story Buildings [C].12th World Conference on Earthquake Engineering].Paper No. 1093,2000.
    [72] R.Hasan, L.Xu,D.E.Grierson. Push-over analysis for performance-based seismic design [J]. Computers and Structures.2002, 80, 2483-2493.
    [73] 杨溥,李英民,王亚勇.结构静力弹塑性分析方法的改进[J].建筑结构学报,2000.1.
    [74] 汪梦甫,周锡元.高层建筑结构抗震塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,36(11).
    [75] 尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,20(4).
    [76] 熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结构的影响[J].建筑科学,2001,17(5).
    [77] Seneviratna G D P K. Evaluation of inelastic MDOF effects for seismic design [D]. Department of Civil Engineering, Stanford University, 1995.
    [78] Fajfar P, Gaspersic R The N2 Method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering and Structure Dynamics ,1996,25: 31-46.
    [79] Misael Requena. Evaluation of a Simplified Method for the Determination of the Nonlinear Seismic Response of PC Frames[A]. 12th World Conference on Earthquake Engineering[C]. Paper No.2109, 2000.
    [80] 李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001(3).
    [81] Fajfar Petal. Capacity spectrum method based on inelastic demand spectra .Earthquake Engineering and Structure Dynamics [J]. 1999,28:979-993.
    [82] 沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J].工程力学,2006,23(8).
    [83] 李丕宁,秦荣,张克纯,李秀梅.高层建筑结构静力弹塑性分析的Pushover-QR法[J].世界地震工程.2005.4.
    [84] SAP2000.Advanced C9. 1. 6. [P]Computers and Structures,Inc.北京金土木软件技术有限公司.2005.
    [85] MIDAS/Gen Analysis & Design [P]. 2003.
    [86] 徐培福,傅学怡,王翠坤,肖从真.复杂高层建筑结构设计[M].北京:中国建筑工业出版社.2004.
    [87] 龚炳年,郝锐坤,赵宁.钢-混凝土混合结构模型试验研究[J].建筑科学,1994(1).
    [88] 储德文,梁博,王明贵.钢框架-混凝土筒体混合结构抗震性能振动台试验研究[J].建筑结构,2005,35(8).
    [89] 徐培福,薛彦涛.高层型钢混凝土框筒混合结构抗震性能研究[J].建筑结构,2005,35(5).
    [90] 龚治国.混合结构体系高层建筑模拟地震振动台试验研究[J].地震工程与工程振动,2004(4).
    [91] 张素梅,刘界鹏,王玉银,等.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3).
    [92] ROEDER C W. Overview of hybrid and composite systems for seismic design in the United States [J]. Engineering Structures, 1998,20(4-6):356-365.
    [93] Sasaki Satoshi, Teraoko Masaru, Morita Koji, et al. Structural behavior of concrete-filled square tubular column with partial penetration weld corner seam to steel H-Beam connection [C]. In: Proceedings of the 4th Pacific Structure Steel Conference. 1995, 10(2):33-40.
    [94] Teraoko Masaru, Morita Koji. Structural design of high-rise building consisting of concrete-filled square tubular column and steel composite beams and its verification[C]. In: Proceedings of the 4th Pacific Structure Steel Conference Tubular Structure 4th International Symposium. 1991: 392-401.
    [95] Shams M, Saadeghvazivi M A. Nonlinear response of concrete-filled steel tubular columns and axial loading [J]. ACI Structural Journal, 1999.
    [96] 宗周红,等.方钢管混凝土柱与钢梁连接节点的拟静力试验研究[J].建筑结构学报,2005,26(1).
    [97] 李忠献,许成祥,王冬,等.钢管混凝土框架结构抗震性能的试验研究[J].建筑结构,2004,34(1).
    [98] 吕西林,李学平,余勇.矩形钢管混凝土柱与钢梁的连接节点设计方法[J].建筑结构,2005,35(1).
    [99] Conceptual Framework for Performance-based Seismic Design[R]. SEAOC Blue Book Vision, 2000.
    [100] ATC. Seismic evaluation and retrofit of concrete buildings[R].Vol.1, ATC-40, Applied Technology Council, Redwood City, 1996.
    [101] Otani S, Hiraishi H, et al. New seismic design Provisions in Japan[C]. In: Proceedings, ICMC/IBST 2001, International Conference on Advanced Technologies in Design, Construction and Maintenance of Concrete Structures, Hanoi,2001.
    [102] CEB-FIP. Displacement-based Seismic Design of Reinforced Concrete Buildings[R]. 2003。
    [103] 钱稼茹、罗文斌.基于位移的抗震设计—研究现状与展望[C].见:第十六届全国高层建筑结构学术交流会论文集,上海,2000.
    [104] 经杰.双重抗震结构基于位移抗震设计方法的研究[D].博士学位论文,清华大学,2002。
    [105] Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard[S]. Bremerton, Washington, In: Proc. 1st U.S National Conf. Earthquake Eng., EERI, Berkeley ,1975:113-122.
    [106] Hounsner G W. Limit design of structures to resist earthquake[C]. In: Proceeding of First World Conference on Earthquake Engineering, Berkeley, CA, 1956.
    [107] Akiyama H. Earthquake -resistant limit-state design for buildings[M]. University of Tokyo Press, 1995.
    [108] 自绍良,等.基于能量准则的结构抗震设计分析方法研究[R].见:国家自然科学基金项目总结报告,重庆建筑大学,1994.
    [109] Ye L P, Otani .S. Maximum seismic displacement of inelastic system based on energy concept[J]. Earthquake Eng. Struct. Dyn. 28,1999:1483-1499.
    [110] International Conference of Building Officials[S]. Uniform Building Code -1994,Section 1629.6 Whittier, CA 1994.
    [111] Paulay T, Priestly M JN著,戴瑞同等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社.1999.
    [112] 叶列平,经杰.论结构抗震设计方法[C].第六届全国地震工程会议论文集,南京:东南大学出版社,2002.
    [113] SEAOC. Recommended Lateral Force Requirements and Commentary[S]. sixth edn, Seismoloyg Committee, Sructural Engineers Association of Califorinia. Tel. 916-427-3647, 1996.
    [114] 龚思礼.建筑抗震设计手册[M].北京:中国建筑工业出版社.2002.
    [115] 叶列平,康胜,曾通.双重抗震结构体系[J].建筑结构,2000,30(4).
    [116] 王立长,李凡磷,朱维平,等.大连国贸中心大厦超高层混合结构设计[J].建筑结构,2005,35(10).
    [117] Building Seismic Safety Council. NEHRP Guidelines for the seismic rehabilitation of buildings[R]. FEMA 273/10, Washington, D.C, 1997.
    [118] Ghobarah A. Performance-based design in earthquake engineering: state of development [J].Engineering Structures, 2001, 23 (8):878-884.
    [119] Chandler A M,Nelson T K L. Performance-design in earthquake engineering : a multi-disciplinary review [J]. Engineering Structures, 2001, 23(12): 1525-1543.
    [120] Chandler A M, Mendis P A. Performance of reinforced concrete frames using force and displacement based seismic assessment methods [J]. Engineering Structures, 2000, 22(4): 352-363.
    [121] Lu Y, Hao H, Carydis P G, Mouzakis H. Seismic performance of RC frames designed for three different ductility levels [J].Engineering Structures, 2001, 23(5): 537-547.
    [122] Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings-theory [J].Engineering Structures,2000,22(3):201-209.
    [123] Teran-gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures[J]. Engineering Structures, 2003, 25(8)965-980.
    [124] 建筑工程抗震性态设计通则(CECS160:2004)[S].北京:中国计划出版社,2004。
    [125] 王梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,(3):59-61.
    [126] 叶列平.体系能力设计法与基于性态/位移抗震设计[J].建筑结构,2004,34(6)
    [127] 罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报,2003,(5):22-29.
    [128] 黄嘉,柯长华,束伟农,等.北京电视中心主楼巨型框架-支撑钢结构静力弹塑性地震反应分析[J].建筑结构,2005,35(10).
    [129] 陈富生,邱国华,范重.高层建筑钢结构设计(第二版)[M].北京:中国建筑工业出版社.2004.
    [130] 李丕宁,秦荣.高层钢—混凝土混合结构住宅的研究和设计[J].建筑结构,2006,36(9).
    [131] 夏汉强,刘嘉祥.矩形钢管混凝土柱带框剪力墙的应用及受力分析[J].建筑结构,2005(1)
    [132] Shahrooz B M, Gong B, Tunc G, et al. An overview of reinforced concrete core wall-steel frame hybrid structures [J]. Progress in Structural Engineering and Materials, 2001,3 (2).
    [133] 周天华,聂少锋,卢林枫,等.带内隔板的方钢管混凝土柱-钢梁节点设计研究[J].建筑结构学报,2005,26(5).
    [134] KLINGSCH W. New developments in fire resistance of hollow section structures[C]. Symposium on 师Hollow Structural Sections in Building Construction, ASCE, Chicago Illinois, 1985.
    [135] HASS R. On realistic testing of the fire protection technology of steel and cement supports [R]. Translation of BHPR/NL/T/1444,1991.
    [136] O' MEAGHER AJ, BENNETTS I D, HUTCHINSON G L, STEVENS L K. Modeling of HSS columns filled with concrete in fire[R]. BHPR/ENG/R/91/031/PS69, 1991.
    [137] FALKE J. Comparison of simple calculation methods for the fire design of composite and beams[A].Proc. of an Engineering Foundation Conference on Steel-Concrete Composite Structure[C]. ASCE, New York, 1992:226-241.
    [138] LIE T T, STRINGER D C. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete[J]. Can. J. Civ. Eng., 1994, 21(3):382-385.
    [139] OKADA T, YAMAGUCHI T, SAKUMOTO Y, KEIRA K. Load heat tests of full-scale columns of concrete-filled tubular steel structure using fire-resistant steel for buildings[A]. Proc. of the Third International conference on Steel-Concrete Composite Structures [C]. ASCCS. Fukuoka, 1991: 101-106.
    [140] KIM D K, CHOI S M, CHUNG K S. Structural characteristics of CFT columns subjected to fire loading and axial force [A]. Proceedings of the 6th ASCCS Conference[C]. Los Angeles, USA, 2000:271-278.
    [141] WANG Y C. The effects of structural continuity on the fire resistance of concrete filled columns in non-sway frames [J]. Journal of Constructional Steel Research, 1999150(2): 177-197.
    [142] KODUR V K R. Performance-based fire resistance design of concrete-filled steel columns[J].Journal of Constructional Steel Research, 1999, 51(1): 21-26.
    [143] 杨有福,韩林海,沈祖炎.矩形钢管混凝土柱的防火保护[J].建筑结构,2005(1).
    [144] 杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报,2004.26(1).
    [145] GB/T9978—1999建筑构件耐火试验方法.ISO834 Fire resistance tests-elements of building construction [S].北京:中国建筑工业出版社,1999.
    [146] 韩林海.恒(高)温下钢管混凝土的轴压力学性能[J].哈尔滨建筑大学学报,1997,(5).
    [147] 韩林海,徐蕾,冯九斌,杨有福.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报.2002,35(6):6-13.
    [148] 韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究[J].土木工程学报.200,33(6):63-69.
    [149] HAN L H, ZHAO X L, YANG Y F, FENG J B. Experimental study and calculation of fire resistance of concrete-filled hollow steel columns[J]. Journal of Structural Engineering,ASCE,2003,129(3):346-356.
    [150] HAN L H, XU L, ZHAO X L. Temperature field analysis of concrete-filled steel tubes [J]. Advances in Structural Engineering—An international Journal, 2003, 6(2): 121-133.
    [151] 李国强,李兆治.钢结构性能化抗火设计的初步设想[J].消防科学与技术,2004,23(1)46~48.
    [152] Liu T C H. Moment-Rotation-Temperature Characteristics of Steel/Composite Joints[J].Journal of Structural Engineering, ASCE, 1999, 125(10): 118~197.
    [153] Franssen J M. Numerical Determination of 3D Temperature Fields in Steel Joints[J]. Fire and Materials, 2004, 28(1): 63~82.
    [154] 蒋永琨 主编.高层建筑防火设计手册[M].北京:中国建筑工业出版社,2002.
    [155] CECS24:90钢结构防火涂料应用技术规范[S].北京:中国建筑工业出版社,1999.
    [156] 陶忠,韩林海,王永昌.火灾下钢管混凝土梁柱节点性能研究若干问题探讨[J].Steel Construction,2005,20,(4):91~93.
    [157] 江欢成.高层建筑垂直构件间的差异变形[J].结构工程师,1986(2).
    [158] Mark Fintel, et al. Column Shortening in Tall Structures—Prediction and Compensation [R]. Portland Cement Association, 1987.
    [159] Russell H G, Lavson S C. Thirteen years of deformations in water tower place [J]. ACI structure Jour., 1989, 86(2)181-192
    [160] 大连世界贸易大厦有限公司.大连世界贸易大厦钢结构设计与施工[M].北京:中国建筑工业出版社,2002.
    [161] 杨丽,郭志恭.高层钢筋混凝土结构设计中如何考虑收缩、徐变的作用[J].工业建筑,1995,25(4):40-46.
    [162] 罗文斌,张保印.超高层建筑S+RC混合结构竖向变形差的工程对策[J].建筑结构学报,2000,21(6):68-73
    [163] PARK H S. Optimal compensation of differential column shortening in high rise buildings [J].The Structural Design of Tall and Special Buildings, 2003,(12):49-66.
    [164] Fintel. M, Chosh S. K. High-rises design: accounting for column length changes [J].Civil Engineering, ASCE, 1984, (4):55-59
    [165] 王润富,Robert L. Yuan.高层建筑的垂直变形分析[J].建筑结构学报,1990(3).
    [166] 沈祖炎,黄奎生.矩形钢管混凝土轴心受力构件的设计方法[J].建筑结构,2005(1).
    [167] S. T. Zhong. The Comparison of the Composite Rigidities with the Conversion Rigidities for CFST Members[C]. Proc. of 6th ASCCS Conference, Los Angeles, March 22~24, 2000.
    [168] 刘大海,杨翠如.高层建筑结构方案优选[M].北京:中国建筑工业出版社,1996.
    [169] 赵西安.钢筋混凝土高层建筑结构设计[M].北京:中国建筑工业出版社,1992
    [170] 朱炳寅,陈富有.建筑结构设计新规范综合应用手册[M].北京:中国建筑工业出版社,2004.
    [171] 陈富生,邱国华,范重.高层建筑钢结构设计(第二版)[M].北京:中国建筑工业出版社,2004.P:302-321.
    [172] 张琪玮,张保印,牛荻涛.混凝土高层建筑竖向变形差的原位测试与分析[J].建筑结构,2004,34(4).
    [173] 李丕宁,秦荣,桂国强.混合结构高层住宅竖向构件差异缩短的计算和对策[J].施工技术,2006,35(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700