TNT污染土壤的生物泥浆反应器修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曾在军事上广泛应用的TNT因具有毒性和三致作用,而被中国、美国等列入优先控制污染物的名单,因此TNT生产、加工、使用及相关设施的销毁过程中造成的土壤污染及其修复问题也倍受关注。本文以TNT污染土壤为研究对象,在优化土壤中TNT的提取方法、基本探明TNT对厌氧发酵系统微生物群落毒性及土壤中TNT的生物有效利用性和厌氧转化机理的基础上,研究和提出了一种利用生物泥浆反应器高效、安全地修复TNT重污染土壤并使其达到相关标准限值(17.2mgTNT/kg)的技术方法,填补了国内生物泥浆反应器系统修复TNT重污染土壤领域的空白,对于类似介质中硝基类化合物的修复研究也有一定的理论参考价值。本研究获得的主要成果及结论如下:
     (1)优化了土壤中TNT的提取方法。
     当提取剂为乙腈时,在液固比为20mL乙腈:1g土壤、振荡12h-超声5h的条件下,粘土和沙土及相应的泥浆(水土比为2:1)中TNT平均提取回收率均大于95%,土壤类型对TNT平均提取回收率没有显著影响;而添加水平的影响极为显著,当土壤中TNT浓度≥500mgTNT/kg(土壤)时,TNT提取回收率介于95%-105%之间,当土壤中TNT浓度为10mgTNT/kg(土壤)时,其回收率为70%-130%,但均满足相应的提取回收标准。不同土壤介质中TNT回收率变异系数均小于10%。准确度和精密度均达到分析要求。
     (2)解析了土壤对TNT的吸附及解吸行为,明确了TNT的生物有效利用潜力。在液土比为2:1的条件下,土壤对TNT的吸附在24h内可达到平衡,其吸附动力学与Elovich方程拟合效果最好(相关系数为0.962),吸附过程为非均相扩散过程;与吸附与解吸等温线拟合较好的Freundlich方程其指数1/n表明TNT在土壤中存在迟滞现象(解吸迟滞指数为3.2);吸附自由能表明,TNT在土壤中是以表面物理吸附为主;污染土壤中TNT解吸较为迅速,且随着污染强度的增大而显著增强,也即表明土壤中TNT的生物可利用潜力较高。
     (3)探明了TNT对厌氧发酵系统中产甲烷菌的毒性抑制作用。
     TNT对厌氧发酵系统中产甲烷菌毒性随着浓度的升高而增加,当TNT浓度低于100mg/L时为轻度抑制(RA≥77.62%),浓度高于100mg/L时为中度抑制(40%     (4)基本探明了TNT厌氧转化机理。
     在pH为6-7的模拟厌氧体系中TNT可以被硫化钠和作为新生态氢发生源的金属Zn还原转化,动力学均遵循准一级动力学规律;还原剂的浓度在TNT厌氧转化中起着重要作用,5倍化学当量的还原剂浓度是最合适的;既模拟pH又模拟发酵成分的B系统中TNT转化所需的反应时间要短于仅模拟厌氧发酵液pH的A系统;在pH为6-7、还原剂浓度为5倍化学当量的B系统中,硫化钠和作为新生态氢发生源的金属Zn均可在2h内快速转化90%TNT。由此可知,厌氧环境下因生物作用产生的非生物还原剂硫化物、新生态氢等在TNT快速转化中起着重要作用,且随着还原剂浓度的升高其转化速率也会相应升高。
     LC-MS分析表明,模拟厌氧系统中硫化物既可以对TNT硝基进行还原转化又可以对TNT苯环进行脱硝转化,其中以硝基还原为主要的还原方式,而Zn主要是通过加氢脱硝的方式对TNT实现还原转化;此外,TNT在模拟厌氧系统中的还原产物还能相互作用生成聚合物。即表明在厌氧环境下,TNT在还原剂作用下可生成多种的还原产物,其代谢途径因还原剂不同而有所差异。
     (5)开发了一种高效的TNT污染土壤生物泥浆反应器修复技术,明确了其工艺技术参数及控制条件,为生物泥浆反应器的推广应用奠定了技术基础。
     以1000mgTNT、kg(土壤)的污染土壤为研究对象,通过批次静态试验获得的TNT厌氧降解优化条件为:mCOD/mTNT为4、水土比为2:1、接种量为5%(以土壤干重计)、不外加硫酸盐(土壤本身硫酸盐含量为2021mgSO42-/kg(土壤))、表面活性剂为1.5CMC的Tween80时间为厌氧处理5d-好氧补充处理2d。在上述优化条件下,1000mgTNT/kg(土壤)的污染土壤在厌氧处理5d后就能达到修复标准,相应的容积负荷为100g/(m3·d),2d的好氧补充处理可进一步实现TNT污染土壤的稳定化和腐殖化,其修复周期短于文献报道的修复周期;当TNT浓度低于1000mgTNT/kg土壤,即泥浆体系中TNT容积负荷不大于100g/(m3·d).mCOD/mTNT≥4时,在厌氧处理5d后污染土壤中TNT能达到修复标准;当TNT浓度高于1000mgTNT/kg土壤时,则可通过控制容积负荷和mCOD/mTNT来达到修复标准。
     序批式生物泥浆反应器的动态运行结果表明,4个周期内,1000mgTNT/kg(土壤)的TNT污染土壤在上述优化条件下经生物泥浆反应器厌氧修复5d-好氧补充处理2d后,能达到17.2mgTNT/kg(土壤)的标准限值要求,且可以进一步实现TNT污染土壤的稳定化和腐殖化。该反应器动态运行性能稳定,且其修复周期短于文献报道的周期。
TNT, a pollutant with toxic, carcinogenic, and mutagenic, has been list in a category of priority pollutants in China and USA. Since it has been used widely in military activities, the TNT pollution was serious over the world. Thus, the TNT bioremediation attracted more and more attention. In this paper, the method for TNT extraction from soil was optimized and the potential of TNT bioavailability was analyzed. Also, the toxicity of TNT on the methane-producing systems was evaluated. Moreover, the mechanism of the rapid disappearance of TNT under anaerobic condition was analyzed. Finally, a safe and high efficient bioslurry reactor technology has been.developed to remove TNT in contaminated soil, with the aim to meet the remediation standard of 17.2mg TNT/kg soil. The results of this study would fill a vacancy of remediation of heavy TNT-contaminated soil. It is also of referential value for the remediation of nitroaromatic compounds in similar media. Major research results are summarized as follows:
     (1) The extraction method of TNT from soil
     When extraction solvent was acetonitrile, the optimum extraction condition of TNT from soil was:20 mL acetonitrile:1 g soil,12 h vibration-5 h sonication. The average of TNT recovery rates from clay soil, sandy soil, and corresponding soil slurry (2:1 water/soil ratio) were higher than 95%. It suggested that the type of soil had no effect on TNT recovery. However, effect of TNT concentration on TNT average recovery rate was significant. When TNT concentration of soil was higher than 500 mg TNT/kg (soil), the average recovery rate of TNT from soil was between 95% and 105%; when TNT concentration of soil and corresponding soil slurry was 10 mg TNT/kg (soil), the average recovery of TNT was between 70% and 130%. The coefficient of variability is less than 10%. In all, both the accuracy and degree of precision of TNT recovery met the analysis requirement.
     (2) The sorption/desorption behavior of TNT and the potential of TNT bioavailability
     Under the condition of the liquid to soil ratio of 2:1, the sorption of TNT on soil reached the equilibrium state within 24 h and the sorption kenitics fitting Elovich equation reached the best, with the correlation coefficient of 0.962, which indicated that the sorption was a non-homogeneous diffusion process The sorption/desorption isotherm fitted Freundlich equation very well, of which the constant 1/n indicated existence of hysteresis (the calculated index of hysteresis was 3.2). The free energy of sorption suggested the physical sorption was dominant for TNT sorption on soil. The desorption of TNT from contaminated soil was fast and increased with the increase of pollution level of soil, indicating that the potential of TNT bioavailability was high.
     (3) The methane-producing toxicity of TNT
     The methane-producing toxicity of TNT increased with the increase of TNT concentration. The relative activity was. more than 77.62% when TNT concentration was lower than 100 mg/L, suggesting the inhibition was light. Relative activity was between 75% and 40% when TNT concentration was higher than 100 mg/L, suggesting the inhibition was middle. Moreover, the rapid conversion of TNT eliminated the threat of lyses to methanogenic bacteria under anaerobic condition. It could be concluded that the toxicity of TNT to microbiologic population wasn't large and the technology of anaerobic bioremediation of TNT was feasible.
     (4) The mechanism of the rapid disappearance of TNT in an anaerobic solution
     Under Simulated Anaerobic Conditions at pH 6-7, TNT could be reduced by both Na2S and Zn0 which could produce nascent hydrogen, and both of TNT reduction kinetics followed the pseudo-first order rate law. The reductant concentration played a very important role in reduction of TNT, and a 5-fold increase in reductant concentration above the theoretical stoichiometric concentration was optimum. The reaction time for the conversion of TNT in system B which both controlled pH and simulated components of an anaerobic solution was much shorter than that in system A which only controled pH. About 90% TNT in system B could be reduced by both Na2S and Zn0 within 2h at pH 6-7, when the reductants concentration was increased 5-fold. It could be concluded that abiotic reductants including sulfide and nascent hydrogen, which were produced by biological action, played a very important role in the rapid disappearance of TNT under anaerobic condition, and the conversion of TNT increased with reductants concentration increasing.
     The LC/MS results of intermediates indicated that, both nitroreduction and denitration of TNT could be initiated by sulfide simultaneously, but the former was dominant over the latter. However, only denitration could be initiated by Zn0. Moreover, intermediates of both pathways may form polymer. It could be concluded that TNT could be transformed into many products by reductants under anaerobic condition and the reduction pathways varied with different reductants.
     (5) The high efficient bioslurry reactor technology for remediation of heavy TNT-contaminated soil
     Based on the results of the batch static experiments for remediation of 1000 mg TNT/kg (soil) TNT-contaminated soil, the optimum condition were obtained as follows:4 of mCOD/mTNT, 2 of the ratio of liquid to solid,5% of inoculum,1.5 fold CMC of Tween 80,5 d anaerobic treatment and 2 d aerobic operation. Under the optimal conditions, 1000mg TNT/kg (soil) TNT-contaminated soil reached the remediation standard (17.2 mg TNT/kg (soil)) after 5 d anaerobic treatment and the volume loading was 100 g/(m3-d);the subsequent 2 d aerobic treatment could further realized the stabilization and humification; the whole remediation period was shorter than that of literature. Also, under the optimal conditions, all polluted soil, with volume loading less than 100 g/(m3·-d)and mCOD/mTNT more than 4, could be remediated after 5 d anaerobic treatment; while the polluted soil with volume loading more than 100 g/(m3-d) could reach the remediation standard by controlling volume loading and mCOD/mTNT
     The results from dynamic operation of sequence boi-slurry reactor suggested that TNT concentration of 1000 mg TNT/kg (soil) soil met the remediation standard (17.2 mgTNT/kg (soil)) after 5 d anaerobic treatment-2 d aerobic treatment during four operation periods on the basis of sufficient stir (200 rpm) and under the above optimum condition. Moreover it realized stabilization and humification of contaminated soil.The operation performance of bio-slurry reactor was steady and remediation period was shorter than that of literature.
引文
Achtnich C, Fernandes E, Bollag J M, Knackmuss H J, and Lenke H. Covalent binding of reduced metabolites of [N-15(3)]TNT to soil organic matter during a bioremediation process analyzed by N-15 NMR spectroscopy [J]. Environmental Science & Technology,1999a,33(24),4448-4456.
    Achtnich C, Lenke H, Klaus, U, Spiteller M, and Knackmuss H J. Stability of immobilized TNT derivatives in soil as a function of nitro group reduction [J]. Environmental Science & Technology,2000,34(17),3698-3704.
    Achtnich C, Sieglen U, Knackmuss H J, and Lenke H. Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil [J]. Environmental Toxicology and Chemistry,1999b,18(11),2416-2423.
    Agrawal A, and Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal [J]. Environmental Science & Technology,1996,30(1),153-160.
    Ahmad F, and Hughes J B. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids [J]. Environmental Science & Technology,2002,36(20), 4370-4381.
    Arienzo M. Use of abiotic oxidative-reductive technologies for remediation of munition contaminated soil in a bioslurry reactor [J]. Chemosphere,2000,40(4), 441-448.
    Arnold W A, Ball W P, and Roberts A L. Polychlorinated ethane reaction with zero-valent zinc:pathways and rate control [J]. Journal of Contaminant Hydrology,1999,40(2),183-200.
    Ayoub K, van Hullebusch E D, Cassir M, and Bermond A. Application of advanced oxidation processes for TNT removal:A review [J]. Journal of Hazardous Materials,2010,178(1-3),10-28.
    Bai X, Ye Z F, Qu Y Z, Li Y F, and Wang Z Y. Immobilization of nanoscale Fe-0 in and on PVA microspheres for nitrobenzene reduction [J]. Journal of Hazardous Materials,2009,172(2-3),1357-1364.
    Bandstra J Z, Mieh R, Johnson R L, and Tratnyek P G. Reduction of 2,4,6-trinitrotoluene by iron metal:Kinetic controls on product distributions in batch experiments [J]. Environmental Science & Technology,2005,39(1), 230-238.
    Barrows S E, Cramer C J, Truhlar D G, Elovitz M S, and Weber E J. Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution [J]. Environmental Science & Technology,1996,30(10),3028-3038.
    Ben Stenuit L E, Sai"d El Fantroussi, Spiros N Agathos. Promising strategies for the mineralisation of 2,4,6-trinitrotoluene [J]. Reviews in Environmental Science and Bio/Technology,2005,4,39-60.
    Boopathy R. Bioremediation of explosives contaminated soil [J]. International Biodeterioration & Biodegradation,2000,46(1),29-36.
    Boopathy R.Effect of food-grade surfactant on bioremediation of explosives-contaminated soil [J]. Journal of Hazardous Materials,2002,92(1), 103-114.
    Boopathy R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil [J]. International Biodeterioration & Biodegradation,2003, 52(3),161-166.
    Boopathy R, Kulpa C F, and Manning J. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria:A review [J]. Bioresource Technology,1998a,63(1),81-89.
    Boopathy R, Manning J, and Kulpa C F. Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil [J]. Archives of Environmental Contamination and Toxicology,1997,32(1),94-98.
    Boopathy R, Manning J, and Kulpa C F. Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry [J]. International Biodeterioration & Biodegradation,1998b,41(1),67-74.
    Boronina T N, Lagadic I, Sergeev G B, and Klabunde K J. Activated and nonactivated forms of zinc powder:Reactivity toward chlorocarbons in water and AFM studies of surface morphologies [J]. Environmental Science & Technology,1998, 32(17),2614-2622.
    Bradley P M, and Chapelle F H. Factors Affecting Microbial 2,4,6-Trinitrotoluene Mineralization in Contaminated Soil [J]. Environmental Science & Technology, 1995,29(3),802-806.
    Bruns-Nagel D, Knicker H, Drzyzga O, Butehorn U, Steinbach K, Gemsa D, and Von Low E. Characterization of N-15-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid state N-15 NMR spectroscopy.2. Systematic investigation of whole soil and different humic fractions [J]. Environmental Science & Technology,2000,34(8),1549-1556.
    Carpenter D F, Mccormick N G, Cornell J H, and Kaplan A M. Microbial Transformation of C-14-Labeled 2,4,6-Trinitrotoluene in an Activated-Sludge System [J]. Applied and Environmental Microbiology,1978,35(5),949-954.
    Carter M C, Kilduff J E, and Weber W J. Site Energy-Distribution Analysis of Preloaded Adsorbents [J]. Environmental Science & Technology,1995,29(7), 1773-1780.
    Cho Y S, Lee B U, and Oh K H. Simultaneous degradation of nitroaromatic compounds TNT, RDX, atrazine, and simazine by Pseudomonas putida HK-6 in bench-scale bioreactors [J]. Journal of Chemical Technology and Biotechnology, 2008,83(9),1211-1217.
    Christodoulatos C, and Koutsospyros A. Bioslurry reactors [J]. Biological treatment of hazardous wastes,1998,69-103.
    Clark B, and Boopathy R. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana [J]. Journal of Hazardous Materials,2007,143(3),643-648.
    Claus H, Perret N, Bausinger T, Fels G, Preuss J, and Konig H TNT transformation products are affected by the growth conditions of Raoultella terrigena [J]. Biotechnology Letters,2007,29(3),411-419.
    Comfort S D, Shea P J, Hundal L S, Li Z, Woodbury B L, Martin J L, and Powers W L. Tnt Transport and Fate in Contaminated Soil [J]. Journal of Environmental Quality,1995,24(6),1174-1182.
    Conder J M. Bioavailability and toxicity of 2,4,6-trinitrotoluene in sedinment [D]. University of North Texas (Dissertation Prepared for the Degree of Doctor of Philosophy),2004.
    Dawel G, KastnerM, Michels J, Poppitz W, Gunther W, and Fritsche W. Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix [J]. Applied and Environmental Microbiology,1997,63(7),2560-2565.
    Dec J, and Bollag J M. Use of Plant-Material for the Decontamination of Water Polluted with Phenols [J]. Biotechnology and Bioengineering,1994,44(9), 1132-1139.
    Driessen W, Tielbaard M H, and Vereijken T. Experience on Anaerobic Treatment of Distillery Effluent with the Uasb Process [J]. Water Science and Technology, 1994,30(12),193-201.
    Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K H, Gemsa D, and Von Low E. Incorporation of C-14-labeled 2,4,6-trinitrotoluene metabolites into different soil fractions after anaerobic and anaerobic-aerobic treatment of soil/molasses mixtures [J]. Environmental Science & Technology,1998,32(22),3529-3535.
    Duque E, Haidour A, Godoy F, and Ramos J L. Construction of a Pseudomonas Hybrid Strain That Mineralizes 2,4,6-Trinitrotoluene [J]. Journal of Bacteriology,.1993,175(8),2278-2283.
    Elovitz M S, and Weber E J. Sediment mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines [J]. Environmental Science & Technology,1999,33(15),2617-2625.
    Eriksson J, and Skyllberg U. Binding of 2,4,6-trinitrotoluene and its degradation products in a soil organic matter two-phase system [J]. Journal of Environmental Quality,2001,30(6),2053-2061.
    Esteve-Nunez A, Caballero A, and Ramos J L. Biological degradation of 2,4,6-trinitrotoluene [J]. Microbiology and Molecular Biology Reviews,2001, 65(3),335-352.
    Falone S Z, Vieira E M, and Onuska F I. Adsorption study of RDX and TNT explosives in soils by HPLC [J]. Journal of Liquid Chromatography & Related Technologies,2006,29(11),1645-1662.
    Fava F, Berselli S, Conte P, Piccolo A, and Marchetti L. Effects of humic substances and soya lecithin on the aerobic Bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs) [J]. Biotechnology and Bioengineering,2004,88(2),214-223.
    Fava F, Di Gioia D, and Marchetti L. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions [J]. Applied Microbiology and Biotechnology, 2000,53(2),243-248.
    Fernando T, Bumpus J A, and Aust S D. Biodegradation of Tnt (2,4,6-Trinitrotoluene) by Phanerochaete-Chrysosporium [J]. Applied and Environmental Microbiology, 1990,56(6),1666-1671.
    French C E, Rosser S J, Davies G J, Nicklin S, and Bruce N C. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase [J]. Nature Biotechnology,1999,17(5),491-494.
    Frische T. Screening for soil toxicity and mutagenicity using luminescent bacteria-A case study of the explosive 2,4,6-trinitrotoluene (TNT) [J]. Ecotoxicology and Environmental Safety,2002,51(2),133-144.
    Fritsche W, Scheibner K, Herre A, and Hofrichter M. Fungal degradation of explosives:TNT and related nitroaromatic compounds [J]. Boca Raton:CRC Press LLC,2000,213-238.
    Fuller M E, and Manning J F. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors [J]. Bioresource Technology,2004,91(2),123-133.
    Germain M E, Vargo T R, McClure B A, Rack J J, Van Patten P G, Odoi M, and Knapp M J. Quenching mechanism of Zn(Salicylaldimine) by nitroaromatics [J]. Inorganic Chemistry,2008,47(14),6203-6211.
    Gorontzy T, Kuver J, and Blotevogel K H. Microbial Transformation of Nitroaromatic Compounds under Anaerobic Conditions [J]. Journal of General Microbiology,1993,139,1331-1336.
    Haderlein S B, Weissmahr K W, and Schwarzenbach R P. Specific adsorption of nitroaromatic explosives and pesticides to clay:minerals [J]. Environmental Science & Technology,1996a,30(2),612-622.
    Haderlein S B, Weissmahr K W, and Schwarzenbach R P. Specific adsorption of nitroaromatic:Explosives and pesticides to clay minerals [J]. Environmental Science & Technology,1996b,30(2),612-622.
    Hansen T A. Metabolism of Sulfate-Reducing Prokaryotes [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1994,66(1-3),165-185.
    Harvey S D, Fredrickson H L, Evans W E, Zappi M E, and Hill D 0. Evaluation of bioslurry ecosystems for removal of TNT from contaminated soil using a variety of process amendments [J]. Bioremediation of Surface and Subsurface Contamination,1997,829,142-159.
    Hassett J J, Banwart W L, and Griffin R A. Correlation of compound properties with sorption characteristics of nonpolar compounds by soils and sediments:Concepts and limitations [J]. Butterworths,Boston:Environment and solid wastes, 1983,161-178.
    Hatzinger P B, Fuller M E, Rungmakol D, Schuster R L, and Steffan R J. Enhancing the attenuation of explosives in surface soils at military facilities: Sorption-desorption isotherms [J]. Environmental Toxicology and Chemistry, 2004,23(2),306-312.
    Hawari J, Beaudet S, Halasz A, Thiboutot S, and Ampleman G. Microbial degradation of explosives:biotransformation versus mineralization [J]. Applied Microbiology and Biotechnology,2000,54(5),605-618.
    Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, and Thiboutot S. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5 [J]. Applied and Environmental Microbiology,1999, 65(7),2977-2986.
    Heiss G, and Knackmuss H J. Bioelimination of trinitroaromatic compounds: immobilization versus mineralization [J]. Current Opinion in Microbiology,2002, 5(3),282-287.
    Hofstetter T B, Heijman C G, Haderlein S B, Holliger C, and Schwarzenbach R P. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron reducing subsurface conditions [J]. Environmental Science & Technology,1999, 33(9),1479-1487.
    Hojo M, Takagi Y, and Ogata Y. Kinetics of the Reduction of Nitrobenzenes by Sodium Disulfide [J]. Journal of the American Chemical Society,1960,82(10), 2459-2462.
    Hughes J B, Shanks J, Vanderford M, Lauritzen J, and Bhadra R. Transformation of TNT by aquatic plants and plant tissue cultures [J]. Environmental Science & Technology,1997,31(1),266-271.
    Hughes J B, Wang C, Yesland K, Richardson A, Bhadra R, Bennett G, and Rudolph F. Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum [J]. Environmental Science & Technology,1998,32(4),494-500.
    Hundal L S, Singh J, Bier E L, Shea P J, Comfort S D, and Powers W L. Removal of TNT and RDX from water and soil using iron metal [J]. Environmental Pollution, 1997,97(1-2),55-64.
    Hwang S, Batchelor C J, Davis J L, and MacMillan D K. Sorption of 2,4,6-trinitrotoluene to natural soils before and after hydrogen peroxide application [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2005,40(3), 581-592.
    In B H, Park J S, Namkoong W, Hwang E Y, and Kim J D. Effect of co-substrate on anaerobic slurry phase bioremediation of TNT-contaminated soil [J]. Korean Journal of Chemical Engineering,2008,25(1),102-107.
    Johnson M S, Vodela J K, Reddy G, and Holladay S D. Fate and the biochemical effects of 2,4,6-trinitrotoluene exposure to tiger salamanders (Ambystoma tigrinum) [J]. Ecotoxicology and Environmental Safety,2000,46(2),186-191.
    Kim H Y, and Song H G. Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus [J]. Applied Microbiology and Biotechnology,2003,61(2),150-156.
    Knicker H, Achtnich C, and Lenke H. Solid-state nitrogen-15 nuclear magnetic resonance analysis of biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation [J]. Journal of Environmental Quality,2001,30(2),403-410.
    Krumholz L R,Li J, Clarkson W W, Wilber G G, and Suflita J M. Transformations of TNT and related aminotoluenes in groundwater aquifer slurries under different electron-accepting conditions [J]. Journal of Industrial Microbiology & Biotechnology,1997,18(2-3),161-169.
    Kwon S H, and Yen T F. Metabolism of 2,4,6-trinitrotoluene by mixed microbial populations in digested sewage sludge under strict anaerobic conditions [J]. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control,1997,32(9-10), 2669-2682.
    Lachance B, Renoux A Y, Sarrazin M, Hawari J, and Sunahara G I. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil [J]. Chemosphere,2004,55(10),1339-1348.
    Lendenmann U, Spain J C, and Smets B F. Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor [J]. Environmental Science & Technology,1998,32(1),82-87.
    Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, and Knackmuss H J. Biological treatment of TNT contaminated soil.2. Biologically induced immobilization of the contaminants and full-scale application [J]. Environmental Science & Technology,1998,32(13),1964-1971.
    Lewis T A, Newcombe D A, and Crawford R L. Bioremediation of soils contaminated with explosives [J]. Journal of Environmental Management,2004,70(4), 291-307.
    Li Z M, Peterson M M, Comfort S D, Horst G L, Shea P J, and Oh B T. Remediating TNT-contaminated soil by soil washing and Fenton oxidation [J]. Science of the Total Environment,1997,204(2),107-115.
    Li Z M, Peterson M M, Comfort S D, Horst G L, Shea P J, and Oh B T Remediating TNT-contaminated soil by soil washing and Fenton oxidation [J]. Science of the Total Environment,1997,204(2),107-115.
    Lotufo G R, Blackburn W, Marlborough S J, and Fleeger J W. Toxicity and bioaccumulation of TNT in marine fish in sediment exposures [J]. Ecotoxicology and Environmental Safety,2010,73(7),1720-1727.
    Lu Y F, and Pignatello J J. Demonstration of the "Conditioning effect"in soil organic matter in support of a pore deformation mechanism for sorption hysteresis [J]. Environmental Science & Technology,2002,36(21),4553-4561.
    MacFarlane J C, Pfleeger T, and Fletcher J. Effect, uptake and distribution of nitrobenzene in several terrestrial plants [J]. Environ. Toxicol. Chem.1990, (9), 513-520.
    Maity S K, Pradhan N C, and Patwardhan A V. Kinetics of reduction of nitrotoluenes by H2S-rich aqueous ethanolamine [J]. Industrial & Engineering Chemistry Research,2006a,45(23),7767-7774.
    Maity S K, Pradhan N C, and. Patwardhan A V. Kinetics of the reduction of' nitrotoluenes by aqueous ammonium sulfide under liquid-liquid phase transfer catalysis [J]. Applied Catalysis a-General,2006b,301(2),251-258.
    Maity S K, Pradhan N C, and Patwardhan A V. Reduction of p-nitrotoluene by aqueous ammonium sulfide:Anion exchange resin as a triphasic catalyst [J]. Chemical Engineering Journal,2008,141(1-3),187-193.
    Mills A, Seth A, and Peters G. Alkaline hydrolysis of trinitrotoluene, TNT [J]. Physical Chemistry Chemical Physics,2003,5(18),3921-3927.
    Mohan S V, Shailaja S, Krishna M R, Reddy K B, and Sarma P N. Bioslurry phase degradation of di-ethyl phthalate (DEP) contaminated soil in periodic discontinuous mode operation:Influence of bioaugmentation and substrate partition [J]. Process Biochemistry,2006,41(3),644-652.
    Moshe S S B, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, and Nativ R. Sequential biodegradation of TNT, RDX and HMX in a mixture [J]. Environmental Pollution,2009,157(8-9),2231-2238.
    Mueller J G, Lantz S E, Blattmann B 0, and Chapman P J. Bench-Scale Evaluation of Alternative Biological Treatment Processes for the Remediation of Pentachlorophenol-Contaminated and Creosote-Contaminated Materials-Slurry-Phase Bioremediation [J]. Environmental Science & Technology,1991, 25(6),1055-1061.
    Nano G, Borroni A, and Rota R. Combined slurry and solid-phase bioremediation of diesel contaminated soils [J]. Journal of Hazardous Materials,2003,100(1-3), 79-94.
    Newcombe D A, and Crawford R L. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils [J]. Biodegradation,2007,18(6), 741-754.
    Nyanhongo G S, Schroeder M, Steiner W, and Gubitz G M. Biodegradation of 2,4,6-trinitrotoluene (TNT):An enzymatic perspective [J]. Biocatalysis and Biotransformation,2005,23(2),53-69.
    Park C W, Kim T H, Kim S Y, Lee J W, and Kim S W. Bioremediation of 2,4,6-trinitrotoluene contaminated soil in slurry and column reactors [J]. Journal of Bioscience and Bioengineering,2003,96(5),429-433.
    Pavlostathis S G, Comstock K K, Jacobson M E, and Saunders M F. Transformation of 2,4,6-TNT by the aquatic plant Myriophyllum Spicatum [J]. Environ. Toxicol. Chem.1998, (17),2266-2273.
    Pennington J C. Plant Uptake of 2,4,6-Trinitrotoluene,4-Amint-2-6-Dinitrotoluene, and 2-Amino-4-6-Dinitrotoluene Using 14C-Labeled and Unlabeled Compounds[D] [J]. Vichsburg:U.S.Army Corps Engineers Waterways Experiment Station(MS),1988.
    Pennington J C, and Brannon J M. Environmental fate of explosives [J]. Thermochimica Acta,2002,384(1-2),163-172.
    Pennington J C, and Patrick W H. Adsorption and Desorption of 2,4,6-Trinitrotoluene by Soils [J], Journal of Environmental Quality,1990,19(3),559-567.
    Pinelli D, Fava F, Nocentini M, and Pasquali G. Bioremediation of a polycyclic aromatic hydrocarbon-contaminated soil by using different aerobic batch bioreactor systems [J]. Journal of Soil Contamination,1997,6(3),243-256.
    Popesku J T, Singh A, El-Alawi Y, and Ward O P. Trinitrotoluene removal in a soil slurry and soil box systems by an oil-degrading mixed bacterial culture [J]. World Journal of Microbiology & Biotechnology,2006,22(10),1075-1081.
    Popesku J T, Singh A, Zhao J S, Hawari J, and Ward O P. Metabolite production during transformation of 2,4,6-trinitrotoluene (TNT) by a mixed culture acclimated and maintained on crude oil-containing media [J]. Applied Microbiology and Biotechnology,2004,65(6),739-746.
    Qasim M, Gorb L, Magers D, Honea P, Leszczynski J, Moore B, Taylor L, and Middleton M. Structure and reactivity of TNT and related species:Application of spectroscopic approaches and quantum-chemical approximations toward understanding transformation mechanisms [J]. Journal of Hazardous Materials, 2009,167(1-3),154-163.
    Qiao H, Wang H L, Feng H J, Yao J, Shen D S, and Tang Z J. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions [J]. Journal of Hazardous Materials,2010,179(1-3),989-998.
    Ramos J L, Gonzalez-Perez M M, Caballero A, and van Dillewijn P. Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight [J]. Current Opinion in Biotechnology,2005,16(3),275-281.
    Reddy C A. The Potential for White-Rot Fungi in the Treatment of Pollutants. Current Opinion in Biotechnology,1995,6(3),320-328.
    Rieger P G, Meier H M, Gerle M, Vogt U, Groth T, and Knackmuss H J. Xenobiotics in the environment:present and future strategies to obviate the problem of biological persistence [J]. Journal of Biotechnology,2002,94(1),101-123.
    Robidoux P Y, Sunahara G I, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, and Hawari J. Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils [J]. Environmental Toxicology and Chemistry,2004,23(4),1026-1034.
    Robles-Gonzalez I, Rios-Leal E, Ferrera-Cerrato R, Esparza-Garcia F, Rinderkenecht-Seijas N, and Poggi-Varaldo H M. Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors:Effect of electron acceptor and supplementation with an organic carbon source [J]. Process Biochemistry,2006,41(9),1951-1960.
    Rocheleau S, Cimpoia R, Paquet L, Koppen I v, Guiot S R, Hawari J, Ampleman G, Thiboutot S, and Sunahara G I. Ecotoxicological Evaluation of a Bench-Scale Bioslurry Treating Explosives-Spiked Soil [J]. Bioremediation Journal, 2010,3(3),233-245.
    Rodgers J D, and Bunce N J. Treatment methods for the remediation of nitroaromatic explosives [J]. Water Research,2001,35(9),2101-2111.
    Roldan M, Perez-Reinado E, Castillo F, and Moreno-Vivian C. Reduction of polynitroaromatic compounds:the bacterial nitroreductases'[J]. Fems Microbiology Reviews,2008,32(3),474-500.
    Rosen G, and Lotufo G R. Toxicity of explosive compounds to the marine mussel, Mytilus galloprovincialis, in aqueous exposures [J]. Ecotoxicology and Environmental Safety,2007,68(2),228-236.
    Rylott E L, and Bruce N C. Plants disarm soil:engineering plants for the phytoremediation of explosives [J]. Trends in Biotechnology,2009,27(2),73-81.
    Saupe A, Garvens H J, and Heinze L. Alkaline hydrolysis of TNT and TNT in soil followed by thermal treatment of the hydrolysates [J]. Chemosphere,1998,36(8), 1725-1744.
    Schaefer C E, Fuller M E, Condee C W, Lowey J M, and Hatzinger P B. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater [J]. Journal of Contaminant Hydrology, 2007,89(3-4),231-250.
    Schrader P S, and Hess T F. Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry [J]. Journal of Environmental Quality, 2004,33(4),1202-1209.
    Sens C, Scheidemann P, and Werner D. The distribution of C-14-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum [J]. Environmental Pollution,1999,104(1),113-119.
    Shen C F, Guiot S R, Thiboutot S, Ampleman G, and Hawari J. Fate of explosives and their metabolites in bioslurry treatment processes [J]. Biodegradation,1997, 8(5),339-347.
    Shen C F, Guiot S R, Thiboutot S, Ampleman G, and Hawari J. Complete biodegradation of RDX and HMX in anoxic soil slurry bioreactors:Laboratory and pilot-scale experiments [J]. Contaminated Soil,1998, Vols 1 and 2,513-522
    Shen C F, Hawari J A, Paquet L, Ampleman G, Thiboutot S, and Guiot S R. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms [J]. Water Science and Technology,2001,43(3),291-298.
    Sheremata T W, Thiboutot S, Ampleman G, Paquet L, Halasz A, and Hawari J. Fate of 2,4,6-trinitrotoluene and its metabolites in natural and model soil systems [J]. Environmental Science & Technology,1999,33(22),4002-4008.
    Sims J G, and Steevens J A. The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella azteca [J]. Ecotoxicology and Environmental Safety,2008,70(1), 38-46.
    Singh N, Berns A E, Hennecke D, Hoerner J, Koerdel W, and Schaeffer A. Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene [J]. Journal of Hazardous Materials,2010,173(1-3),343-348.
    Singh N, Hennecke D, Hoerner J, Koerdel W, and Schaeffer A. Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2008a,43(4),348-356.
    Singh N, Hennecke D, Hoerner J, Koerdel W, and Schaeffer A. Mobility and degradation of trinitrotoluene/metabolites in soil columns:Effect of soil organic carbon content [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2008b,43(7), 682-693.
    Singh N, Hennecke D, Hoerner J, Koerdel W, and Schaeffer A. Sorption-desorption of trinitrotoluene in soils:Effect of saturating metal cations [J]. Bulletin of Environmental Contamination and Toxicology,2008c,80(5),443-446.
    Singh S. Sensors-An effective approach for the detection of explosives [J]. Journal of Hazardous Materials,2007,144(1-2),15-28.
    Smets B F, Yin H, and Esteve-Nunez A. TNT biotransformation:when chemistry confronts mineralization [J]. Applied Microbiology and Biotechnology,2007, 76(2),267-277.
    Spiker J K, Crawford D L, and Crawford R L. Influence of 2,4,6-Trinitrotoluene (Tnt) Concentration on the Degradation of Tnt in Explosive-Contaminated Soils by the White Rot Fungus Phanerochaete-Chrysosporium [J]. Applied and Environmental Microbiology,1992,58(9),3199-3202.
    Stenuit B, Eyers L, Fantroussi S d E, and Agathos S N. Promising strategies for the mineralisation of 2,4,6-trinitrotoluene [J]. Reviews in Environmental Science and Bio/Technology,2005,(4),39-60.
    Symons Z C, and Bruce N C. Bacterial pathways for degradation of nitroaromatics [J]. Natural Product Reports,2006,23(6),845-850.
    Thiele S, Fernandes E, and Bollag J M. Enzymatic transformation and binding of labeled 2,4,6-trinitrotoluene to humic substances during an anaerobic/aerobic incubation [J]. Journal of Environmental Quality,2002,31(2),437-444.
    Thomas J M, Hernandez R, and Kuo C H. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation [J]. Journal of Hazardous Materials,2008,155(1-2),193-198.
    Thorn K A, and Kennedy K R. N-1.5 NMR investination of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose [J]. Environmental Science & Technology,2002,36(17),3787-3796.
    Tront J M, and Hughes J B. Oxidative microbial degradation of 2,4,6-trinitrotoluene via 3-methyl-4,6-dinitrocatechol [J]. Environmental Science & Technology, 2005,39(12),4540-4549.
    U.S.Army. Development of an analytical method for explosiveresidue in soil [J]. Crrelreport,1987,7-7.
    U.S.EPA. Nitroaromatics and nitramines by high performance liquid chromatography(HPLC) [J]. Method 8330A,2007,1-28.
    Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives [J]. Current Opinion in Biotechnology,2009,20(2),231-236.
    Van Dillewijn P, Caballero A, Paz J A, Gonzalez-Perez M M, Oliva J M, and Ramos J L. Bioremediation of 2,4,6-trinitrotoluene under field conditions [J]. Environmental Science & Technology,2007,41(4),1378-1383.
    van Dillewijn P, Wittich R M, Caballero A, and Ramos J L. Subfunctionality of Hydride Transferases of the Old Yellow Enzyme Family of Flavoproteins of Pseudomonas putida [J]. Applied and Environmental Microbiology,2008a, 74(21),6703-6708.
    Van Dillewijn P, Wittich R M, Caballero A, and Ramos J L. Type Ⅱ Hydride Transferases from Different Microorganisms Yield Nitrite and Diarylamines from Polynitroaromatic Compounds [J]. Applied and Environmental Microbiology,2008b,74(21),6820-6823.
    Wang C J, Thiele S, and Bollag J M. Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes [J]. Archives of Environmental Contamination and Toxicology,2002, 42(1),1-8.
    Wang C Y, Lyon D Y, Hughes J B, and Bennett G N. Role of hydroxylamine intermediates in the phytotransformation of 2,4,6-trinitrotoluene by Myriophyllum aquaticum [J]. Environmental Science & Technology,2003, 37(16),3595-3600.
    Wang Z Y, Huang W L, Fennell D E, and Peng P A. Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc [J]. Chemosphere,2008,71(2),360-368.
    Weissmahr K W, Haderlein S B, and Schwarzenbach R P. Complex formation of soil minerals with nitroaromatic explosives and other pi-acceptors [J]. Soil Science Society of America Journal,1998,62(2),369-378.
    Weissmahr K W, Haderlein S B, Schwarzenbach R P, Hany R, and Nuesch R. In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals [J]. Environmental Science & Technology, 1997,31(1),240-247.
    Weissmahr K W, Hildenbrand M, Schwarzenbach R P, and Haderlein S B. Laboratory and field scale evaluation of geochemical controls on groundwater transport of nitroaromatic ammunition residues [J]. Environmental Science & Technology, 1999,33(15),2593-2600.
    Wittich R M, Ramos J L, and van Dillewijn P. Microorganisms and Explosives: Mechanisms of Nitrogen Release from TNT for Use as an N-Source for Growth [J]. Environmental Science & Technology,2009,43(8),2773-2776.
    Wojewodka A, Belzowski J,Wilk Z, and Stas J. Energetic characteristics of transition metal complexes [J]. Journal of Hazardous Materials,2009,171(1-3), 1175-1177.
    Xing B S, Pignatello J J, and Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents [J]. Environmental Science & Technology,1996,30(8),2432-2440.
    Yamamoto H, Morley M C, Speitel G E, and Clausen J. Fate and transport of high explosives in a sandy soil:Adsorption and desorption [J]. Soil & Sediment Contamination,2004,13(5),459-477.
    Yardin G, and Chiron S. Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin [J]. Chemosphere,2006, 62(9),1395-1402.
    Yin H, Wood T K, and Smets B F. Reductive transformation of TNT by Escherichia coli:pathway description [J]. Applied Microbiology and Biotechnology,2005, 67(3),397-404.
    Zhang C L, Hughes J B, Nishino S F, and Spain J C. Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene:Role of bioaugmentation and effects of high dinitrotoluene concentrations [J]. Environmental Science & Technology,2000,34(13),2810-2816.
    Ziganshin A M, Gerlach R, Borch T, Naumov A V, and Naumova R P. Production of eight different hydride complexes and nitrite release from 2,4,6-Trinitrotoluene by Yarrowia lipolytica [J]. Applied and Environmental Microbiology,2007, 73(24),7898-7905.
    中华人民共和国国务院.中国法律法规汇编[M].北京:中国法制出版社,2005
    牛芗泽,李峰,杨彦荣.三硝基甲苯174名作业者的健康调查报告[J].职业与健康,2002,18(11),24-25.
    王志强,张建民,张继COD/SO2-4对SRB处理含硫酸盐废水效果的影响[J].西安工程大学学报,2010,24(2),185-188.
    王蕾.环境样品中炸药类物质的分析[J].环境化学,2006,25(1),115-116.
    任毅.RDX和TNT及其同系物的电子结构和性能研究[D].武汉理工大学硕士学位论文,2009.
    吉卯祉,彭松,葛正华.有机化学(第2版)[M].北京:科学出版社,2009.
    朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999,7(2),65-71.
    何燧源等.环境化学计算[M].北京:中国环境科学出版社,1996,177.
    何艳.五氯酚的水土界面行为及其在毫米级根际微域中的降解作用[D].浙江大学博士论文,2006.
    余一.高效厌氧反应器工作特性的研究[D].浙江大学硕士学位论文,2010.
    李生彬,饶姗姗,王雯,王拯.直接紫外光度法测定炸药废水中TNT含量[J].光谱实验室,2004,21(5),1024-1027.
    李宏斌.三硝基甲苯作业人员终止接触后健康状况调查D].学位论文,2009.
    李雪林,张晓燕.中国1/5耕地受重金属污染土壤污染防治法正酝酿.文汇报,2010
    沈东升.含氯酚废水的厌氧生物处理技术研究[D].浙江农业大学博士论文,1994.
    肖湘竹.以壳聚糖为载体的固定化微生物处理TNT生产废水研究[D].四川大学 硕士学位论文,2004.
    辛宝平,卢佳新,李是珅,郭晓洁,赵小鹭,李玉平,焦宏春.泥浆体系中的TNT生物降解研究[J].北京理工大学学报,2008,28(7),638-642.
    周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004,263~279.
    季萍,霍伟.气相色谱法测定水中三硝基甲苯[J]。预防医学论,2006,12(6),694-695.
    倪沛洲.有机化学(第6版)[M].北京:人民卫生出版社,2007.
    唐婉莹,周申范,王连军.TNT生物降解的可能途径[J].火炸药,1997,(3),29-33.
    徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社,1998.
    秦胜东TiO2/Fe2O3光催化氧化法处理炸药废水的研究[D].太原理工大学硕士学位论文,2008.
    高海英.三唑酮在土壤环境中的吸附和降解行为研究[D].湖南农业大学硕士学位论文,2006.
    彭新元,朱攀,周方求,吴锦如,张攀.毛细管柱气相色谱法测定工作场所空气中的三硝基甲苯[J].中国卫生检验杂,2007,17(11):1991-1992.
    冯华军.分散式生活污水处理工艺开发及机理研究[D].浙江大学博士论文,2008.
    刘冰.土壤中硝基苯的前处理方法及方法评价研究[D].吉林大学硕士学位论文,2006.
    刘忠珍,何艳,吴愉萍,汪海珍,徐建明.土壤中丁草胺的吸附动力学[J].中国环境科学,2007,27(4),493-497.
    刘晓艳,李英丽,朱谦雅,戴春雷,王平利,齐刚.石油类污染物在土壤中的吸附/解吸机理研究及展望[J]矿物岩石地球化学通报,2007,26(1),82-87.
    刘绮.环境化学[M].北京:化学工业出版社(书),2004.
    国家环保总局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1997.
    国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002.
    张昌友,白栋臣.土壤中TNT、DNT的监测[J].环保科技情报,1997,(4),53-55.
    张建民,徐来祥.三硝基甲苯(TNT)对动物遗传毒性的研究[J].曲阜师范大学学报,1998,24(4),96-99.
    欧晓明,余淑英,罗玲,王永江,王晓光.新农药硫肟醚在土壤上的吸附[J].农业环境科学学报,2007,26(2),577-582.
    谯华,沈东升,王何灵,方程冉,胡立芳,周从直,谢朝新,谢有奎.生物泥浆反应器修复炸药污染土壤的影响因素[J].科技通报,2009,25(2),238-242.
    贺小敏.农药在土壤粘粒矿物表面的吸附解吸与生物降解研究[D].华中农业大学硕士学位论文,2008.
    赵丹,任南琪,王爱杰pH、ORP制约的产酸相发酵类型及顶级群落[J].重庆环境科学,2003,25(2),33-35,38.
    陈子雄.基础有机化学[M].北京:科学出版社,1986,602-605.
    陈琛Escherichia coli厌氧降解TNT的研究[D].大连理工大学硕士学位论文,2008.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    鲍艳宇.四环素类抗生素在土壤中的环境行为及生态毒性研究[D].南开大学博士后研究工作报告,2006.
    黄昌勇.土壤学(第7版)[M].2005,192-193.
    龚道新,汪传刚,邹雅竹,杨仁斌,郭正元,樊德方.咪鲜胺及其三种主要代谢物在六种水稻土中的吸附[J].土壤学报,2007,44(1),90-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700