基于介孔硅材料的荧光分子印迹传感器阵列的制备、表征及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用分子印迹材料对结构类似物质具有交叉响应性的特点,将分子印迹技术应用于荧光传感器阵列,以介孔硅材料为固体基质,发展了基于介孔硅材料的荧光分子印迹传感器阵列的新方法,分别用于金属离子与糖类分子的识别。本论文研究工作的主要内容与创新点表现在以下几个方面:
     (1)合成了一种简单的具有4,7位取代2,1,3-苯并二唑结构的新化合物。基于扭曲的分子内电荷转移(twisted intramolecular charge transfer,TICT),该化合物可以在CH_3CN-H_2O混合溶剂中有效地选择性识别Hg~(2+)和Cu~(2+)。UV-vis吸收光谱和溶液颜色的变化为我们提供了一种简单而快速地检测这两种离子的方法。其它一些碱金属、碱土金属、过渡元素及重金属离子包括Na~+、Mg~(2+)、Mn~(2+)、Co~(2+)、Ni~(2+)、Ag~+、Zn~(2+)、Pb~(2+)与Cd~(2+)对Hg~(2+)或Cu~(2+)测定的干扰较小。本工作不仅是对Hg~(2+)和Cu~(2+)比色检测技术的补充,也拓展了4,7位取代2,1,3-苯并二唑类化合物的应用范围。本工作的初衷是将4-巯基-2,1,3-苯并二唑结构功能化到三乙氧基硅烷,从而利用得到的含有巯基的荧光功能单体发展汞形态分析用的荧光印迹传感器阵列。实验中发现合成的新化合物4-巯基-2,1,3-苯并二唑不会与3-氨基丙基三乙氧基硅烷发生反应而是在该碱性硅氧烷的存在下与自身发生反应。虽然本工作的初衷无法实现,但是我们发现得到的含巯基的2,1,3-苯并二唑衍生物对Hg~(2+)和Cu~(2+)有比较好的比色响应,可以作为一种快速选择性识别Hg~(2+)和Cu~(2+)的比色化学传感器。
     (2)报道了一种基于介孔硅基质的荧光增强型的离子印迹传感器阵列,可以用于几种金属离子的识别。采用8-羟基喹啉功能化的三乙氧基硅烷与四乙氧基硅烷共聚的方法分别合成了Zn~(2+)印迹、Cd~(2+)印迹以及非印迹的介孔硅材料。通过荧光光谱滴定实验与一种Langmuir型非线性拟合计算得到了三种材料与两种模板离子的结合常数。得到的三种材料对Zn~(2+)与Cd~(2+)这两种印迹模板离子以及Mg~(2+)、Ca~(2+)、Al~(3+)这三种非模板离子有着不同程度的荧光增强响应。由这三种材料组成的荧光增强型传感器阵列可以识别这五种金属离子。利用具有交叉响应性的印迹效果,只使用一种普通的荧光染料(8-羟基喹啉)就可以达到识别几种金属离子的目的。本工作不仅证明了印迹传感器阵列的选择性源于印迹过程本身,而且将印迹传感器阵列的应用领域延伸到了本身不会产生荧光信号的分析物。
     (3)构建了一种基于介孔硅基质的荧光染料置换型糖印迹传感器阵列,可以用于几种糖类分子的识别。采用苯硼酸功能化的三乙氧基硅烷与四乙氧基硅烷共聚的方法分别合成了D-果糖印迹、D-木糖印迹以及非印迹的介孔硅材料。通过荧光光谱滴定实验得到了三种材料与八种普通单糖(D-果糖、D-木糖、D-阿拉伯糖、D-葡萄糖、D-半乳糖、D-甘露糖、L-山梨糖与D-核糖)的Stern-Volmer猝灭常数,研究了三种材料与这八种糖的不同作用情况,证明了不同印迹材料对几种糖不同的响应模式为实现这些糖的识别提供了可能。由这三种材料组成的荧光传感器阵列可以识别十种糖(D-果糖、D-木糖、D-阿拉伯糖、D-葡萄糖、D-半乳糖、D-甘露糖、L-山梨糖、D-核糖、L-鼠李糖与麦芽糖)。结合指示剂置换技术与分子印迹技术,只使用一种普通的糖的受体(苯硼酸)和一种常用的荧光染料(茜素红)就可以达到识别十种糖的目的。此外,利用这种荧光印迹传感器阵列还实现了三种含糖的橙汁饮料的鉴别。
In this dissertation an alternative route to conventional sensor arrays based on molecularly imprinted mesoporous silica is presented.We take advantage of imprinting effect to develop fluorescent imprinting sensor an'ays.A fluorescence turn-on sensor array for metal ions and a fluorescent indicator-displacement sensor array for saccharides are prepared respectively.The design,preparation and application of such fluorescent imprinting sensor arrays have been studied in detail, and are summarized as follows:
     (1) A simple twisted intramolecular charge transfer(TICT) chromogenic probe for rapid and selective detection of Hg~(2+) and Cu~(2+) was developed.The probe was composed of an electron-acceptor 4-fluoro moiety and an electron-donor 7-mercapto-2,1,3-benzoxadiazole species where the S together with the 1-N provided the soft binding unit.Upon Hg~(2+) and Cu~(2+) complexation,remarkable but different absorbance spectra shifts were obtained in CH_3CN-H_2O mixed buffer solution at pH 7.6,which can be easily used for naked-eye detection.The probe formed a stable 2:1 complex with Cu~(2+),and both 2:1 and 3:1 complexes with Hg~(2+).While alkali-,alkaline earth- and other heavy and transition metal(HTM) ions such as Na~(+),Mg~(2+),Mn~(2+), Co~(2+),Ni~(2+),Ag~(+),Zn~(2+),Pb~(2+) and Cd~(2+) did not cause any significant spectral changes of the probe.This finding is not only a supplement to the detecting methods for Hg~(2+) and Cu~(2+),but also adds new merits to the chemistry of 4,7-substituted 2,1,3-benzoxadiazoles.The initial purpose of this work was to develop a fluorescent molecular imprinting sensor array for mercury speciation.However,the synthesized 4-fluo-7-mercapto-2,1,3-benzoxadiazole reacted with itself under basic condition and formed a mercapto-2,1,3-benzoxadiazole derivative.It showed selective colorimetfic response toward Hg~(2+) and Cu~(2+) which made it a selective chromogenic probe for Hg~(2+) and Cu~(2+).
     (2) An ion imprinted mesoporous silica based fluorescence turn-on sensor array for discrimination of metal ions was developed.A novel fluorescent functional monomer containing an 8-hydroxyquinoline(8-HQ) moiety in combination with one-pot co-condensation method was employed to prepare fluorescent ion imprinted mesoporous silica.The imprinted materials for Zn~(2+) and Cd~(2+) as well as a control blank non-imprinted material(NIM) were synthesized.With the covalently anchored organic fluorophore in the inorganic mesoporous silica matrix,the binding of metal ions to the imprinting site was directly transformed into fluorescence signals.Both the imprinted materials displayed faster binding kinetics toward metal ions than NIM. Apparent binding constants(adsorption constants) for the materials with the metal ions in water were determined by a Langmuir-type analysis of the spectrofluorimetric titration data.The sensor array composed of the three materials allows discriminating the two template metal ions(Zn~(2+) and Cd~(2+)) plus three non-template metal ions(Mg~(2+), Ca~(2+) and Al~(3+)) at two different concentrations.This work proves that using a simple fluorescent receptor can provide a pattern based fluorescent sensing system by taking advantage of the imprinting effect.
     (3) A fluorescent indicator-displacement molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica was developed for discriminating saccharides.D-Fructose imprinted material(FrulM),D-xylose imprinted material(XylIM) together with a control blank nonimprinted material (NIM) were synthesized as the elements of the imprinting sensor array. Spectrofluorimetric titrations of the three materials with eight selected saccharides were carded out and Stem-Volmer quenching constants(Ksv) of NIM,FruIM and XylIM with the eight selected saccharides were obtained to investigate the interaction of the materials with saccharides.The present approach couples molecular imprinting technique to indicator-displacement strategy with the use of one conventional saccharide receptor(phenylboronic acid) and one commercially available fluorescent dye(Alizarin Red S.,ARS) as the indicator,and allows identifying two template saccharides(D-fructose and D-xylose) plus eight non-template saccharides (D-arabinose,o-glucose,D-galactose,D-mannose,L-sorbose,D-ribose,L-rhamnose and sucrose).The principal component analysis(PCA) plot shows a clear discrimination of the ten tested saccharides at 100 mM and the first principal component possesses 94.8%of the variation.Besides,the developed saccharide imprinted sensor array is successfully applied to discriminating three brands of orange juice beverage.
引文
[1]Dickey,F.H.The preparation of specific adsorbents,Proc.Natl.Acad.Sci.U.S.A.1949,35,227-229.
    [2]Wulff,G.;Sarhan,A.The use of polymers with enzyme-analogous structures for the resolution of racemates.Angew.Chem.Int.Ed.1972,11,341-341.
    [3]Wulff,G.;Sarhan,A.;Zabrocki,K.Enzyme-analogue built polymers and their use for the resolution of racemates.Tetrahedron Lett.1973,44,4329-4332.
    [4]Norrlow,O.;Glad,M.;Mosbach,K.Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.J.Chromatogr.1984,299,29-41.
    [5]Vlatakis,G;Andersson,L.I.;Muller,R.;Mosbach,K.Drug assay using antibody mimics made by molecular imprinting.Nature 1993,361,645-647.
    [6]Whitcombe,M.J.;Vulfson,E.N.Imprinted Polymer.Adv.Mater.2001,13,467-478.
    [7]Haupt,K.Imprinted polymers—Tailor-made mimics of antibodies and receptors.Chem.Commun.2003,171-178.
    [8]Zimmerman,S.C.;Lemcoff,N.G.Synthetic hosts via molecular imprinting—are universal synthetic antibodies realistically possible? Chem.Commun.2004,5-14.
    [9]谭淑珍,李革新,李再全.分子印迹技术的研究与应用.应用化工2004,33,4-6,10.
    [10]马淑娟,郭满栋.分子印迹技术研究的新进展.山西师范大学学报(自然科学版),2006,20,59-63.
    [11]Holthoff,E.L.;Bright,F.V.Molecularly templated materials in chemical sensing.Anal Chim.Acta 2007,594,147-161.
    [12]Wei,S.;Mizaikoff,B.Recent advances on noncovalent molecular imprints for affinity separations.J.Sep.Sci.2007,30,1794-1805.
    [13]Sellergren,B.;Andersson,L.Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy.J.Org.Chem.1990,55,3381-3383.
    [14]Whitcombe,M.J.;Rodriguez,M.E.;Villar,P.;Vulfson,E.N.A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol.J.Am.Chem.Soc.1995,117,7105-7111.
    [15]Kirsch,N.;Alexander,C.;Davies,S.;Whitcombe,M.J.Sacrificial spacer and non-covalent routes toward the molecular imprinting of "poorly-functionalized" N-heterocycles.Anal.Chim.Acta 2004,504,63-71.
    [16]Yilmaz,E.;Ramstrom,O.;Moller,P.;Sanchez,D.;Mosbach,K.A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates.J.Mater.Chem.2002,12,1577-1581.
    [17]Yang,H.-H.;Zhang,S.-Q.;Yang,W.;Chen,X.-L.;Zhuang,Z.-X.;Xu,J.-G.;Wang,X.-R.Molecularly imprinted sol-gel nanotubes membrane for biochemical separations.J.Am.Chem.Soc.2004,126,4054-4055.
    [18]张淑琼,杨黄浩,庄峙厦,王小如.分子印迹SiO_2纳米管膜的制备及其生化分离应用.高等学校化学学报2004,25,1028-1030.
    [19]Yang,H.-H.;Zhang,S.-Q.;Tan,F.;Zhuang,Z.-X.;Wang,X.-R.Surface Molecularly Imprinted Nanowires for Biorecognition.J.Am.Chem.Soc.2005,127,1378-1379.
    [20]Yu,C.;Mosbach,K.Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.J.Chromatogr.,A 2000,888,63-72.
    [21]Diaz-Garcia,M.E.;Laino,R.B.Molecular imprinting in sol-gel materials:recent developments and applications.Microchim.Acta 2005,149,19-36.
    [22]吕运开,严秀平.分子印迹溶胶-凝胶材料的制备及应用.分析化学2005,33,254-260.
    [23]方国臻.南开大学博士学位论文.2005.
    [24]王荷芳.南开大学博士学位论文.2007.
    [25]Hench,L.L.;West,J.K.The sol-gel process.Chem.Rev.1990,90,33-72.
    [26]Collinson,M.M.Sol-gel strategies for the preparation of selective materials for chemical analysis.Crit.Rev.Anal Chem.1999,29,289-311.
    [27]李清文,王义明,罗国安.溶胶凝胶技术在生物传感器中的应用.化学通报2000,5,14-19.
    [28]邢婉丽,晁福寰,陈奇洲,梁增辉.溶胶凝胶技术在化学及生物传感器领域中的应用.化学通报1999,6,39-43.
    [29]张庆合,达世禄.溶胶-凝胶技术在分析化学中的应用进展.化学通报1999,6,8-13.
    [30]王炳全,程广金,董绍俊.溶胶-凝胶生物传感器.分析化学1999,27,982-988.
    [31]王芳辉,朱红,高苏珍.溶胶-凝胶技术的应用及研究进展.化工时刊2003,17.4-8.
    [32]Haupt,K.;Mosbach,K.Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors.Chem.Rev.2000,100,2495-2504.
    [33]Alexander,C.;Andersson,H.S.;Andersson,L.I.;Ansell,R.J.;Kirsch,N.;Nicholls,I.A.;O'Mahony,J.;Whitcombe,M.J.Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003.J.Mol.Recognit.2006,19,106-180.
    [34]Ye,L.;Haupt,K.Molecularly imprinted polymers as antibody and receptor mimics for assays,sensors and drug discovery.Anal,Bioanal.Chem.2004,378,1887-1897.
    [35]董文国,张敏莲,刘铮.分子印迹技术及其在生物化工领域的应用现状与展望.化工进展2003,22,683-688.
    [36]何永红,高志贤,晁福寰.分子印迹仿生传感器的研究进展.分析化学2004,32,1407-1412.
    [37]徐伟箭,罗鹏,张正华.基于分子印迹技术的仿生化学传感器.,高分子材料科学与工程2002,18,16-19.
    [38]Sellergren,B.Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer.Anal,Chem.1994,66,1578-1582.
    [39]郭洪声,何锡文,周杰.药物头孢氨苄分子模板聚合物水中结合性质的研究.分析化学2000,28,1214-1219.
    [40]郭洪声,何锡文.药物氟哌酸分子模板聚合物分子识别特性的研究.分析化学2001,29,128-132.
    [41]Henry,O.Y.F.;Cullen,D.C.;Piletsky,S.A.Optical intenrrogation of molecularly imprinted polymers and development of MIP sensors.Anal Bioanal.Chem.2005,382,947-956.
    [42]Basabe-Desmonts,L.;Reinhoudt,D.N.;Crego-Calama,M.Design of fluorescent materials for chemical sensing.Chem.Soc.Rev.2007,36,993-1017.
    [43]Turkewitsch,P.;Wandelt,B.;Darling,G.D.;Powell,W.S.Fluorescent Functional Recognition Sites through Molecular Imprinting.A Polymer-Based Fluorescent Chemosensor for Aqueous cAMP.Anal Chem.1998,70,2025-2030.
    [44]Ng,S.M.;Narayanaswamy,R.Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media.Anal Bioanal.Chem.2006,386,1235-1244.
    [45]Graham,A.L.;Carlson,C.A.;Edmiston,P.L.Development and Characterization of Molecularly Imprinted Sol-Gel Materials for the Selective Detection of DDT.Anal Chem.2002,74,458-467.
    [46]Leung,M.K.-P.;Chow,C.-F.;Lam,M.H.-W.A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.J.Mater.Chem.2001,11,2985-2991.
    [47]Wang,W.;Gao,S.;Wang,B.Building Fluorescent Sensors by Template Polymerization:The Preparation of a Fluorescent Sensor for D-Fructose.Org.Lett.1999.1.1209-1212.
    [48]董赫,童爱军,李隆弟.发光性分子印迹聚合物的合成及其对组胺的识别性能研究.高等学校化学学报2002,6,1018-1021.
    [49]Kubo,H.;Yoshioka,N.;Takeuchi,T.Fluorescent Imprinted Polymers Prepared with 2-Acrylamidoquinoline as a Signaling Monomer.Org.Lett.2005,7,359-362.
    [50]Jenkins,A.L.;Uy,O.M.;Murray,G.M.Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water.Anal Chem.1999,71,373-378.
    [51]G(u|¨)ney,O.;YIlmaz,Y.;Pekcan,(O|¨).Metal ion templated chemosensor for metal ions based on fluorescence quenching.Sens.Actuators B Chem.2002,85,86-89.
    [52]Matsui,J.;Kubo,H.;Takeuchi,T.Molecularly Imprinted Fluorescent-Shift Receptors Prepared with 2-(Trifluoromethyl)acrylic Acid.Anal.Chem.2000,72,3286-3290.
    [53]Chow,C.-F.;Lam,M.H.W.Leung,M.K.P.Fluorescent sensing of homocysteine by molecular imprinting.Anal.Chim.Acta 2002,466,17-30.
    [54]Tong,A.;Dong H.;Li,L.Molecular imprinting-based fluorescent chemosensor for histamine using zinc(Ⅱ)-protoporphyrin as a functional monomer.Anal.Chim.Aeta 2002,466,31-37.
    [55]Gao,S.;Wang,W.;Wang,B.Building Fluorescent Sensors for Carbohydrates Using Template-Directed Polymerizations.Bioorg.Chem.2001,29,308-320.
    [56]Hunt,C.E.;Pasetto,P.;Ansell,R.J.;Haupt,K.A fluorescence polarisation molecular imprint sorbent assay for 2,4-D:a non-separation pseudo-immunoassay.Chem.Commun.2006,1754-1756.
    [57]Wang,L.;Zhang,Z.The study of oxidization fluorescence sensor with molecular imprinting polymer and its application for 6-mercaptopurine(6-MP)determination.Talanta 2008,76,768-771.
    [58]Rathbone,D.L.;Su,D.;Wang,Y.;Billington,D.C.Molecular recognition by fluorescent imprinted polymers.Tetrahedron Lett.2000,41,123-126.
    [59]Lavignac,N.;Allender,C.J.;Brain,K.R.4-(3-Aminopropylene)-7-nitrobenzofurazan:a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays.Tetrahedron Lett.2004,45,3625-3627.
    [60]Mayr,T.;Liebsch,G.;Klimant,I.;Wolfbeis,O.S.Multi-ion imaging using fluorescent sensors in a microtiterplate array format.Analyst 2002,127,201-203.
    [61]Mayr,T.;Igel,C.;Liebsch,G.;Klimant,I.;Wolfbeis,O.S.Cross-Reactive Metal Ion Sensor Array in a Micro Titer Plate Format.Anal.Chem.2003,75,4389-4396.
    [62]Lee,J.W.;Lee,J.-S.;Kang,M.;Su,A.I.;Chang,Y.-T.Visual Artificial Tongue for Quantitative Metal-Cation Analysis by an Off-the-Shelf Dye Array.Chem. Eur. J. 2006,12, 5691-5696.
    [63] Palacios, M. A.; Wang, Z.; Montes, V. A.; Zyryanov, G. V.; Hausch, B. J.;Jurstikova, K.; Anzenbacher, P., Jr. Hydroxyquinolines with extended fluorophores: arrays for turn on and ratiometric sensing of cations. Chem.Commun. 2007,3708-3710.
    [64] Palacios, M. A.; Wang, Z.; Montes, V. A.; Zyryanov, G. V.; Anzenbacher, P., Jr.Rational Design of a Minimal Size Sensor Array for Metal Ion Detection. J. Am.Chem. Soc. 2008,130,10307-10314.
    [65] Basabe-Desmonts, L.; van der Baan, F.; Zimmerman, R. S.; Reinhoudt, D. N.;Crego-Calama, M. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs. Sensors 2007, 7,1731-1746.
    [66] Palacios, M. A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P., Jr.Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water. J. Am. Chem. Soc. 2007, 129,7538-7544.
    [67] Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Jr. Rational Design of a Fluorescence-Turn-On Sensor Array for Phosphates in Blood Serum. Angew.Chem. Int. Ed. 2007, 46, 7849-7852.
    [68] Buryak, A.; Severin, K. A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids. J. Am. Chem. Soc. 2005, 127,3700-3701.
    [69] Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. Pattern-Based Discrimination of Enantiomeric and Structurally Similar Amino Acids: An Optical Mimic of the Mammalian Taste Response. J. Am. Chem. Soc. 2006,128,5652-5653.
    [70]Bailey, D. M.; Hennig, A.; Uzunova, V. D.; Nau, W. M. Supramolecular Tandem Enzyme Assays for Multiparameter Sensor Arrays and Enantiomeric Excess Determination of Amino Acids. Chem. Eur. J. 2008,14, 6069-6077.
    [71] Buryak, A.; Severin, K. Dynamic Combinatorial Libraries of Dye Complexes as Sensors. Angew. Chem. Int. Ed. 2005,44, 7935-7938.
    [72]Zhou,H.;Baldini,L.;Hong,J.;Wilson,A.J.;Hamilton,A.D.Pattern Recognition of Proteins Based on an Array of Functionalized Porphyrins.J.Am.Chem.Soc.2006,128,2421-2425.
    [73]Miranda,O.R.;You,C.-C.;Phillips,R.;Kim,I.-B.;Ghosh,P.S.;Bunz,U.H.F.;Rotello,V.M.Array-Based Sensing of Proteins Using Conjugated Polymers.J.Am.Chem.Soc.2007,129,9856-9857.
    [74]McCleskey,S.C.;Griffin,M.J.;Schneider,S.E.;McDevitt,J.T.;Anslyn,E.V.Differential Receptors Create Patterns Diagnostic for ATP and GTP.J.Am.Chem.Soc.2003,125,1114-1115.
    [75]Lee,J.W.;Lee,J.-S.;Chang,Y.-T.Colorimetric Identification of Carbohydrates by a pH Indicator/pH Change Inducer Ensemble.Angew.Chem.Int.Ed.2006,45,6485-6487.
    [76]Schiller,A.;Wessling,R.A.;Singaram,B.A Fluorescent Sensor Array for Saccharides Based on Boronic Acid Appended Bipyridinium Salts.Angew.Chem.Int.Ed.2007,46,6457-6459.
    [77]Lim,S.H.;Musto,C.J.;Park,E.;Zhong,W.;Suslick,K.S.A Colorimetric Sensor Array for Detection and Identification of Sugars.Org.Lett.2008,10,4405-4408.
    [78]Edwards,N.Y.;Sager,T.W.;McDevitt,J.T.;Anslyn,E.V.Boronic Acid Based Peptidic Receptors for Pattern-Based Saccharide Sensing in Neutral Aqueous Media,an Application in Real-Life Samples.J.Am.Chem.Soc.2007,129,13575-13583.
    [79]Schiller,A.;Vilozny,B.;Wessling,R.A.;Singaram,B.Recognition of phospho sugars and nucleotides with an array of boronic acid appended bipyridinium salts.Anal Chim.Acta 2008,627,203-211.
    [80]Duggan,P.J.;Offermann,D.A.Remarkably selective saccharide recognition by solid-supported peptide boronic acids.Tetrahedron 2009,65,109-114.
    [81]Bencic-Nagale,S.;Walt,D.R.Extending the Longevity of Fluorescence-Based Sensor Arrays Using Adaptive Exposure.Anal Chem.2005,77,6155-6162.
    [82]Muro,M.L.;Daws,C.A.;Castellano,F.N.Microarray pattern recognition based on Pt~Ⅱ terpyridyl chloride complexes:vapochromic and vapoluminescent response.Chem.Commun.2008,6134-6136.
    [83]Hirsch,T.;Kettenberger,H.;Wolfbeis,O.S.;Mirsky,V.M.A simple strategy for preparation of sensor arrays:molecularly structured monolayers as recognition elements.Chem.Commun.2003,432-433.
    [84]Greene,N.T.;Morgan,S.L.;Shimizu,K.D.Molecularly imprinted polymer sensor arrays.Chem.Commun.2004,1172-1173.
    [85]Greene,N.T.;Shimizu,K.D.Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement.J.Am.Chem.Soc.2005,127,5695-5700.
    [86]Takeuchi,T.;Goto,D.;Shinmori,H.Protein profiling by protein imprinted polymer array.Analyst 2007,132,101-103.
    [87]Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature 1992,359,710-712.
    [88]马骞,毛学峰,魏宏广,田锐.MCM-41介孔分子筛的修饰与表征.西北师范大学学报(自然科学钣)2003,39.54-56,73。
    [89]Hoffmann,F.;Comelius,M.;Morell,J.;Frrba,M.Silica-Based Mesoporous Organic-Inorganic Hybrid Materials.Angew.Chem.Int.Ed.2006,45,3216-3251.
    [90]Comes,M.;Marcos,M.D.;Martinez-Manez,R.;Sancenon,F.;Villaescusa,L.A.;Graefe,A.;Mohr,G.J.Hybrid functionalised mesoporous silica-polymer composites for enhanced analyte monitoring using optical sensors.J.Mater.Chem.2008,18,5815-5823.
    [91]Sarkar,K.;Dhara,K.;Nandi,M.;Roy,P.;Bhaumik,A.;Banerjee,P.Selective Zinc(Ⅱ)-Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications.Adv.Funct.Mater.2009,19,223-234.
    [92]Kim,E.;Kim,H.J.;Bae,D.R.;Lee,S.J.;Cho,E.J.;Seo,M.R.;Kim,J.S.;Jung,J.H.Selective fluoride sensing using organic-inorganic hybrid nanomaterials containing anthraquinone.New J.Chem.2008,32,1003-1007.
    [93]Descalzo,A.B.;Rurack,K.;Weisshoff,H.;Martinez-Manez,R.;Marcos,M.D.;Amoros,P.;Hoffmann,K.;Soto,J.Rational Design of a Chromo-and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates.J.Am.Chem.Soc.2005,127,184-200.
    [94]Descalzo,A.B.;Marcos,M.D.;Martinez-Maniez,R.;Soto,J.;Beltran,D.;Amoros,P.Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP.J.Mater.Chem.2005,15,2721-2731.
    [95]Tao,S.;Li,G.;Zhu,H.Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor.J.Mater.Chem.2006,16,4521-4528.
    [96]Lee,M.H.;Lee,S.J.;Jung,J.H.;Lim,H.;Kim,J.S.Luminophore-immobilized mesoporous silica for selective Hg~(2+) sensing.Tetrahedron 2007,63,12087-12092.
    [97]高玲,王英,史丽英,季安.对铜离子高选择性的SBA-15介孔内自组装新型荧光化学传感器.传感技术学报2006,19,64-67.
    [98]Burleigh,M.C.;Dai,S.;Barnes,C.E.;Xue,Z.L.Enhanced ionic recognition by a functionalized mesoporous sol-gel:Synthesis and metal ion selectivity of diaminoethane derivative.Sep.Sci.Technol.2001,36,3395-3409.
    [1]Tchounwou,P.B.;Ayensu,W.K.;Ninashvili,N.;Sutton,D.Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health.Environ.Toxicol.2003,18,149-175.
    [2]Harris,H.H.;Picketing,I.J.;George,G.N.The Chemical Form of Mercury in Fish.Science 2003,301,1203.
    [3]李春英,邱炳源.甲基汞的毒性作用.中华预防医学杂志2001,35,420-421.
    [4]Harris,Z.L.;Gitlin,J.D.Genetic and molecular basis for copper toxicity.Am.J.Clin.Nutr.1996,63,836S-841S.
    [5]Uauy,R.;Olivares,M.;Gonzalez,M.Essentiality of copper in humans.Am.J.Clin.Nutr.1998,67,952S-959S.
    [6]何红蓼,倪哲明,李冰,杨红霞.环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析.岩矿测试2005,24,118-128.
    [7]Sancenon,F.;Martinez-Manez,R.;Soto,J.1,3,5-Triarylpent-2-en-1,5-diones for the colorimetric sensing of the mercuric cation.Chem.Commun.2001,2262-2263.
    [8]Gunnlaugsson,T.;Leonard,J.P.;Murray,N.S.Highly Selective Colorimetric Naked-Eye Cu(Ⅱ) Detection Using an Azobenzene Chemosensor.Org.Lett.2004,6,1557-1560.
    [9]Kaur,N.;Kumar,S.A diamide-diamine based Cu~(2+) chromogenic sensor for highly selective visual and spectrophotometric detection.Tetrahedron Lett.2006,47,4109-4112.
    [10]He,S.;Li,D.;Zhu,C.;Song,S.;Wang,L.;Long,Y.;Fan.C.Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye.Chem.Commun.2008,4885-4887.
    [11]Zhou,Y.;Wang,S.;Zhang,K.;Jiang,X.Visual Detection of Copper(Ⅱ) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry.Angew.Chem.Int.Ed.2008,47,7454-7456.
    [12]Zou,Y.;Wan,M.;Sang,G.;Ye,M.;Li,Y.An Alternative Copolymer of Carbazole and Thieno[3,4b]-Pyrazine:Synthesis and Mercury Detection.Adv.Funct.Mater.2008,18,2724-2732.
    [13]de Silva,A.P.;Gunaratne,H.Q.N.;Gunnlaugsson,T.;Huxley,A.J.M.;McCoy,C.P.;Rademacher,J.T.;Rice,T.E.Signaling Recognition Events with Fluorescent Sensors and Switches.Chem.Rev.1997,97,1515-1566.
    [14]Valeur,B.;Leray,I.Design principles of fluorescent molecular sensors for cation recognition.Coord.Chem.Rev.2000,205,3-40.
    [15]Kim,S.H.;Kim,J.S.;Park,S.M.;Chang,S.-K.Hg~(2+)-Selective OFF-ON and Cu~(2+)-Selective ON-OFF Type Fluoroionophore Based upon Cyclam.Org.Lett.2006,8,371-374.
    [16]Youn,N.J.;Chang,S.-K.Dimethylcyclam based fluoroionophore having Hg~(2+)-and Cd~(2+)-selective signaling behaviors.Tetrahedron Lett.2005,46,125-129.
    [17]Yoon,S.;Albers,A.E.;Wong,A.P.;Chang,C.J.Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor.J.Am.Chem.Soc.2005,127,16030-16031.
    [18]孟祥明,刘磊,郭庆祥.铅、汞、镉离子的荧光传感器研究进展.化学进展2005,17,45-54.
    [19]Singh,L.P.;Bhatnagar,J.M.Copper(Ⅱ) selective electrochemical sensor based on Schiff Base complexes.Talanta 2004,64,313-319.
    [20]Liu,Z.;Huan,S.;Jiang,J.;Shen,G.;Yu,R.Molecularly imprinted TiO_2 thin film using stable ground-state complex as template as applied to selective electrochemical determination of mercury.Talanta 2006,68,1120-1125.
    [21]Manganiello,L.;Rios,A.;Valcarcel,M.A Method for Screening Total Mercury in Water Using a Flow Injection System with Piezoelectric Detection.Anal.Chem.2002,74,921-925.
    [22]门洪,刘大龙,韩清鹏,徐丹,王平.Hg~(2+)离子传感器的最新研究进展.传感技术学报2003,3,299-305.
    [23]Martinez,R.;Espinosa,A.;Tarraga,A.;Molina,P.New Hg~(2+) and Cu~(2+) Selective Chromoand Fluoroionophore Based on a Bichromophoric Azine.Org.Lett.2005,7,5869-5872.
    [24]Xu,Z.;Qian,X.;Cui,J.Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore.Org.Lett.2005,7,3029-3032.
    [25]Ros-Lis,J.V.;Marcos,M.D.;Martinez-Manez,R.;Rurack,K.;Soto,J.A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+) Ions.Angew.Chem.Int.Ed.2005,44,4405-4407.
    [26]Yang,Y.-K.;Yook,K.-J.;Tae,J.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media.J.Am.Chem.Soc.2005,127,16760-16761.
    [27]Tatay,S.;Gavina,P.;Coronado,E.;Palomares,E.Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye.Org.Lett.2006,8,3857-3860.
    [28]Cheng,Y.-F.;Zhao,D.-T.;Zhang,M.;Liu,Z.-Q.;Zhou,Y.-F.;Shu,T.-M.;Li,F.-Y.;Yi,T.;Huang,C.-H.Azo 8-hydroxyquinoline benzoate as selective chromogenic chemosensor for Hg~(2+) and Cu~(2+).Tetrahedron Lett.2006,47,6413-6416.
    [29]Avirah,R.R.;Jyothish,K.;Ramaiah,D.Dual-Mode Semisquaraine-Based Sensor for Selective Detection of Hg~(2+) in a Micellar Medium.Org.Lett.2007,9,121-124.
    [30]Martinez,R.;Zapata,F.;Caballero,A.;Espinosa,A.;Tarraga,A.;Molina,P. 2-Aza-1,3-butadiene Derivatives Featuring an Anthracene or Pyrene Unit:Highly Selective Colorimetric and Fluorescent Signaling of Cu~(2+) Cation.Org.Lett.2006,8,3235-3238.
    [31]Sakamoto,H.;Ishikawa,J.;Nakao,S.;Wada,H.Excellent mercury(Ⅱ) ion selective fluoroionophore based on a 3,6,12,15-tetrathia-9-azaheptadecane derivative bearing a nitrobenzoxadiazolyl moiety.Chem.Commun.2000,2395-2396.
    [32]Uchiyama,S.;Santa,T.;Imai,K.A Fluorogenic Reagent,4-Mercapto-7-methylthio-2,1,3-benzoxadiazole for Carboxylic Acids,Designed by Prediction of the Fluorescence Intensity.Anal.Chem.2001,73,2165-2170.
    [33]Graham,A.L.;Carlson,C.A.;Edmiston,P.L.Development and Characterization of Molecularly Imprinted Sol-Gel Materials for the Selective Detection of DDT.Anal.Chem.2002,74,458-467.
    [34]Lavignac,N.;Allender,C.J.;Brain,K.R.4-(3-Aminopropylene)-7-nitrobenzofurazan:a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays.Tetrahedron Lett.2004,45,3625-3627.
    [35]Uchiyama,S.;Santa,T.;Okiyama,N.;Fukushima,T.;Imai,K.Fluorogenic and fluorescent labeling reagents with a benzofurazan skeleton.Biomed.Chromatogr.2001,15,295-318.
    [36]Greene,N.T.;Shimizu,K.D.Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement.J.Am.Chem.Soc.2005,127,5695-5700.
    [37]齐剑英,李祥平,陈大志,冯德雄,杨培慧.新型荧光增强剂ABD-F荧光光度法测定GSH.分析测试学报2004,23,74-77.
    [38]Boiocchi,M.;Fabbrizzi,L.;Licchelli,M.;Sacchi,D.;Vazquez,M.;Zampa,C.A two-channel molecular dosimeter for the optical detection of copper(Ⅱ).Chem.Commun.2003,1812-1813.
    [39]Toyo'oka,T.;Imai,K.New Fluorogenic Reagent Having Halogenobenzofurazan Structure for Thiols:4-(Aminosulfonyl)-7-fluoro- 2,1,3-benzoxadiazole.Anal Chem.1984,56,2461-2464.
    [40]Bangal,P.R.;Panja,S.;Chakravorti,S.Excited state photodynamics of 4-N,N-dimethylamino cinnamaldehyde:A solvent dependent competition of TICT and intermolecular hydrogen bonding.J.Photochem.Photobiol.A,2001,139,5-16.
    [41]Chakraborty,A.;Kar,S.;Guchhait,N.Photophysical properties of trans-3-(4-monomethylamino-phenyl)-acrylonitrile:Evidence of twisted intramolecular charge transfer(TICT) process.Chem.Phys.2006,324,733-741.
    [42]Conners,K.A.Binding Constants,Wiley,New York,1987,pp.141-168.
    [43]Lazarides,T.;Easun,T.L.;Veyne-Marti,C.;Alsindi,W.Z.;George,M.W.;Deppermann,N.;Hunter,C.A.;Adams,H.;Ward,M.D.Structural and Photophysical Properties of Adducts of[Ru(bipy)(CN)_4]~(2-) with Different Metal Cations:Metallochromism and Its Use in Switching Photoinduced Energy Transfer.J.Am.Chem.Soc.2007,129,4014-4027.
    [44]Cooper,T.H.;Mayer,M.J.;Leung,K.-H.;Ochrymowycz,L.A.;Rorabacher,D.B.Kinetic and Thermodynamic Measurements on Branched Amino Polythiaether Ligands:A Family of Complexing Agents Analogous to EDTA and NTA Exhibiting Enhanced Selectivity for Copper(Ⅱ).Inorg.Chem.1992,31,3796-3804 and references therein.
    [1]Albert,K.J.;Lewis,N.S.;Schauer,C.L.;Sotzing,G.A.;Stitzel,S.E.;Vaid,T.P.;Walt,D.R.Cross-Reactive Chemical Sensor Arrays.Chem.Rev.2000,100,2595-2626.
    [2]Jurs,P.C.;Bakken,G.A.;McClelland,H.E.Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes.Chem.Rev.2000,100,2649-2678.
    [3]Lavigne,J.J.;Anslyn,E.V.Sensing A Paradigm Shift in the Field of Molecular Recognition:From Selective to Differential Receptors.Angew.Chem.Int.Ed.2001,40,3118-3130.
    [4]Wright,A.T.;Anslyn,E.V.Differential receptor arrays and assays for solution-based molecular recognition.Chem.Soc.Rev.2006,35,14-28.
    [5]苏新梅,叶青,王道.气体传感器和电子鼻.大学化学1998,13,31-33.
    [6]Mayr,T.;Liebsch,G.;Klimant,I.;Wolfbeis,O.S.Multi-ion imaging using fluorescent sensors in a microtiterplate array format.Analyst 2002,127,201-203.
    [7]Mayr,T.;Igel,C.;Liebsch,G.;Klimant,I.;Wolfbeis,O.S.Cross-Reactive Metal Ion Sensor Array in a Micro Titer Plate Format.Anal Chem.2003,75,4389-4396.
    [8]Lee,J.W.;Lee,J.-S.;Kang,M.;Su,A.I.;Chang,Y.-T.Visual Artificial Tongue for Quantitative Metal-Cation Analysis by an Off-the-Shelf Dye Array.Chem.Eur.J.2006,12,5691-5696.
    [9]Palacios,M.A.;Wang,Z.;Montes,V.A.;Zyryanov,G.V.;Hausch,B.J.;Jurstikova,K.;Anzenbacher,P.,Jr.Hydroxyquinolines with extended fluorophores:arrays for turn on and ratiometric sensing of cations.Chem.Commun.2007,3708-3710.
    [10]Palacios,M.A.;Wang,Z.;Montes,V.A.;Zyryanov,G.V.;Anzenbacher,P.,Jr.Rational Design of a Minimal Size Sensor Array for Metal Ion Detection.J.Am. Chem. Soc. 2008,130, 10307-10314.
    [11]Basabe-Desmonts, L.; van der Baan, F.; Zimmerman, R. S.; Reinhoudt, D. N.;Crego-Calama, M. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs. Sensors 2007, 7,1731-1746.
    [12]Palacios, M. A.; Nishiyabu, R.; Marquez, M; Anzenbacher, P., Jr.Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water. J. Am. Chem. Soc. 2007, 129,7538-7544.
    [13]Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Jr. Rational Design of a Fluorescence-Turn-On Sensor Array for Phosphates in Blood Serum. Angew.Chem. Int. Ed. 2007, 46, 7849-7852.
    [14]Buryak, A.; Severin, K. A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids. J. Am. Chem. Soc. 2005,127, 3700-3701.
    [15]Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. Pattern-Based Discrimination of Enantiomeric and Structurally Similar Amino Acids: An Optical Mimic of the Mammalian Taste Response. J. Am. Chem. Soc. 2006,128,5652-5653.
    [16]Buryak, A.; Severin, K. Dynamic Combinatorial Libraries of Dye Complexes as Sensors. Angew. Chem. Int. Ed. 2005, 44, 7935-7938.
    [17]Zhou, H.; Baldini, L.; Hong, J.; Wilson, A. J.; Hamilton, A. D. Pattern Recognition of Proteins Based on an Array of Functionalized Porphyrins. J. Am.Chem. Soc. 2006,128, 2421-2425.
    [18]McCleskey, S. C; Griffin, M. J.; Schneider, S. E.; McDevitt, J. T.; Anslyn, E. V.Differential Receptors Create Patterns Diagnostic for ATP and GTP. J. Am.Chem. Soc. 2003,125, 1114-1115.
    [19]Schiller, A.; Wessling, R. A.; Singaram, B. A Fluorescent Sensor Array for Saccharides Based on Boronic Acid Appended Bipyridinium Salts. Angew.Chem. Int. Ed. 2007, 46, 6457-6459.
    [20] Edwards, N. Y.; Sager, T. W.; McDevitt, J. T.; Anslyn, E. V. Boronic Acid Based Peptidic Receptors for Pattern-Based Saccharide Sensing in Neutral Aqueous Media, an Application in Real-Life Samples. J. Am. Chem. Soc. 2007,129, 13575-13583.
    [21]Muro, M. L.; Daws, C. A.; Castellano, F. N. Microarray pattern recognition based on Pt~(II) terpyridyl chloride complexes: vapochromic and vapoluminescent response. Chem. Commun. 2008, 6134-6136.
    [22]Cormack, P. A. G.; Mosbach, K. Molecular imprinting: recent developments and the road ahead. React. Fund Polym. 1999,41,115-124.
    [23]Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000,100,2495-2504.
    [24]Whitcombe, M. J.; Vulfson, E. N. Imprinted Polymer. Adv. Mater. 2001, 13,467-478.
    [25]Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.;Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003.J. Mol. Recognit. 2006,19,106-180.
    [26]Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M. A simple strategy for preparation of sensor arrays: molecularly structured monolayers as recognition elements. Chem. Commun. 2003,432-433.
    [27] Greene, N. T.; Morgan, S. L.; Shimizu, K. D. Molecularly imprinted polymer sensor arrays. Chem. Commun. 2004,1172-1173.
    [28] Greene, N. T.; Shimizu, K. D. Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement. J. Am. Chem. Soc. 2005, 727, 5695-5700.
    [29]Takeuchi, T.; Goto, D.; Shinmori, H. Protein profiling by protein imprinted polymer array. Analyst 2007,132,101-103.
    [30]Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 2007, 36, 993-1017.
    [31] Henry, O. Y. F.; Cullen, D. C.; Piletsky, S. A. Optical interrogation of molecularly imprinted polymers and development of MIP sensors. Anal. Bioanal.Chem. 2005, 382, 947-956.
    [32]Allender, C. J.; Castell, O. K.; Davies, P. R.; Fiddy, S.; Hedin-Dahlstr(?)m, J.; Stockenhuber,M.A glimpse of the inner workings of the templated site.Chem.Commun.2009,165-167.
    [33]Turkewitsch,P.;Wandelt,B.;Darling,G.D.;Powell,W.S.Fluorescent Functional Recognition Sites through Molecular Imprinting.A Polymer-Based Fluorescent Chemosensor for Aqueous cAMP.Anal,Chem.1998,70,2025-2030.
    [34]Leung,M.K.-P.;Chow,C.-F.;Lam,M.H.-W.A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.J.Mater.Chem.2001,11,2985-2991.
    [35]G(u|¨)ney,O.;YIlmaz,Y.;Pekcan,(O|¨).Metal ion templated chemosensor for metal ions based on fluorescence quenching.Sens.Actuators B Chem.2002,85,86-89.
    [36]Ng,S.M.;Narayanaswamy,R.Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media.Anal,Bioanal.Chem.2006,386,1235-1244.
    [37]董赫,童爱军,李隆弟.发光性分子印迹聚合物的合成及其对组胺的识别性能研究.高等学校化学学报2002,6,1018-1021.
    [38]何永红,高志贤,晁福寰.分子印迹仿生传感器的研究进展.分析化学2004,32,1407-1412.
    [39]徐伟箭,罗鹏,张正华.基于分子印迹技术的仿生化学传感器.高分子材料科学与工程2002,18.16-19.
    [40]Dai,S.;Burleigh,M.C.;Ju,Y.H.;Gao,H.J.;Lin,J.S.;Pennycook,S.J.;Barnes,C.E.;Xue,Z.L.Hierarchically Imprinted Sorbents for the Separation of Metal Ions.J.Am.Chem.Soc.2000,122,992-993.
    [41]Lu,Y.-K.;Yan,X.-P.An Imprinted Organic-Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution.Anal,Chem.2004,76,453-457.
    [42]Fang,G.-Z.;Tan,J.;Yan,X.-P.An Ion Imprinted Functionalized Silica Gel Sorbent Prepared by a Surface Imprinting Technique Combined with a Sol-Gel Process for Selective Solid Phase Extraction of Cadmium(Ⅱ).Anal Chem.2005, 77,1734-1739.
    [43]Zhai,Y.;Liu,Y.;Chang,X.;Chen,S.;Huang,X.Selective solid-phase extraction of trace cadmium(Ⅱ) with an ionic imprinted polymer prepared from a dual-ligand monomer.Anal.Chim.Acta 2007,593,123-128.
    [44]Chang,X.;Jiang,N.;Zheng,H.;He,Q.;Hu,Z.;Zhai,Y.;Cui,Y.Solid-phase extraction of iron(Ⅲ) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique.Talanta 2007,71,38-43.
    [45]侯琳熙,郭智勇,王邃.铜离子印迹环氧树脂基整体柱的制备及性能.光谱学与光谱分析2008.28,2446-2449.
    [46]Soroka,K.;Vithanage,R.S.;Phillips,D.A.;Walker,B.;Dasgupta,P.K.Fluorescence Properties of Metal Complexes of 8-Hydroxyquinoline-5-sulfonic Acid and Chromatographic Applications.Anal.Chem.1987,59,629-636.
    [47]许涛,谢海珍,刘道杰.8-羟基喹啉类试剂在光度分析种的应用.聊城大学学报(自然科学敝)2003.16,42-53.
    [48]于水,杜杰,王劲鹏,刘智慧,杨延安.8-羟基喹啉-5-磺酸金属络合物的荧光特性及其应用研究.分析化学1995,23,1267-1270.
    [49]Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature 1992,359,710-712.
    [50]Ganschow,M.;Wark,M.;W(o|¨)hrle.D.;Schulz-Ekloff,G.Anchoring of Functional Dye Molecules in MCM-41 by Microwave-Assisited Hydrothermal Cocondensation.Angew.Chem.Int.Ed.2000,39,161-163.
    [51]Comes,M.;Marcos,M.D.;Martinez-Maniez,R.;Sancenon,F.;Soto,J.;Villaescusa,L.A.;Amor6s,P.;Beltran,D.Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica.Adv.Mater.2004,16,1783-1786.
    [52]Descalzo,A.B.;Rurack,K.;Weisshoff,H.;Martinez-Manez,R.;Marcos,M.D.;Amoros,P.;Hoffmann,K.;Soto,J.Rational Design of a Chromo-and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates.J.Am.Chem.Soc.2005,127,184-200.
    [53]Descalzo,A.B.;Marcos,M.D.;Martinez-Manez,R.;Soto,J.;Beltran,D.;Amoros,P.Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP.J.Mater.Chem.2005,15,2721-2731.
    [54]Tao,S.;Li,G.;Zhu,H.Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor.J.Mater.Chem.2006,16,4521-4528.
    [55]Li,L.-L.;Sun,H.;Fang,C.-J.;Xu,J.;Jin,J.-Y.;Yah,C.-H.Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes(H~+ and Cu~(2+)) in water.J.Mater.Chem.2007,17,4492-4498.
    [56]Descalzo,A.B.;Marcos,M.D.;Monte,C.;Martinez-Manez,R.;Rurack,K.Mesoporous silica materials with covalently anchored phenoxazinone dyes as fluorescent hybrid materials for vapour sensing.J.Mater.Chem.2007,17,4716-4723.
    [57]Chandra,D.;Yokoi,T.;Tatsumi,T.;Bhaumik,A.Highly Luminescent Organic-Inorganic Hybrid Mesoporous Silicas Containing Tunable Chemosensor inside the Pore Wall.Chem.Mater.2007,19,5347-5354.
    [58]Lee,M.H.;Lee,S.J.;Jung,J.H.;Lim,H.;Kim,J.S.Luminophore-immobilized mesoporous silica for selective Hg~(2+) sensing.Tetrahedron 2007,63,12087-12092.
    [59]高玲,王英,史丽英,季安.对铜离子高选择性的SBA-15介孔内自组装新型荧光化学传感器.传感技术学报2006,19,64-67.
    [60]Lim,M.H.;Blanford,C.F.;Stein,A.Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41 Probing the Internal Pore Structure by a Bromination Reaction.J.Am.Chem.Soc.1997,119,4090-4091.
    [61]Van Rhijn,W.M.;De Vos,D.E.;Sels,B.F.;Bossaert W.D.;Jacobs,P.A.Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions.Chem.Commun.1998,317-318.
    [62]Fowler,C.E.;Lebeau,B.;Mann,S.Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation.Chem.Commun.1998,1825-1826.
    [63]Hoffmann,F.;Cornelius,M.;Morell,J.;Fr(o|¨)ba,M.Silica-Based Mesoporous Organic-Inorganic Hybrid Materials.Angew.Chem.Int.Ed.2006,45,3216-3251.
    [64]Brunauer,S.;Emmet,P.H.;Teller,E.Adsorption of Gases in Multimolecular Layers.J.Am.Chem,Soc.1938,60,309-319.
    [65]Barrett,E.P.;Joyner,L.G.;Halenda,P.P.The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms.J.Am.Chem.Soc.1951,73,373-380.
    [66]Hopkins,T.A.;Meerholz,K.;Shaheen,S.;Anderson,M.L.;Schmidt,A.,Kippelen,B.;Padias,A.B.;Hall,H.K.;Peyghambarian,N.;Armstrong,N.R.Chem.Mater.1996,8,344-351.
    [67]张崇甫,陈述云.成分数据主成分分析及其应用.数理统计与管理1996,15,11-14,48.
    [1]Davis,A.P.;Wareham,R.S.Carbohydrate Recognition through Noncovalent Interactions:A Challenge for Biomimetic and Supramolecular Chemistry.Angew.Chem.Int.Ed.1999,38,2978-2996.
    [2]Hurtley,S.;Service,R.;Szuromi,P.Cinderella's coach is ready.Science 2001,291,2337.
    [3]郭丽娜,王洪荣,李宪臻.糖组学研究策略及前沿技术研究进展.中国生物化学与分子生物学报2006,22,685-690.
    [4]Jelinek,R.;Kolusheva,S.Carbohydrate Biosensors.Chem.Rev.2004,104,5987-6016.
    [5]Shinkai,S.;Takeuchi,M.Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions. Biosens. Bioelectron. 2004, 20, 1250-1259.
    [6] Jurs, P. C; Bakken, G. A.; McClelland, H. E. Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes. Chem. Rev.2000,100, 2649-2678.
    [7] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T.P.; Walt, D. R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100,2595-2626.
    [8] Lavigne, J. J.; Anslyn, E. V. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angew. Chem. Int. Ed.2001,40,3118-3130.
    [9] Wright, A. T.; Anslyn, E. V. Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 2006,35,14-28.
    [10]Lee, J. W.; Lee, J.-S.; Chang, Y.-T. Colorimetric Identification of Carbohydrates by a pH Indicator/pH Change Inducer Ensemble. Angew. Chem. Int. Ed. 2006,45, 6485-6487.
    [11]Lim, S. H.; Musto, C. J.; Park, E.; Zhong, W.; Suslick, K. S. A Colorimetric Sensor Array for Detection and Identification of Sugars. Org. Lett. 2008, 10,4405-4408.
    [12] Schiller, A.; Wessling, R. A.; Singaram, B. A Fluorescent Sensor Array for Saccharides Based on Boronic Acid Appended Bipyridinium Salts. Angew.Chem. Int. Ed. 2007, 46, 6457-6459.
    [13]Schiller, A.; Vilozny, B.; Wessling, R. A.; Singaram, B. Recognition of phospho sugars and nucleotides with an array of boronic acid appended bipyridinium salts.Anal. Chim. Acta 2008, 627,203-211.
    [14]Zaubitzer, F.; Buryak, A.; Severin, K. Cp*Rh-Based Indicator-Displacement Assays for the Identification of Amino Sugars and Aminoglycosides. Chem. Eur.J. 2006,12, 3928-3934.
    [15]Koshi, Y.; Nakata, E.; Yamane, H.; Hamachi, I. A Fluorescent Lectin Array Using Supramolecular Hydrogel for Simple Detection and Pattern Profiling for Various Glycoconjugates. J. Am. Chem. Soc. 2006,128,10413-10422.
    [16]Edwards,N.Y.;Sager,T.W.;McDevitt,J.T.;Anslyn,E.V.Boronic Acid Based Peptidic Receptors for Pattern-Based Saccharide Sensing in Neutral Aqueous Media,an Application in Real-Life Samples.J.Am.Chem.Soc.2007,129,13575-13583.
    [17]Duggan,P.J.;Offermann,D.A.Remarkably selective saccharide recognition by solid-supported peptide boronic acids.Tetrahedron 2009,65,109-114.
    [18]Wiskur,S.L.;Ait-Haddou,H.;Lavigne,J.J.;Anslyn,E.V.Teaching Old Indicators New Tricks.Acc.Chem.Res.2001,34,963-972.
    [19]Nguyen,B.T.;Anslyn,E.V.Indicator-displacement assays.Coord.Chem.Rev.2006,250,3118-3127.
    [20]Tong,A.-J.;Yamauchi,A.;Hayashita,T.;Zhang,Z.-Y.;Smith,B.D.;Teramae,N.Boronic Acid Fluorophore/β-Cyclodextrin Complex Sensors for Selective Sugar Recognition in Water.Anal Chem.2001,73,1530-1536.
    [21]Baker,G.A.;Desikan,R.;Thundat,T.Label-Free Sugar Detection Using Phenylboronic Acid-Functionalized Piezoresistive Microcantilevers.Anal Chem.2008,80,4860-4865.
    [22]Sun,X.-Y.;Liu,B.;Jiang,Y.-B.An extremely sensitive monoboronic acid based fluorescent sensor for glucose.Anal Chim.Acta 2004,515,285-290.
    [23]Boduroglu,S.;El Khoury,J.M.;Reddy,D.V.;Rinaldi,P.L.;Hu,J.A colorimetric titration method for quantification of millimolar glucose in a pH 7.4aqueous phosphate buffer.Bioorg.Med.Chem.Lett.2005,15,3974-3977.
    [24]Kim,Y.;Hilderbrand,S.A.;Weissleder,R.;Tung,C.-H.Sugar sensing based on induced pH changes.Chem.Commun.2007,2299-2301.
    [25]Xue,C.;Cai,F.;Liu,H.Ultrasensitive Fluorescent Responses of Water-Soluble,Zwitterionic,Boronic Acid-Bearing,Regioregular Head-to-Tail Polythiophene to Biological Species.Chem.Eur.J.2008,14,1648-1653.
    [26]Fang,H.;Kaur,G.;Wang,B.Progress in Boronic Acid-Based Fluorescent Glucose Sensors.J.Fluoresc.2004,14,481-489.
    [27]Cao,H.;Diaz,D.I.;DiCesare,N.;Lakowicz,J.R.;Heagy,M.D.Monoboronic Acid Sensor That Displays Anomalous Fluorescence Sensitivity to Glucose.Org. Lett.2002,4,1503-1505.
    [28]Cannizzo,C.;Amigoni-Gerbier,S.;Larpent,C.Boronic acid-functionalized nanoparticles:synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates.Polymer 2005,46,1269-1276.
    [29]Elmas,B.;Senel,S.;Tuncel,A.A new thermosensitive fluorescent probe for diol sensing:Poly(N-isopropylacrylamide-co-vinylphenylboronic acid)-alizarin red S complex.React.Funct.Polym.2007,67,87-96.
    [30]Wang,Q.;Li,G.;Xiao,W.;Qi,H.;Li,G.Glucose-responsive vesicular sensor based on boronic acid-glucose recognition in the ARS/PBA/DBBTAB covesicles.Sens.Actuat.B 2006,119,695-700.
    [31]Gamsey,S.;Baxter,N.A.;Sharrett,Z.;Cordes,D.B.;Olmstead,M.M.;Wessling,R.A.;Singaram,B.The effect of boronic acid-positioning in an optical glucose-sensing ensemble.Tetrahedron 2006,62,6321-6331.
    [32]Kuzimenkova,M.V.;Ivanov,A.E.;Thammakhet,C.;Mikhalovska,L.I.;Galaev,I.Y.;Thavarungkul,P.;Kanatharana,P.;Mattiasson,B.Optical responses,permeability and diol-specific reactivity of thin polyacrylamide gels containing immobilized phenylboronic acid.Polymer 2008,49,1444-1454.
    [33]Ma,W.M.J.;Pereira Morais,M.P.;D'Hooge,F.;van den Elsen,J.M.H.;Cox,J.P.L.;James,T.D.;Fossey,J.S.Dye displacement assay for saccharide detection with boronate hydrogels.Chem.Commun.2009,532-534.
    [34]Freeman,R.;Bahshi,L.;Finder,T.;Gill,R.;Willner,I.Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots.Chem.Commun.2009,764-766.
    [35]黄智玉,赵书林,王胜娥,王恒山.新型单硼酸衍生物的合成及作为荧光探针对糖的选择性识别.分析测试学报2008,27,266-269.
    [36]柳清湘,徐风波,李庆山,曾宪顺,张正之.硼酸及其衍生物在荧光分子开关中的应用.化学通报2002,10,650-656.
    [37]Friggeri,A.;Kobayashi,H.;Shinkai,S.;Reinhoudt,D.N.From Solutions to Surfaces:A Novel Molecular Imprinting Method based on Conformational Changes of Boronic-Acid-Appended Poly(L-lysine).Angew.Chem.Int.Ed.2001, 40,4729-4731.
    [38]Granot, E.; Tel-Vered, R.; Lioubashevski, O.; Willner, I. Stereoselective and Enantioselective Electrochemical Sensing of Monosaccharides Using Imprinted Boronic Acid-Functionalized Polyphenol Films. Adv. Fund. Mater. 2008, 18,478-484.
    [39]Deore, B.; Freund, M. S. Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride. Analyst 2003,128, 803-806.
    [40] Miyahara, T.; Kurihara, K. Two-Dimensional Molecular Imprinting: Binding of Sugars to Boronic Acid Functionalized, Polymerized Langmuir-Blodgett Films.Chem. Lett. 2000,1356-1357.
    [41]Wang, W.; Gao, S.; Wang, B. Building Fluorescent Sensors by Template Polymerization: The Preparation of a Fluorescent Sensor for D-Fructose. Org.Lett. 1999,1,1209-1212.
    [42]Rajkumar, R.; Warsinke, A.; Mohwald, H.; Scheller, F. W.; Katterle, M. Analysis of recognition of fructose by imprinted polymers. Talanta 2008, 76,1119-1123.
    [43]Fujita, N.; Shinkai, S.; James, T. D. Boronic Acids in Molecular Self-Assembly.Chem. Asian J. 2008,3,1076-1091.
    [44]Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000,100, 2495-2504.
    [45]Whitcombe, M. J.; Vulfson, E. N. Imprinted Polymer. Adv. Mater. 2001, 13,467-478.
    [46]Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.;Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003.J. Mol. Recognit. 2006,19,106-180.
    [47]Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M. A simple strategy for preparation of sensor arrays: molecularly structured monolayers as recognition elements. Chem. Commun. 2003,432-433.
    [48] Greene, N. T.; Morgan, S. L.; Shimizu, K. D. Molecularly imprinted polymer sensor arrays. Chem. Commun. 2004,1172-1173.
    [49]Greene, N. T.; Shimizu, K. D. Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement. J. Am. Chem. Soc. 2005,127, 5695-5700.
    [50]Takeuchi, T.; Goto, D.; Shinmori, H. Protein profiling by protein imprinted polymer array.Analyst 2007,132, 101-103.
    [51]Lim, M. H.; Blanford, C. F.; Stein, A. Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41 Probing the Internal Pore Structure by a Bromination Reaction. J. Am. Chem. Soc. 1997,119, 4090-4091.
    [52]Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert W. D.; Jacobs, P. A.Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun. 1998,317-318.
    [53]Fowler, C. E.; Lebeau, B.; Mann, S. Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem. Commun. 1998,1825-1826.
    [54]Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45,3216-3251.
    [55] Springsteen, G.; Wang, B. Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem. Commun. 2001,1608-1609.
    [56] Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291-5300.
    [57]Descalzo, A. B.; Rurack, K.; Weisshoff, H.; Martinez-Manez, R.; Marcos, M. D.;Amoros, P.; Hoffmann, K.; Soto, J. Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. J. Am. Chem. Soc. 2005,127, 184-200.
    [58]Descalzo, A. B.; Marcos, M. D.; Martinez-Manez, R.; Soto, J.; Beltran, D.;Amoros, P. Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP. J. Mater. Chem. 2005, 75,2721-2731.
    [59]Angyal, S. J. The Composition of Reducing Sugars in Solution. Adv. Carbohydr. Chem.Biochem.1984,42,15-68.
    [60]Angyal,S.J.The Composition of Reducing Sugars in Solution:Current Aspects.Adv.Carbohydr.Chem.Biochem.1991,49,19-35.
    [61]张崇甫,陈述云.成分数据主成分分析及其应用.数理统计与管理1996,15,11-14,48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700