超声波雾化辅助LIBS对液体样品中金属痕量元素分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)技术,是一种利用高能量密度激光脉冲,击穿样品诱导高温等离子体,测量等离子体冷却复合时目标元素所发射的原子或离子光谱来进行化学成分检测、区分和定量分析的技术。随着进几十年的快速发展,LIBS技术以其实时、快速、可远程非接触检测,宽检测范围和可现场应用等特点受到越来越多的关注。在将LIBS应用于海洋探测或水环境监测领域时,LIBS技术遇到了前所未有的困难。本文针对海洋金属元素探测和水中重金属污染检测的实际应用需求,本着改善液体样品LIBS信号质量和提高金属元素检测灵敏度的目标,对自行发明的LIBS增强方法—超声波雾化辅助LIBS—进行了初步的研究。文章从UN‐LIBS方法的系统设计实现,参数的选择、检测能力分析和定量分析几个方面进行了研究和讨论。
     根据LIBS技术在液体样品中金属成分检测应用中所遇到的问题,以及相关LIBS信号增强手段存在的问题,本文提出了将超声波雾化技术同LIBS技术相结合的设想。根据实际观察和实验测试,设计实现了一套利用电容反馈式振荡电路和压电陶瓷震荡片构成的超声雾化辅助硬件系统。利用该系统,可以将样品液体转换为平均直径3um的液滴,并由气动系统形成直径4mm的柱状气溶胶。经重复性测试,金属元素谱峰强度RSD最高可达到0.0076。同时,还根据实际测试的结果,确定了激发和收集光路的设置方案。针对UN‐LIBS系统的特点,为实验设计了专门的操作程序。
     利用UN‐LIBS系统,研究了金属元素光谱的特性和等离子体的物理特性。其中,以Mg元素谱线为例对UN‐LIBS实验中激光脉冲功率、超声波振荡片振动功率等实验参数对金属元素谱线性质的影响进行了分析,对谱线谱峰强度的时间演化特性进行了分析,最终对UN‐LIBS实验参数进行了优化。通过对UN‐LIBS等离子体的电子密度和电子温度的计算,对该方法的物理特性进行了分析。其中,选用Hα线来进行等离子体电子密度的估计,由Voigt函数拟合得到的Hα线Lorentz线型宽度,利用Stark展宽相关理论计算了电子密度。发现30mJ和60mJ时UN‐LIBS等离子体电子密度在10~(16)~10~(17)cm~(‐3)数量级。选择Fe元素溶液样品230nm到270nm波段内的24条UN‐LIBS谱峰,利用Boltzmann绘图法对等离子体的电子温度进行了计算,确定电子温度约为1.24×104K。等离子体物理特性研究的结果表明,即使在较低的激发能量下,UN‐LIBS等离子体也具有较高电子密度和电子温度,基本能够满足对不同金属元素定量检测所需满足的LTE要求,为后期实验参数的选择和定量分析提供了依据。
     对典型金属元素样品进行实验检测,分析了各元素的演化特性和检测限。根据实际应用的需求,选取了Mn、Cu、Pb、Zn、Fe、Mg、Ca和Na,共八种不同的金属元素的溶液样品进行了UN‐LIBS检测。针对上述样品进行了时间分辨实验,分析了各种元素谱峰强度和信背比随时间变化的规律,针对每一种元素选择了最佳的实验参数。在30mJ的脉冲能量下和较低的浓度范围内,对各种元素不同浓度的样品进行了UN‐LIBS检测实验,对检测结果进行了浓度线性回归分析。拟合结果表现出较好的线性,除Ca(0.982)元素外,各元素直线拟合的相关性都高于0.990。利用3σ法得到了各元素的检测限,除Pb元素检测限最高为21.7ppm外,其它各元素检测限为ppm或低于ppm量级,其中Na元素检测限最低,为0.00596ppm,达到ppb量级。综合对UN‐LIBS方法和其它LIBS增强方法进行了比较研究,发现UN‐LIBS方法在灵敏度上有着较明显的优势。在激发脉冲能量更低的前提下,UN‐LIBS的检测限比大部分液体样品LIBS增强方法的检测限都要低1~3个数量级。
     以重金属元素Pb为例对UN‐LIBS定量分析特性进行了研究。以定量分析为目标,研究了激发能量,谱峰强度,背景噪声等因素对Pb元素的影响进行了分析,确定了实验参数的选择。通过比较分析,在定量分析中采用背景强度对谱峰强度进行标定。对较大的浓度范围内(25.9ppm~10360ppm)的12种溶液样本进行了UN‐LIBS实验检测,确定了浓度相关线性范围为0‐4150ppm。在线性范围内进行直线拟合分析,拟合相关系数为0.99935,并确定了灵敏度和检测限(2.93ppm)。在线性范围之内,对6种不同浓度的样品进行了定量检测分析,比较实际浓度和定量计算所得浓度,六种样品中最小误差0.043%,最大误差7.1%。分析结果显示在低浓度时误差相对较大,而高浓度时误差较小。
     最后,对全文内容进行了总结,分析了本文工作创新点。根据实际应用领域的特点,对下一步的工作方向进行了展望。
Laser induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analysis method for elements analysis which gets more and more popular in recent decades. When a high energy laser pulse is focused on the surface of sample, the high temperature plasma of sample will be induced. The atom or ion lines emitted by the plasma reflect the chemical composition of the sample. Now, LIBS attracts amount of attention as a quick, in‐time, remote, wide scope and in‐site chemical analysis method. But, there are many problems when the LIBS is employed in liquid sample analysis, such as the application in the fields of ocean detection and water environment monitoring. Base on a self‐developed LIBS enhancement method called ultrasonic nebulizer assisted LIBS (UN‐LIBS), a lot of research works were carried out for improving quality of LIBS signal and sensitivity of detection. The study is composed of four parts, including the design and realization of the nebulizer assisted system, the optimization of experimental parameters, the detective ability of UN‐LIBS and the quantitative analysis ability of UN‐LIBS.
     Based on the problems LIBS faced in metal elements analysis for liquid samples and other problems appeared in signal enhancement method, this paper developed the idea of combining ultrasonic nebulizer with LIBS system. According the results from experiment and observation, a set of assistance system is established which is composed of a piezoceramics plate and a capacitance feedback oscillator circuit. Using this system, the sample of liquid can be converted into droplets with an average diameter of3um, and further on becomes a4mm diameter cylindrical aerosol formed by air dynamic system. After repeated test, the RSD of plasma peak intensity of metal elements could reach a maximum of0.0076. According to the test results, an optical path of emission and collection is set up and the operating procedure is designed specially for the UN‐LIBS experiments.
     Then, using the UN‐LIBS system, a series of experiments were carried out to understand the spectral characteristics of metal elements and the physical features of plasma. Taking the plasma of Mg element as example, the influences of the experimental parameters, such as laser energy power, vibration power of piezoceramics plate and the time revolution features, on the metal element lines of UN‐LIBS are also analyzed. Base on the above analysis results, the parameters is optimized. The Hα line is fitted with voigt function and then the FWHM of Lorentz profile can be determined. Then the electron density calculated by the Stark width is confirmed to be the magnitude of10~(16)~10~(17)cm~(‐3) with a30mJ energy and a60mJ energy.24ion peaks in the iron plasma ranging between230nm and270nm is chosen to calculate the temperature assumption by the Boltzmann plot method. The temperature of plasma in UN‐LIBS obtained is1.24×10~4K. The features of the electron density and temperature ensure that even with a lower emission energy, the plasma received under UN‐LIBS has a higher electron density and temperature compared with other methods, which could meet the LTE assumption needed for quantitative detection of different metal elements. This provides a firm theoretic support for the choose of parameters and quantitative analysis in future experiment.
     Further experiments has been carried out to analyze the evolution features and limit of detection of typical metal elements. Solution samples with8different metal elements including Mn, Cu, Pb, Zn, Fe, Mg, Ca and Na are subjected to the detection of UN‐LIBS with a30mJ laser pulse energy. The temporal evolution of peak intensity and signal to background ratio are analyzed. With the laser energy as low as30mJ and the best optimized parameters, the peak intensity of every elements with different low concentration are detected and the results are linearly fitted. The relative coefficient of linear fitting of most elements are higher than0.99except that of Ca which is0.982. The limit of detection of different elements are calculated with the3σ method. The results show that the LOD of7elements are lower than5ppm and the lowest LOD appears in the Na elements which is0.00596ppm that reaches the ppb level. In a comparison of UN‐LIBS and other LIBS enhancement methods, it is realized that the UN‐LIBS has an obvious advantage of high sensitivity. With very low emission pulse energy, the LOD of the UN‐LIBS method is about1to3orders of magnitude better than other LIBS enhancement methods.
     The element of lead, as a typical element, is employed to understand the quantitative analysis ability. The factors, such as exciting energy, peak intensity and standard deviation of noise are studied for the quantitative detection. Through some comparative analysis, the peak intensity is calibrated by the nearby background finally.12samples with different concentration from25.9ppm to10360ppm of lead are detected by UN‐LIBS and the linear scope by this regard varies from0‐4150ppm. The relative coefficient of linear regression function is0.99935and the LOD reaches2.93ppm. In the linear scope,6samples with different concentration of lead are separately analyzed and the error of quantitative estimate is between0.043%~7.1%. The error is relatively higher when the concentration of sample is higher and lower when the concentration is lower.
     At last, all the achievements of UN‐LIBS are summarized with a special focus on its innovations and the future direction to carry on the research is predicted.
引文
[1] J.P. Singh. Laser-induced breakdown spectroscopy. Elsevier Science.2007
    [2] A.W. Miziolek, V. Palleschi,I. Schechter. Laser-induced breakdown spectroscopy(LIBS): fundamentals and applications. Cambridge Univ Pr.2006
    [3] D.A. Cremers, L.J. Radziemski,J. Wiley. Handbook of laser-induced breakdownspectroscopy.2006
    [4] F. Brech,L. Cross. Optical microemission stimulated by a ruby maser. Appl.Spectrosc.1962.16(2):59
    [5]中华人民共和国环境保护部.2008年环境统计年报..2010
    [6] P.R.C. G.B.污水综合排放标准[S].1996
    [7] Y.R. Shen. The principles of nonlinear optics. New York: Wiley-Interscience.1984.1
    [8] B. Zysset, JG Fujimoto,TF Deutsch. Time-resolved measurements of picosecondoptical breakdown. Applied Physics B: Lasers and Optics.1989.48(2):139-147
    [9] P.K. Kennedy, D.X. Hammer,B.A. Rockwell. Laser-induced breakdown inaqueous media. Progress in quantum electronics.1997.21(3):155-248
    [10]陆同兴,路轶群.激光光谱技术原理及应用.安徽:中国科学技术大学出版社.2006
    [11] Q. Feng, JV Moloney, AC Newell, et al. Theory and simulation on the thresholdof water breakdown induced by focused ultrashort laser pulses. QuantumElectronics, IEEE Journal of.1997.33(2):127-137
    [12] D.X. Hammer, E.D. Jansen, M. Frenz, et al. Shielding properties of laser-inducedbreakdown in water for pulse durations from5ns to125fs. Applied optics.1997.36(22):5630-5640
    [13] F. Docchio, P. Regondi, M.R.C. Capon, et al. Study of the temporal and spatialdynamics of plasmas induced in liquids by nanosecond Nd: YAG laser pulses.1:Analysis of the plasma starting times. Applied optics.1988.27(17):3661-3668
    [14] P.A. Barnes,KE Rieckhoff. Laser induced underwater sparks. Applied PhysicsLetters.1968.13(8):282-284
    [15] A. Vogel, S. Busch,U. Parlitz. Shock wave emission and cavitation bubblegeneration by picosecond and nanosecond optical breakdown in water. J. Acoust.Soc. Am.1996.100(1):148-165
    [16] A. Vogel, R. Engelhardt, U. Behnle, et al. Minimization of cavitation effects inpulsed laser ablation illustrated on laser angioplasty. Applied Physics B: Lasersand Optics.1996.62(2):173-182
    [17] F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, et al. Analysis of heavy metals in soilsusing laser-induced breakdown spectrometry combined with laser-inducedfluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy.2001.56(6):933-945
    [18] HH Telle, DCS Beddows, GW Morris, et al. Sensitive and selectivespectrochemical analysis of metallic samples: the combination of laser-inducedbreakdown spectroscopy and laser-induced fluorescence spectroscopy.Spectrochimica Acta Part B: Atomic Spectroscopy.2001.56(6):947-960
    [19] A.P.M. Michel, M. Lawrence-Snyder, S.M. Angel, et al. Laser-induced breakdownspectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of keymeasurement parameters. Applied optics.2007.46(13):2507-2515
    [20] Y. Li, Y. Lu, K. Cheng, et al. Plasma characterization of brass alloys by laserinduced breakdown spectroscopy.2008, Society of Photo-Optical InstrumentationEngineers. p.68251M.1-68251M.5
    [21] L. St-Onge, V. Detalle,M. Sabsabi. Enhanced laser-induced breakdownspectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochimica Acta Part B: Atomic Spectroscopy.2002.57(1):121-135
    [22] V. Margetic, A. Pakulev, A. Stockhaus, et al. A comparison of nanosecond andfemtosecond laser-induced plasma spectroscopy of brass samples. SpectrochimicaActa Part B: Atomic Spectroscopy.2000.55(11):1771-1785
    [23] GW Rieger, M. Taschuk, YY Tsui, et al. Comparative study of laser-inducedplasma emission from microjoule picosecond and nanosecond KrF-laser pulses.Spectrochimica Acta Part B: Atomic Spectroscopy.2003.58(3):497-510
    [24] A. De Giacomo, M. Dell'Aglio, O. De Pascale, et al. ns-and fs-LIBS ofcopper-based-alloys: A different approach. Applied surface science.2007.253(19):7677-7681
    [25] J.B. Sirven, B. Bousquet, L. Canioni, et al. Time-resolved and time-integratedsingle-shot laser-induced plasma experiments using nanosecond and femtosecondlaser pulses. Spectrochimica Acta Part B: Atomic Spectroscopy.2004.59(7):1033-1039
    [26] B. Wolff-Rottke, J. Ihlemann, H. Schmidt, et al. Influence of the laser-spotdiameter on photo-ablation rates. Applied Physics A: Materials Science&Processing.1995.60(1):13-17
    [27] S. Nakamura, Y. Ito, K. Sone, et al. Determination of an iron suspension in waterby laser-induced breakdown spectroscopy with two sequential laser pulses.Analytical Chemistry.1996.68(17):2981-2986
    [28] J.E. Carranza, E. Gibb, B.W. Smith, et al. Comparison of nonintensified andintensified CCD detectors for laser-induced breakdown spectroscopy. Appliedoptics.2003.42(30):6016-6021
    [29] P.L. Dudragne,A.J. Amouroux. Time-resolved laser-induced breakdownspectroscopy: application for qualitative and quantitative detection of fluorine,chlorine, sulfur, and carbon in air. Applied Spectroscopy.1998.52(10):1321-1327
    [30] B. Salle, J.L. Lacour, E. Vors, et al. Laser-induced breakdown spectroscopy forMars surface analysis: capabilities at stand-off distances and detection of chlorineand sulfur elements. Spectrochimica Acta Part B: Atomic Spectroscopy.2004.59(9):1413-1422
    [31] M. Sabsabi,P. Cielo. Quantitative analysis of aluminum alloys by laser-inducedbreakdown spectroscopy and plasma characterization. Applied Spectroscopy.1995.49(4):499-507
    [32] M. Adamson, A. Padmanabhan, GJ Godfrey, et al. Laser-induced breakdownspectroscopy at a water/gas interface: A study of bath gas-dependent molecularspecies. Spectrochimica Acta Part B: Atomic Spectroscopy.2007.62(12):1348-1360
    [33] DL Death, AP Cunningham,LJ Pollard. Multi-element analysis of iron ore pelletsby laser-induced breakdown spectroscopy and principal components regression.Spectrochimica Acta Part B: Atomic Spectroscopy.2008.63(7):763-769
    [34] R.S. Harmon, F.C. DeLucia, C.E. McManus, et al. Laser-induced breakdownspectroscopy-An emerging chemical sensor technology for real-timefield-portable, geochemical, mineralogical, and environmental applications.Applied Geochemistry.2006.21(5):730-747
    [35] AI Whitehouse, J. Young, IM Botheroyd, et al. Remote material analysis ofnuclear power station steam generator tubes by laser-induced breakdownspectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy.2001.56(6):821-830
    [36] RA Al-Wazzan, JM Hendron,T. Morrow. Spatially and temporally resolvedemission intensities and number densities in low temperature laser-inducedplasmas in vacuum and in ambient gases. Applied surface science.1996.96:170-174
    [37] M. Lawrence-Snyder, J. Scaffidi, S.M. Angel, et al. Laser-induced breakdownspectroscopy of high-pressure bulk aqueous solutions. Applied Spectroscopy.2006.60(7):786-790
    [38] GS Senesi, M. Dell'Aglio, R. Gaudiuso, et al. Heavy metal concentrations in soilsas determined by laser-induced breakdown spectroscopy (LIBS), with specialemphasis on chromium. Environmental research.2009.109(4):413-420
    [39] B. Bousquet, J.B. Sirven,L. Canioni. Towards quantitative laser-inducedbreakdown spectroscopy analysis of soil samples. Spectrochimica Acta Part B:Atomic Spectroscopy.2007.62(12):1582-1589
    [40] D. Santos Jr, L.C. Nunes, L.C. Trevizan, et al. Evaluation of laser inducedbreakdown spectroscopy for cadmium determination in soils. SpectrochimicaActa Part B: Atomic Spectroscopy.2009.64(10):1073-1078
    [41] RT Wainner, RS Harmon, AW Miziolek, et al. Analysis of environmental leadcontamination: comparison of LIBS field and laboratory instruments.Spectrochimica Acta Part B: Atomic Spectroscopy.2001.56(6):777-793
    [42] MF Bustamante, CA Rinaldi,JC Ferrero. Laser induced breakdown spectroscopycharacterization of Ca in a soil depth profile. Spectrochimica Acta Part B: AtomicSpectroscopy.2002.57(2):303-309
    [43] F. Capitelli, F. Colao, MR Provenzano, et al. Determination of heavy metals insoils by laser induced breakdown spectroscopy. Geoderma.2002.106(1):45-62
    [44] R.S. Harmon, J. Remus, N.J. McMillan, et al. LIBS analysis of geomaterials:geochemical fingerprinting for the rapid analysis and discrimination of minerals.Applied Geochemistry.2009.24(6):1125-1141
    [45] S. Kaski, H. H kk nen,J. Korppi-Tommola. Sulfide mineral identification usinglaser-induced plasma spectroscopy. Minerals engineering.2003.16(11):1239-1243
    [46] M. Gaft, I. Sapir-Sofer, H. Modiano, et al. Laser induced breakdown spectroscopyfor bulk minerals online analyses. Spectrochimica Acta Part B: AtomicSpectroscopy.2007.62(12):1496-1503
    [47] M. Oujja, A. Vila, E. Rebollar, et al. Identification of inks and structuralcharacterization of contemporary artistic prints by laser-induced breakdownspectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy.2005.60(7-8):1140-1148
    [48] V. Lazic, R. Fantoni, F. Colao, et al. Quantitative laser induced breakdownspectroscopy analysis of ancient marbles and corrections for the variability ofplasma parameters and of ablation rate. J. Anal. At. Spectrom.2004.19(4):429-436
    [49] K. Melessanaki, M. Mateo, S.C. Ferrence, et al. The application of LIBS for theanalysis of archaeological ceramic and metal artifacts. Applied surface science.2002.197:156-163
    [50] Y. Yoon, T. Kim, M. Yang, et al. Quantitative analysis of pottery glaze by laserinduced breakdown spectroscopy. Microchemical journal.2001.68(2):251-256
    [51] M. Kuzuya, M. Murakami,N. Maruyama. Quantitative analysis of ceramics bylaser-induced breakdown spectroscopy. Spectrochimica Acta Part B: AtomicSpectroscopy.2003.58(5):957-965
    [52] S. Klein, J. Hildenhagen, K. Dickmann, et al. LIBS-spectroscopy for monitoringand control of the laser cleaning process of stone and medieval glass. Journal ofCultural Heritage.2000.1: S287-S292
    [53] A. Kaminska, M. Sawczak, K. Komar, et al. Application of the laser ablation forconservation of historical paper documents. Applied surface science.2007.253(19):7860-7864
    [54] F. Colao, R. Fantoni, V. Lazic, et al. Laser-induced breakdown spectroscopy forsemi-quantitative and quantitative analyses of artworks--application onmulti-layered ceramics and copper based alloys. Spectrochimica Acta Part B:Atomic Spectroscopy.2002.57(7):1219-1234
    [55] DCS Beddows,HH Telle. Prospects of real-time single-particle biological aerosolanalysis: A comparison between laser-induced breakdown spectroscopy andaerosol time-of-flight mass spectrometry. Spectrochimica Acta Part B: AtomicSpectroscopy.2005.60(7-8):1040-1059
    [56] U. Panne, RE Neuhauser, M. Theisen, et al. Analysis of heavy metal aerosols onfilters by laser-induced plasma spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy.2001.56(6):839-850
    [57] S.G. Buckley, H.A. Johnsen, K.R. Hencken, et al. Implementation of laser-inducedbreakdown spectroscopy as a continuous emissions monitor for toxic metals.Waste Management.2000.20(5-6):455-462
    [58] JE Carranza, BT Fisher, GD Yoder, et al. On-line analysis of ambient air aerosolsusing laser-induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy.2001.56(6):851-864
    [59] F. Boué-Bigne. Laser-induced breakdown spectroscopy applications in the steelindustry: Rapid analysis of segregation and decarburization. Spectrochimica ActaPart B: Atomic Spectroscopy.2008.63(10):1122-1129
    [60] R. Noll, H. Bette, A. Brysch, et al. Laser-induced breakdownspectrometry--applications for production control and quality assurance in thesteel industry. Spectrochimica Acta Part B: Atomic Spectroscopy.2001.56(6):637-649
    [61] L.G. Blevins, C.R. Shaddix, S.M. Sickafoose, et al. Laser-induced breakdownspectroscopy at high temperatures in industrial boilers and furnaces. Appliedoptics.2003.42(30):6107-6118
    [62] R. Noll, V. Sturm, ü. Aydin, et al. Laser-induced breakdown spectroscopy--Fromresearch to industry, new frontiers for process control. Spectrochimica Acta PartB: Atomic Spectroscopy.2008.63(10):1159-1166
    [63] O. Samek, DCS Beddows, HH Telle, et al. Quantitative analysis of trace metalaccumulation in teeth using laser-induced breakdown spectroscopy. AppliedPhysics A: Materials Science&Processing.1999.69(7):179-182
    [64] L. St-Onge, E. Kwong, M. Sabsabi, et al. Quantitative analysis of pharmaceuticalproducts by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy.2002.57(7):1131-1140
    [65] Q. Sun, M. Tran, B.W. Smith, et al. Zinc analysis in human skin by laserinduced-breakdown spectroscopy. Talanta.2000.52(2):293-300
    [66] O. Samek, DCS Beddows, HH Telle, et al. Quantitative laser-induced breakdownspectroscopy analysis of calcified tissue samples. Spectrochimica Acta Part B:Atomic Spectroscopy.2001.56(6):865-875
    [67] M.D. Mowery, R. Sing, J. Kirsch, et al. Rapid at-line analysis of coating thicknessand uniformity on tablets using laser induced breakdown spectroscopy. Journalof pharmaceutical and biomedical analysis.2002.28(5):935-943
    [68] O. Samek, H. Telle,D. Beddows. Laser-induced breakdown spectroscopy: a toolfor real-time, in vitro and in vivo identification of carious teeth. BMC OralHealth.2001.1(1):1
    [69] I.G. Pallikaris, H.S. Ginis, G.A. Kounis, et al. Corneal hydration monitored bylaser-induced breakdown spectroscopy. Journal of refractive surgery (Thorofare,NJ:1995).1998.14(6):655
    [70] G. Bazalgette Courrèges-Lacoste, B. Ahlers,F.R. Pérez. Combined Ramanspectrometer/laser-induced breakdown spectrometer for the next ESA mission toMars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2007.68(4):1023-1028
    [71] B. Sallé, J.L. Lacour, P. Mauchien, et al. Comparative study of differentmethodologies for quantitative rock analysis by Laser-Induced BreakdownSpectroscopy in a simulated Martian atmosphere. Spectrochimica Acta Part B:Atomic Spectroscopy.2006.61(3):301-313
    [72] V. Lazic, I. Rauschenbach, S. Jovicevic, et al. Laser induced breakdownspectroscopy of soils, rocks and ice at subzero temperatures in simulated martianconditions. Spectrochimica Acta Part B: Atomic Spectroscopy.2007.62(12):1546-1556
    [73] AE Pichahchy, DA Cremers,MJ Ferris. Elemental analysis of metals under waterusing laser-induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy.1997.52(1):25-39
    [74] DCS Beddows, O. Samek, M. Liska, et al. Single-pulse laser-induced breakdownspectroscopy of samples submerged in water using a single-fibre light deliverysystem. Spectrochimica Acta Part B: Atomic Spectroscopy.2002.57(9):1461-1471
    [75] R. Nyga,W. Neu. Double-pulse technique for optical emission spectroscopy ofablation plasmas of samples in liquids. Optics letters.1993.18(9):747-749
    [76]陆继东,刘彦,李娉.激光感生击穿光谱技术在燃烧诊断中的应用.华南理工大学学报:自然科学版.2007.35(010):185-188
    [77]李捷,陆继东,林兆祥, et al.激光诱导击穿固体样品中金属元素光谱的实验研究.中国激光.2009(011):2882-2887
    [78]姚顺春,陆继东,卢志民, et al.样品形态对燃煤的激光烧蚀特性影响分析.光学学报.2009.29(004):1126-1130
    [79]尹王保,张雷,张建宏, et al.基于激光诱导击穿光谱的煤元素分析研究.测试技术学报.2011.4
    [80]熊威,张谦,赵芳, et al.水中痕量六价铬离子的激光诱导击穿光谱高灵敏检测.原子与分子物理学报.2010(2):283-287
    [81]许洪光,管士成,傅院霞, et al.土壤中微量重金属元素Pb的激光诱导击穿谱.中国激光.2007.34(4):577-581
    [82] Z. Chen, H. Li, M. Liu, et al. Fast and sensitive trace metal analysis in aqueoussolutions by laser-induced breakdown spectroscopy using wood slice substrates.Spectrochimica Acta Part B: Atomic Spectroscopy.2008.63(1):64-68
    [83]郑贤锋,李春燕,张瑾, et al.铅黄铜合金中激光诱导击穿光谱特性的实验研究.原子与分子物理学报.2004.21(B04):101-103
    [84]李科学,周卫东,沈沁梅, et al.激光烧蚀-快脉冲放电等离子体光谱技术分析土壤中的Sn.光谱学与光谱分析.2011.31(8):2249-2252
    [85] L. Sun,H. Yu. Automatic estimation of varying continuum background emission inlaser-induced breakdown spectroscopy. Spectrochimica Acta Part B: AtomicSpectroscopy.2009.64(3):278-287
    [86]吴江来,傅院霞,李颖, et al.水溶液中金属元素的激光诱导击穿光谱的检测分析.光谱学与光谱分析.2008.28(9):1979-1982
    [87]修俊山,侯华明,钟石磊, et al.以滤纸为基质利用LIBS定量分析水溶液中铅元素.中国激光.2011.38(8):234-239
    [88] Y. Lu, Y. Li, J. Wu, et al. Guided conversion to enhance cation detection in waterusing laser-induced breakdown spectroscopy. Applied optics.2010.49(13):C75-C79
    [89]钟石磊,卢渊,程凯, et al.超声波雾化辅助液体样品激光诱导击穿光谱技术研究.光谱学与光谱分析.2011.31(6):1458-1462
    [90] RG Meyerand Jr,AF Haught. Gas breakdown at optical frequencies. PhysicalReview Letters.1963.11(9):401-403
    [91] J.D. Winefordner, I.B. Gornushkin, T. Correll, et al. Comparing several atomicspectrometric methods to the super stars: special emphasis on laser inducedbreakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom.2004.19(9):1061-1083
    [92] H.R. Griem. Plasma spectroscopy. New York: McGraw-Hill.1964.1
    [93] A.P. Thorne, U. Litzén,S. Johansson. Spectrophysics: principles and applications.Springer Verlag.1999
    [94] J.D. Ingle Jr,S.R. Crouch. Spectrochemical analysis.1988
    [95] P. Asoka-Kumar,R. Howell. Atomic-Based Calculations of Two-DetectorDoppler-Broadening Spectra.2001, Lawrence Livermore National Lab.,Livermore, CA (US)
    [96] C.G. Parigger, M. Dackman,J.O. Hornkohl. Time-resolved spectroscopymeasurements of hydrogen-alpha,-beta, and-gamma emissions. Applied optics.2008.47(31): G1-G6
    [97] H.R. Griem. Spectral line broadening by plasmas. New York, Academic Press,Inc.(Pure and Applied Physics. Volume39),1974.421p.1974.1
    [98] H.R. Griem. Principles of plasma spectroscopy. Proceedings of the PhysicalSociety.2005.1
    [99] A. Sre kovi, S. Bukvi,S. Djeni e. Measured Stark Widths and Shifts of NeutralSilicon Spectral Lines. Physica Scripta.1998.57:225
    [100] W.W. Jones, A. Sanchez, JR Greig, et al. Measurement and Calculation of theStark-Broadening Parameters for the Resonance Lines of Singly Ionized Calciumand Magnesium. Physical Review A.1972.5(6):2318
    [101] C. Colon, G. Hatem, E. Verdugo, et al. Measurement of the Stark broadeningand shift parameters for several ultraviolet lines of singly ionized aluminum.Journal of applied physics.1993.73(10):4752-4758
    [102] JA Aguilera,C. Aragón. Multi-element Saha-Boltzmann and Boltzmann plots inlaser-induced plasmas. Spectrochimica Acta Part B: Atomic Spectroscopy.2007.62(4):378-385
    [103] A. De Giacomo, M. Dell'Aglio, O. De Pascale, et al. From single pulse todouble pulse ns-Laser Induced Breakdown Spectroscopy under water: Elementalanalysis of aqueous solutions and submerged solid samples. Spectrochimica ActaPart B: Atomic Spectroscopy.2007.62(8):721-738
    [104] R.H. Huddlestone,S.L. Leonard. Plasma diagnostic techniques. AcademicPress. London.1965.1
    [105] P.J. Wolf. The plasma properties of laser‐ablated SiO2. Journal of appliedphysics.1992.72(4):1280-1289
    [106] M.A. Ismail, G. Cristoforetti, S. Legnaioli, et al. Comparison of detection limits,for two metallic matrices, of laser-induced breakdown spectroscopy in the singleand double-pulse configurations. Analytical and bioanalytical chemistry.2006.385(2):316-325
    [107] HC Liu, XL Mao, JH Yoo, et al. Early phase laser induced plasma diagnosticsand mass removal during single-pulse laser ablation of silicon. SpectrochimicaActa Part B: Atomic Spectroscopy.1999.54(11):1607-1624
    [108] J.B. Simeonsson,A.W. Miziolek. Time-resolved emission studies ofArF-laser-produced microplasmas. Applied optics.1993.32(6):939-947
    [109] L.J. Radziemski, T.R. Loree, D.A. Cremers, et al. Time-resolved laser-inducedbreakdown spectrometry of aerosols. Analytical Chemistry.1983.55(8):1246-1252
    [110] A. Ciucci, M. Corsi, V. Palleschi, et al. New procedure for quantitativeelemental analysis by laser-induced plasma spectroscopy. Applied Spectroscopy.1999.53(8):960-964
    [111] V. Lazic, S. Jovicevic, R. Fantoni, et al. Efficient plasma and bubble generationunderwater by an optimized laser excitation and its application for liquid analysesby laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: AtomicSpectroscopy.2007.62(12):1433-1442
    [112] S. Koch, W. Garen, W. Neu, et al. Detection of manganese in solution incavitation bubbles using laser induced breakdown spectroscopy. SpectrochimicaActa Part B: Atomic Spectroscopy.2005.60(7-8):1230-1235
    [113] JO Cáceres, J. Tornero Lopez, HH Telle, et al. Quantitative analysis of tracemetal ions in ice using laser-induced breakdown spectroscopy. SpectrochimicaActa Part B: Atomic Spectroscopy.2001.56(6):831-838
    [114] B. Charfi,MA Harith. Panoramic laser-induced breakdown spectrometry ofwater. Spectrochimica Acta Part B: Atomic Spectroscopy.2002.57(7):1141-1153
    [115] P. Yaroshchyk, R.J.S. Morrison, D. Body, et al. Quantitative determination ofwear metals in engine oils using laser-induced breakdown spectroscopy: Acomparison between liquid jets and static liquids. Spectrochimica Acta Part B:Atomic Spectroscopy.2005.60(7-8):986-992
    [116] P. Fichet, P. Mauchien, J.F. Wagner, et al. Quantitative elemental determinationin water and oil by laser induced breakdown spectroscopy. Analytica ChimicaActa.2001.429(2):269-278
    [117] L. Dai, C. Wang, J. Wu, et al. Laser-induced breakdown spectroscopycharacterization of Al in different matrix. Optoelectronics Letters.2007.3(2):148-151
    [118] DM Díaz Pace, CA D'Angelo, D. Bertuccelli, et al. Analysis of heavy metals inliquids using laser induced breakdown spectroscopy by liquid-to-solid matrixconversion. Spectrochimica Acta Part B: Atomic Spectroscopy.2006.61(8):929-933
    [119] VI Babushok, FC DeLucia, JL Gottfried, et al. Double pulse laser ablation andplasma: laser induced breakdown spectroscopy signal enhancement.Spectrochimica Acta Part B: Atomic Spectroscopy.2006.61(9):999-1014
    [120] N.E. Schmidt,S.R. Goode. Analysis of aqueous solutions by laser-inducedbreakdown spectroscopy of ion exchange membranes. Applied Spectroscopy.2002.56(3):370-374
    [121] X. Fang,SR Ahmad. Detection of mercury in water by laser-inducedbreakdown spectroscopy with sample pre-concentration. Applied Physics B:Lasers and Optics.2011:1-4
    [122] V. Lazic, F. Colao, R. Fantoni, et al. Laser-induced breakdown spectroscopy inwater: Improvement of the detection threshold by signal processing.Spectrochimica Acta Part B: Atomic Spectroscopy.2005.60(7-8):1002-1013
    [123] A. Kumar, F.Y. Yueh,J.P. Singh. Double-pulse laser-induced breakdownspectroscopy with liquid jets of different thicknesses. Applied optics.2003.42(30):6047-6051
    [124] S. Koch, W. Garen, M. Müller, et al. Detection of chromium in liquids by laserinduced breakdown spectroscopy (LIBS). Applied Physics A: Materials Science&Processing.2004.79(4):1071-1073
    [125] M. Lawrence-Snyder, J. Scaffidi, S.M. Angel, et al. Sequential-pulselaser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions.Applied Spectroscopy.2007.61(2):171-176
    [126] R.A. Multari, L.E. Foster, D.A. Cremers, et al. Effect of sampling geometry onelemental emissions in laser-induced breakdown spectroscopy. AppliedSpectroscopy.1996.50(12):1483-1499
    [127] W. Pearman, J. Scaffidi,S.M. Angel. Dual-pulse laser-induced breakdownspectroscopy in bulk aqueous solution with an orthogonal beam geometry.Applied optics.2003.42(30):6085-6093
    [128]郑国经,计子华,余兴.原子发射光谱分析技术及应用.北京:化学工业出版社.2010
    [129]辛仁轩.等离子体发射光谱分析.北京:化学工业出版社.2005
    [130] M.A. Tarr, G. Zhu,R.F. Browner. Fundamental aerosol studies with anultrasonic nebulizer. Applied Spectroscopy.1991.45(9):1424-1432
    [131] A.M El Sherbini, H. Hegazy,T.M. El Sherbini. Measurement of electrondensity utilizing the H [alpha]-line from laser produced plasma in air.Spectrochimica Acta Part B: Atomic Spectroscopy.2006.61(5):532-539
    [132] M.A. Gigosos, M.á. González,V.I. Carde oso. Computer simulatedBalmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmasdiagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy.2003.58(8):1489-1504
    [133] P. Boumans. Atomic emission detection limits; more than incidental analyticalfigures of merit!-A tutorial discussion of the differences and links between twocomplementary approaches. Spectrochimica Acta Part B: Atomic Spectroscopy.1991.46(6-7):917-939
    [134] O. Samek, D.C.S. Beddows, J. Kaiser, et al. Application of laser-inducedbreakdown spectroscopy to in situ analysis of liquid samples. OpticalEngineering.2000.39:2248
    [135] A.D. Giacomo, M. Dell'Aglio, F. Colao, et al. Double-pulse LIBS in bulk waterand on submerged bronze samples. Applied surface science.2005.247(1-4):157-162
    [136] IEC BIPM, ISO IFCC,I. IUPAC. OIML, Guide to the Expression ofUncertainty in Measurement. International Organization for Standardization,Geneva. ISBN.1995:92-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700