超滑现象及超薄膜润滑机理的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子机械系统以及纳米机械的迅速发展对于分子尺度下器件摩擦、润滑和磨损特性的研究提出了迫切的要求。因此从分子层面上研究摩擦的起源对于掌握摩擦的本质以及实现超滑零摩擦有着重要的意义。同时,模拟分析超薄膜流体的性质,寻找其与宏观连续体模型的联系与区别,对于未来微流管设计,建立微观流体的基础理论有一定的指导意义。
     本文首先介绍纳米摩擦、润滑研究的计算机模拟工具-分子动力学,并对于本文固体、流体滑动过程的模拟给出了特别的说明。在此基础上,对干摩擦进行了模拟,根据模拟结果并结合Tomlinson模型,分析了在微观情况下,超滑现象的产生条件以及在低速时动摩擦力随滑动速度增加而增加的机理。然后,构建Couette流模型,用分子动力学模拟超薄膜润滑的边界条件,着重模拟了温度对于滑移长度的影响,结果显示:在固液作用势较强的情况下,滑移长度随着温度的增加而增加;在其较弱的情况下,随着温度的增加,滑移长度反而下降。对于这种现象,提出了滑移界面上下的层状有序化差异程度是导致滑移的主要原因。最后模拟了纳米轴承的流体动压润滑现象,结果表明:在低速滑移情况下,经过边界条件修正的雷诺方程仍然可以使用,润滑膜的承载量随着滑移速率的增加而增加;然而在高速下,雷诺方程失效。
The rocketing development of Micro-electronic mechanic system (MEMS) and Nano machine urgently required more fundamental and deep research of Nano-tribology. Hence the research of origin and mechanism of friction in molecular level is very meaningful to master the nature of friction and realize super-lubricity. Meanwhile, the simulation of the property of ultra-thin film and the investigation about the dissimilarity and resemblance between it and macro continuous fluid is vital important to design future micro-flow pipe and establish micro-flow theory.
     In this paper, the computer simulation tool– molecular dynamic simulation (MDs) is introduced at first and its special instruction in simulation of motion is listed as well. With MDs, the dry friction is simulated under many conditions, according to the results, the condition under which super-lubricity appears is acquired and the reason why friction increases with the increase of velocity is analyzed.
     Moreover, The behavior of the slip between confined liquid and solid walls subject to planar shear is investigated using molecular dynamics simulations. In this simulation model, a wide range of fluid-solid interaction strength, fluid densities and fluid temperature are simulated in order to find the dominant effects on the slip length between the fluid and the solid wall, which is a key parameter for fluid dynamics. Results indicate that the slip length increases with the increase of temperature under large solid-liquid potential, while it decreases under small solid-liquid potential. An assumption about the origin of slip is proposed: structure difference between the neighboring layers of the slippage interface is responsible for the slip behavior.
     Finally, A Nano-bearing is simulated in this paper, the results indicate that the revised Reynolds’equation is valid under low shear rate. The load from lubricant to the bearing is proportional to the sliding rate, and the normal stress increases with the decrease of film thickness. However, under high shear rate, revised Reynolds’equation is invalid.
引文
1. 温诗铸. 纳米摩擦学[M ]. 北京: 清华大学出版社
    2. 杨志伊. 纳米科技 . 机械工业出版社(M) 2004.1 月第 1 版
    3. Balandin A A. Nanoscale thermal management. IEEE Potentials, 2002, 21: 11-15
    4. Nakayama W. Forced convective/conductive conjugate heat transfer in microelectronic equipment. Annual Review of Heat Transfer. Ed. Tien. C L. 1997, 8: 1-48
    5. Tuckerman, D.B., Pease, R.F.W., High-Performance Heat Sinking for VLSI, IEEE Electron Device Letters, Vol. EDL2, No. 5, 1981, pp.126-129.
    6. Frenkel, Smit. 分子模拟-从算法到应用[M]. 汪文川等译. 化学工业出版社
    7. Hirano, M. and Shinjo, K., Atomistic locking and friction, Phys. Rev. 1990, B 41, 11837-11851.
    8. Hirano, M. and Shinjo, K., Super-lubricity and frictional anisotropy, Wear 1993, 168, 121-125.
    9. Hirano, M., Shinjo, K., Kaneko, R., and Murata, Y., Observation of super-lubricity by scanning tunneling microscopy, 1997, Phys. Rev. Lett. 78, 1448-1451.
    10. Sorensen, M. R., Jacobsen, K. W., and Stoltze, P., Simulations of atomic-scale sliding friction, Phys Rev. 1996, B 53, 2101-2113.
    11. Muser, M. H. and Robbins, M. O., Condition for static friction between at crystalline surfaces, Phys. Rev. 1999, B 60.
    12. Perry, M. D. and Harrison, J. A., Molecular Dynamics Investigations of the Effects of Debris Molecules on the Friction and Wear of Diamond, Thin Solid Films 1996, 290-291, 211-215.
    13. Perry, M. D. and Harrison, J. A., Friction between Diamond Surfaces in the Presence of Small Third-Body Molecules, J. Phys. Chem. B 1997, 101, 1364-1373.
    14. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., Effects of Chemically-Bound, Flexible Hydrocarbon Species on the Frictional Properties of Diamond Surfaces, J. Phys. Chem. 1993, 97, 6573-6576.
    15. Glosli, J. N. and McClelland, G., Molecular dynamics study of sliding friction of ordered organic monolayers, Phys. Rev. Lett. 1993, 70, 1960-1963.
    16. McClelland, G. M., Friction at Weakly Interacting Interfaces, in Adhesion and Friction (Grunze, M. and Kreuzer, H. J., eds.), 1989, volume 17, 1-16, Springer Verlag, Berlin.
    17. McClelland, G. M. and Cohen, S. R., Tribology at the Atomic Scale, in Chemistry & Physics of Solid Surfaces VII (Vanselow, R. and Rowe, R., eds.), 1990, 419-445, Springer Verlag, Berlin.
    18. McClelland, G. M. and Glosli, J. N., Friction at the Atomic Scale, in Fundamentals of Friction: Macroscopic and Microscopic Processes (Singer, I. L. and Pollock, H. M., eds.), 1992, 405-422, Kluwer, Dordrecht.
    19. Ohzono, T., Glosli, J. N., and Fujihara, M., Simulations of wearless friction at a sliding interface between ordered organic monolayers, Jpn. J. Appl. Physics 1998, 37, 6535-6543.
    20. Nieminen, J. A., Sutton, A. P., and Pethica, J. B., Static Junction Growth During Frictional Sliding of Metals, Acta Metall. Mater. 1992, 40, 2503-2509.
    21. Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture, Science 1990, 248, 454-461.
    22. Landman, U., Luedtke, W. D., and Ringer, E. M., Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear 1992, 153, 3-30.
    23. Landman, U., Luedtke, W. D., and Ribarsky, M. W., Structural and dynamical consequences of interactions in interfacial systems, J. Vac. Sci. Technol. 1989, A 7, 2829-2839.
    24. Tomagnini, O., Ercolessi, F., and Tosatti, E., Microscopic Interaction between a Gold Tip and a Pb (110) Surface, Surf. Sci. 1993, 287/288, 1041-1045.
    25. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., Nanoscale Investigation of Indentation, Adhesion and Fracture of Diamond (111) Surfaces, Surf. Sci. 1992, 271, 57-67.
    26. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., Molecular-Dynamic Simulations of Atomic-Scale Friction of Diamond Surfaces, Phys. Rev. B 1992, 46, 9700-9708.
    27. Klein J, Perahia D, Warburg S. Forces between polymer-bearing surfaces undergoing shear. Nature, 1991, 352(11):143
    28. Yoshizawa H, Mcguiggan P, Israelachvili J. Identification of a second dynamic state during stick-slip motion. Science, 1993, 259: 1 305
    29. Martin J M, Donet C, Mogne T L. Super-lubricity of molybdenum disulphide[J]. Phys. Rev. 1993, B48(14): 10583-10586
    30. Koplik, J., Banavar, J. R., and Willemsen, J. F., Molecular Dynamics of Poiseuille Flow and Moving Contact Lines, Phys. Rev. Lett. 1988, 60, 1282-1285.
    31. Koplik, J., Banavar, J. R., and Willemsen, J. F., Molecular dynamics of fluid at solid surfaces, Phys. Fluids A 1989, 1, 781-794.
    32. Thompson, P. A. and Robbins, M. O., Simulations of Contact-Line Motion: Slip and the Dynamic Contact Angle, Phys. Rev. Lett. 1989, 63, 766-769.
    33. Magda, J., Tirrell, M., and Davis, H. T., Molecular Dynamics of Narrow, Liquid-Filled Pores, J. Chem. Phys. 1985, 83, 1888-1901.
    34. Schoen, M., Rhykerd, C. L., Diestler, D. J., and Cushman, J. H., Fluids in Micropores. I. Structure of a Simple Classical Fluid in a Slit-Pore, J. Chem. Phys. 1987, 87, 5464-5476.
    35. Thompson, P. A. and Robbins, M. O., Shear flow near solids: Epitaxial order and flow boundary conditions", Phys. Rev. A 1990, 41, 6830-6837.
    36. Thompson, P. A., Robbins, M. O., and Grest, G. S., Structure and Shear Response in Nanometer-Thick Films, Israel J. of Chem. 1995 35, 93-106.
    37. Gao, J., Luedtke, W. D., and Landman, U., Origins of Solvation Forces in Confined Films, J. Phys. Chem. B 1997,101, 4013-4023.
    38. Gao, J., Luedtke, W. D., and Landman, U., Structure and Solvation Forces in Confined Films: Linear and Branched Alkanes, J. Chem. Phys. 1997, 106, 4309-4318.
    39. Ribarsky, M. W. and Landman, U., Structure and dynamics of normal-alkanes confined by Solid-Surfaces. Stationary Crystalline Boundaries", J. Chem. Phys. 1992, 97, 1937-1949.
    40. Xia, T. K., Ouyang, J., Ribarsky, M. W., and Landman, U., Interfacial Alkane Films, Phys. Rev. Lett. 1992, 69, 1967-1970.
    41. Heinbuch, U. and Fischer, J., Liquid flow in pores: Slip, no-slip, or multilayer sticking, Phys. Rev. A 1989, 40, 1144-1146.
    42. Bocquet, L. and Barrat, J.-L., Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids, Phys. Rev. E 1994, 49, 3079-3092.
    43. Mundy, C. J., Balasubramanian, S., and Klein, M. L., Hydrodynamic boundary conditions for confined fluids via a non-equilibrium molecular dynamics simulation, J. Chem. Phys. 1996, 105, 3211-3214.
    44. Khare, R., de Pablo, J. J., and Yethiraj, A., Rheology of Confined Polymer Melts", Macromolecules 1996, 29, 7910-7918.
    45. Barrat, J.-L. and Bocquet, L., Large Slip Effect at a Nonwetting Fluid-Solid Interface, Phys. Rev. Lett. 1999, 82, 4671-4674.
    46. Thompson, P. A. and Troian, S. M., A general boundary condition for liquid flow at solid surfaces", Nature 389, 360-363.
    47. Bitsanis, I., Magda, J. J., Tirrell, M., and Davis, H. T., Molecular dynamics of flow in micropores, J. Chem. Phys. 1987, 87, 1733-1750.
    48. Bitsanis, I., Somers, S. A., Davis, H. T., and Tirrell, M., Microscopic dynamics of flow in molecularly narrow pores, J. Chem. Phys. 1990, 93, 3427-3431.
    49. Gee, M. L., McGuiggan, P. M., Israelachvili, J. N., and Homola, A. M., Liquid to solid transitions of molecularly thin films under shear, J. Chem. Phys. 1990, 93, 1895-1906.
    50. Granick, S., Motions and Relaxations of Confined Liquids", Science 1992, 253, 1374-1379.
    51. Horn, R. G. and Israelachvili, J. N., Direct measurement of structural forces between two surfaces in a non-polar liquid, J. Chem. Phys. 1981, 75, 1400-1412.
    52. Israelachvili, J. N., Intermolecular and Surface Forces, 1991, 2nd ed., Academic Press, London.
    53. Georges, J. M., Millot, S., Loubet, J. L., Touck, A., and Mazuyer, D., Surface roughness and squeezed l ms at molecular level, in Thin Films in Tribology, 1993, pp. 443-452, Elsevier, Amsterdam.
    54. Hu Y Z, Wang H, Guo Y, Zheng L Q. Simulation of lubricant rheology in thin film lubrication. Part I: Simulation of Poiseuille flow. Wear 1996, Volume: 196, Issue: 1-2, 243-248.
    55. Hu Y Z, Wang H, Guo Y, Shen Z J, Zheng L Q. Simulation of lubricant rheology in thin film lubrication. Part II: Simulation of Couette flow. Wear 1996, Volume: 196, Issue: 1-2, 249-253.
    56. 雒建斌 薄膜润滑特性和机理研究[J]. 中国科学 A 辑, 1996,9 Vol.26(9) 811-819
    57. 邹鲲. 超薄膜流体摩擦的微观机制[J]. 清华大学学报(自然科学版),2000,40(5) 70-72
    58. 邹鲲. 超薄膜润滑的分子动力学模拟[J]. 清华大学学报(自然科学版),1999,39(4) 38-41
    59. 张朝辉, 温诗铸, 雒建斌. 薄膜润滑的微极流体模拟[J]. 机械工程学报,2001, 37(9): 4-8
    60. Alder B J,Wainwright T E. Phase transition for a hard-sphere system. The Journal of Chemical Physics,1957,27:1208~1209
    61. Heermann D W. 理论物理学中的计算机模拟方法[M]. 秦克勤译,北京大学出版社,1996。
    62. F. H. Stillinger and T.A.Weber,Computer Simulation of Local Order in Condensed Phases of Silicon ,Physical Review B,1985,Vol 31,5262~5271
    63. Swope W C,Anderson H C. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. Journal of Chemical Physics,1982,76:637~649.
    64. D.C Rapaport, The Art of Molecular Dynamics Simulation, Cambridge: Cambridge University Press,1995.
    65. Allen M P, Tildesley D J. Computer simulation of liquids[M], England: Oxford Clarendon Press,1987.
    66. Bowden, F. P. and Tabor, D., The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1986.
    67. Tomlinson, G. A., A molecular theory of friction, Phil. Mag. Series 1929, 7, 905-939.
    68. 温诗铸,杨沛然. 弹性流体动力润滑[M] 北京: 清华大学出版社, 1992.
    69. Jabbarzadeh A, Atkinson J D, Tanner R I. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Physical Review E. 2000, 61 (1): 690-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700