哈尔滨污水深度处理工艺优化及生产性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松花江哈尔滨江段受城市工业废水和生活污水的污染,江水作为集中饮用水源已令人担忧。欲维系城市用水健康循环的功能,仅仅依靠提高二级处理普及率是远远不够的,如果在二级处理基础上将排放的处理水变成再生水,使之成为稳定的城市水源的重要组成部分,那么一个健康的城市用水循环系统就近在咫尺。
     通过哈尔滨、大连、深圳、保定四地试验对好气过滤柱的再生效能进行了分析,考察了以pH为主的影响因素对净化效果的影响。并研究了低温下好气过滤柱的净化效能以及影响机理。结果表明:相对于普通石英砂滤柱来说,好气过滤柱的COD、BOD5、浊度、NH4 -N改善率分别为25.7%、54%、43%、62%。试验综合表明,好气过滤柱进行污水深度处理,最佳水力负荷、DO、pH分别为6~8m/h,1.5~2.5mg/L,7~8,而最佳运行周期则因进水水质、水温等因素而定。
     哈尔滨现场中试验证小试的试验结果表明:采用污水处理全流程对污水进行一级、二级、深度处理,更能真实反映好气过滤柱的运行效果,有助于寻求适宜的运行参数。中试试验证明,适当反冲洗有助于好气过滤柱的快速启动。好气过滤柱在COD容积负荷8Kg/m3·d、水力负荷7m3/m2·h时处理效能最佳。当水力负荷大于9m3/m2·h后,COD去除量都在2.2Kg/m3·d左右,与容积负荷的关系不大。
     在运行参数方面,静态烧杯试验得出:对比于硫酸铝、PAC和复合铝铁,选择硫酸铝作为再生水车间的混凝剂。动态实际系统流程的投药量大约为烧杯试验的1.5~1.6倍。在水气比为1.07时,气浮池的出水效果最佳。确定在进水负荷3.0 m3/m2·h,滤池的处理效果达到最佳,此时的过滤周期为48小时。通过实验优选出常规滤料滤池三段式联合反冲洗方式的最佳运行参数为:气冲洗强度14 L/s·m2,水冲洗强度6 L/s·m2,单气预冲2min,接着气水同时冲洗3min,最后单水漂洗5min。
     在实验室小试与现场中试以后,利用污水处理厂的二级出水作为再生水实验对象,在哈尔滨文昌污水厂厂区建设了以混凝沉淀、溶气气浮、外加好气滤池为主体工艺流程的产业化污水再生回用全流程,通过超越管道和闸门切换可达到八个不同处理流程,以处理不同的来水水质。综合分析不同的来水水质与各个不同流程的处理效果,选择流程4(即混凝沉淀+好气滤池)
In the past decades, the Songhua River in Harbin for drinking water havebeen more and more polluted by municipal sewage and industry wastewater, andbeen upset the people along the river. It is not enough to depend only onsecondary treatment ratio, but no consideration about recycle the waste water asreclamation water to hold the health of water cycle together, at the same tine tobe a new important part of city source water. Then we can see a bright future forthe healthy water cycle in garden city at hand.
     Biofilters in regeneration, decontamination efficiency and effectionmechanism at low temperature have been studied in Harbin, Da Lian, Bao Dingand Shen Zhen. The conclusions as follow: The removal efficiency bybiofiltration is better than the rapid fiters, which the removal of COD、BOD5、turbidity、NH4 -N can increase by 25.7%, 54%, 43%, 62%. The optimumhydraulic load, DO and pH were 6~8m/h, 1.5~2.5mg/L, 7~8 separately, but theoptimun operation cycle depended on the influx water quality and temperature.
     To test the trials, pilot experiment shows: wastwater completed treatmentflow consisting of primary, secondary, and advanced treatment could reflect thereal operation efficiency and obtain the fitable run parameter. The properbackwashing and controlling autotuaph and heterogeneous bacteria canaccelerate the start-up process. The fitable values of volume load, hydraulic load,DO are 8Kg/m3·d, 7m3/m2·h, 1.5~2.5mg/L for the biofilters in advancedwastewater treatment. The COD removal quantity was about 2.2Kg/m3.d when P Phydraulic load was more than 9m3/m2·h, but it doesn’t matter with volume load.
     In the operation parameters aspect, static beaker test shows: comparing withthe aluminium sulfate, PAC, and PAM, we choose aluminium sulfate ascoagulation medicament. The injection quantity of reagent was about 1.5~1.6time than the beaker test. The optimum water to gas ratio is about 1.07 in airflotation pond. The influx load is 3.0 m3/m2·h when the filter reach its bestoperation condition, the filter cycle time is 48 hours at that time. The optimumoperating parameters of common package through three-phase combinedbackwashing manner are as follow: air backwashing intensity is 14 L/s·m2, water P
引文
1 鲁秀国, 张小秋, 秦哲等. 论解决水资源短缺的有效方法—中水回用. 河北大学学报. 2004, 24 (2): 203~206
    2 陈光. 浅谈中水系统及在哈尔滨市的应用. 低温建筑艺术. 2002, 4:85~87
    3 杨雨虹, 于剑, 王春明. 松花江哈尔滨江段渔业生态环境的水质分析及污染的防治政策. 黑龙江水产. 2000, (1):37~38
    4 刘连成. 松花江水系有机污染的现状及防止对策. 灾害学. 1996,11(1):25
    5 王建嵩, 陈魁中. 松花江水污染亟待治理. 水利天地. 1996, (6):14
    6 王颖. 松花江水污染状况与对策. 黑龙江水专学报. 2005, 32 (3):81~82
    7 张为中, 李志群. 松花江与辽河污染防治情况简介. 东北水利水电. 2000, 18 (12):11~12
    8 于得江, 胡兆军, 孙云秀. 浅论第二松花江水资源可持续开发利用. 吉林水利. 2001, (2):18~19
    9 李平. 松花江水环境问题剖析与污染防治政策研究. 环境科学与管理. 2005, 30 (3):5~8
    10 孟志, 李忠民. 松花江治理途径之一—沿江截流. 东北水利水电. 2005,
    23(2):89
    11 李兴春, 李云鹏,王咏. 第二松花江吉林市江段污染控制对策研究. 2001, 19 (10): 47~49
    12 罗奇鸿. 松花江段环境水文初步研究. 黑龙江水专学报. 1994, (4): 59~60
    13 李青山. 松花江有机毒物污染状况调查与对策研究. 水污染与保护. 1996, 15 (1): 39~44,49
    14 宋丽, 王英华, 任伟. 哈尔滨市水环境问题及对策浅议. 黑龙江水专学报. 2002, 29 (1): 103~105
    15 金世洲, 李润广,于艳霞. 哈尔滨市水资源问题及对策研究. 北方环境. 2004, 29 (4): 8~9
    16 吴民官, 田壮飞. 哈尔滨城市供水水源工程浅析. 水利规划. 1997, (2): 52~54
    17 宫振文, 王文明. 哈尔滨市城市水资源与可持续利用. 哈尔滨师范大学自然科学学报. 2000, 16 (1): 85~89
    18 中国市政工程东北设计研究院. 哈尔滨市松花江水源净水厂应急改造工程可行性研究报告. 2005: 37~38
    19 哈尔滨市供排水集团. 哈尔滨市供水规划. 1989:37
    20 王北松, 王忠伟. 哈尔滨市水环境保护问题的对策建议. 北方环境. 2003, 28 (3): 4~7
    21 邓广慧. 水环境污染与防治. 黑龙江水利科技. 2002, (4): 44~45
    22 张铁军, 陈宏峰, 赫晓彦. 哈尔滨市水资源开发利用现状调查与对策. 水利科技与经济. 2004, 10(4): 222
    23 崔云, 穆浴光, 孙立新. 黑龙江省哈尔滨市江南地区地下水资源评价与管理研究. 哈尔滨, 哈尔滨市水资源管理办公室, 1996: 45~47
    24 李碧清, 高洁, 白宇, 张杰. 城市污水深度处理与流域健康水循环. 低温建筑艺术. 2004, (4): 67~68
    25 薛飞, 胡志光, 常爱玲. 城市污水深度处理及回用. 工业安全与环保. 2005, 31 (50): 36~38
    26 张杰, 熊必武. 创建城市水系统健康循环促进水资源可持续利用. 沈阳建筑工程学院学报. 2004, 20 (3): 204~206
    27 张杰, 熊必武. 城市水系统健康循环实施策略研究. 北京工业大学学报. 2004, 30 (2): 185~189
    28 李捷, 熊必永, 张杰. 城市污水处理厂污泥的处置与农业可持续发展. 给水排水. 2003, 29 (9): 23~26
    29 肖锦. 城市污水处理及回用技术. 化学工业出版社, 2001:75~77
    30 张杰, 熊必永. 污水深度处理于水资源可持续利用. 给水排水. 2003, 29 (6): 29~32
    31 张杰, 陈立学. 我国水环境与水循环的健康之路. 给水排水. 2005, 31 (5): 19~25
    32 刘庆爱. 有效利用水资源, 促进经济可持续发展—初探中水利用及其效益. 资源经济. 2004, (10): 12~14
    33 Midorikawabe. To Enhance the Environmental Values of Tokyo Bay—A Proposition For Integrated Coastal Zone Management. Ocean& Coastal Management. 1998, 41 (1): 19~39
    34 吴键, 张理. 西安市城市污水处理及其再生利用. 给水排水. 2003,29(2): 13~18
    35 张杰, 臧景红. 城市污水深度处理在水循环水环境和水资源可持续利用中的作用. 长春工程学院学报(自然科学版). 2000, 1 (1): 1~3
    36 M. Maeda, K. Nakada, K. Kawamoto, et al. Area—wide Use of Reclaimed Water in Tokyo, Japan . Wat.Sci.Tech. 1996, 33 (10): 51~57
    37 叶雯, 刘美南. 我国城市污水再生利用的现状与政策. 中国给水排水. 2002, 18 (12): 31~33
    38 乔华, 王社平, 黄宁俊. 国内外城市污水回用的现状及发展水平. 陕西给排水. 2001, 17 (4): 31~32
    39 周勤, 肖锦. 污水回用—解决城市用水危机的重要途径. 水利发展研究. 2003, (10): 38~41
    40 J. Crook, Y. S. Rao. Water Reclamation and Reuse Criteria in the U.S. 1996: 64
    41 籍国东. 我国污水资源化的现状分析与对策探讨. 环境科学进展. 1998, 7 (5): 85~95
    42 J. (Hans) Van Leeuwen. Reclaimed Water — An Untapped Resource. Desalination. 1996, (106): 233~240
    43 T. Asano, D. L. Audrey. Wastewater Reclamation, Recyling and Reuse: Past, Present, and Future. Wat.Sci.Tech.1996,(33): 1~14
    44 H.Tanaka, T. Asano, E.D. Schroeder, et al. Estimating the Reliability of Wastewater Reclamation and Reuse Using Enteric Virus Monitoring Data. Presented at the 66th Annual Conference&Exposition. Water Environment Federation. 2003: 3~7
    45 T.Asano, L.Y.C.Leong, M.G. Rigby, et al. Evaluation of the California Wastewater Reclamation Criteria Using Enteric Virus Monitoring Data. Water Sci, and Tech. 1997, 26 (7-8): 1523~1524
    46 周彤. 污水回用时解决城市缺水的有效途径. 给水排水. 2001, 27 (1): 1~6
    47 李梅, 黄延林. 西北地区城市污水再生回用技术. 城市环境与城市生态. 2003, 16 (1): 65~67
    48 B. Sheikh, R.P. Cort, W.R. Kirkpatrick, et al. Monterey Wastewater Reclamation Study for Agriculture. Research Journal WPCF, 2000: 62~63
    49 T. Asano, M. Maeda, M. Takaki. Wastewater Reclamation and Reuse in Japan:Overview and Implementation Examples. Wat.Sci.Tech. 1996, 34(11): 219~226
    50 H. Bouwer. Role of Groundwater Recharge Intreatment and Storage ofWastewater for Reuse. Water Sci and Techn.1997, 24 (9): 295~302
    51 H. Barty-king. Water The Book, an Illustrated History of Water Supply and Wastewater in the United Kingdom. Quiller Press Limited, London, 1992: 34~37
    52 World Health Organization. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture. Reprt of a WHO Scientfic Group. Geneva, Switzerland, 2001: 14~17
    53 D. D.Young. Reuse Via rivers for Water Supply in Reuse of Sewage Effluent, Proceedings of the International Symposium Organized by the Institution of Civil Engineers, London ,1994: 32~37
    54 K. Jerzy, Z. Krystyna. Implementation of the Cracow Municipal Wastewater Reclamation System for Industrial Water Reuse. Desalination. 1996,(106): 183~193
    55 G.M. Fair, J.C. Geyer. Water Supply and Wastewater Disposal. John Wiley and Sons, New York, 1994: 17~18
    56 A.O. Deniel. Water Reclamation and Nonportable Reuse: An Option for Meeting Urban Water Supply Needs. Desalination. 1996, (106): 205~212
    57 A. M.Richard and T. Asano. Retrospective Accessment of Water Reclamation Projects. Wat. Sci. Tech.1996, 33 (10~11): 59~70
    58 T.Asano and R.A. Mills. Planning and Analysis for Water Reuse Projects. J.Am. Water Works Assoc. 1990: 38~47
    59 W.H. Slawomir, T. Asano. Abel wolman’s “The Metabolism of Cities”Revisited: A Case for Water Recycling and Reuse. Wat.Sci.Tech. 1999,40(4~5): 29~36
    60 T. Asano, A.D. Levine. Wastewater Reuse: A Valuable Link in Water Resources Management. Water Quality International. 1995, (4): 20~24
    61 P.C.Hertzler, C.Davies. The Cost of Infrastructure Needs. J.Awwa. 1999, 89 (3): 55~61
    62 National Research Council. Managing Wastewater in Coastal Urban Areas. National Academy Press, 1993:2~5
    63 U.S. Environmental Protection Agency. Guidelines for Wastewater Reuse Manual.(EPA/625/R921004),1992: 58~63
    64 A.Wolman. The Metabolism of Cities. Scientific American.1995, 213(3):179~190
    65 World Resources Institute. World resources. Oxford University Press, 1996: 67~69
    66 孙亚军. 城市污水再生利用是实现水资源可持续利用的有效途径. 给水排水. 2004, 30(1): 108~111
    67 刘一平, 郭绍辉. 城市污水回用于工业的现状分析. 环境工程. 2005, 23 (3): 15~16
    68 陈亚萍, 康永祥. 城市污水回用及其途径. 干旱区研究. 2005, 22 (3): 383~384
    69 李玉鲲, 李玉鹏, 李明涛. 浅谈我国污水处理及污水资源化. 水资源保护. 2004, (1): 78~79
    70 郭晓, 从广治, 张杰. 城市污水再生全流程概念与方案优选. 2005, 21 (9): 89
    71 朱伟萍, 何亚丽, 殷磊. 城市污水资源化的应用. 平顶山工学院学报. 2004, 13(4): 36~37
    72 袁志彬. 城市小区中水回用现状. 市政工程. 2004, (15): 52~53
    73 从刚春,张宏伟. 大连地区中水回用的探讨. 东北水利水电. 2003, 21 (6): 28~29
    74 郑一军. 推进城市污水资源化, 保障水资源可持续利用. 2004. http:// capital. hwcc.gov.cn/outsidegroup/ outside_browse asp? newsid=296
    75 T. George and N. A. Andreas. Technologies for Wastewater Treatment Appropriate for Reuse: Potential for Applications in Greece. Wat.Sci. Tech. 1996, 33 (10~11): 15~24
    76 E.C.Jowett, and M.M. Mcmaster. A New single-pass Aerobic Biofilter For On-site Wastewater Treatment. Environ. Sci. &Engr. 1994, 6 (6): 83~87
    77 W. Montgomery, L.NBS. “Water Repurification Feasibility Study” Report Prepared for San Diego Water Authority, San Diego , CA, 1994: 1568~1570
    78 G. Tchobanoglous, F.C. Burton. Wastewater Engineer: Treatment, Disposal, Reuse, 3rd Ed, Metcalf 82. Eddy, Inc. Mcgraw-Hill Book Company. 1991: 37~41
    79 B.A. Dempsey, R.M. Ganho and C.R.O’ Melia. J.Am.Wat.Works Assoc. 2004, (76): 88~91
    80 O.O. Hart. The Characterization and Quantification of Organic Componentsin Reclaimed Water. Doctoral Thesis.University of Pretoria.2003: 77~83
    81 M. Isascson, A.R.Sayed and W.H.J. Hattingh. Studies on Health Aspects of Water Reclamation 1971~1983. in Windhoe. Water Research Commission. 1997: 1187
    82 A. Adin and T. Asano. The Role of Physical-chemical Treatments in Wastewater Reclamation and Reuse. Wat.Sci.Tech.1998, 37 (10): 79~90
    83 夏广香. 国内外水回用现状与技术发展浅析. 水利技术论坛. http: // info. research. hc360. com/2005/ 12/ 30092310097. shtml
    84 雷乐成. 水处理新技术及工程设计. 北京, 化学工业出版社, 2001: 322~358
    85 张智, 阳春. 城市污水回用技术. 重庆建筑大学学报. 2000, 22(4): 103~106
    86 C.Tien, A.C. Payatakes. Advances in Deep Bed Filtration . J.American Institute of Chemical engineering, 1999: 737~748
    87 M. Rebhun, Z. Furer, and A. Adin. Contact Flocculation-filtration of Humic Substances. Water research. 1994, 18 (8): 963~973
    88 J. Manka and M. Rebhun. Organic Groups and Molecular Weight Distribution in Tertiary Effluent Sand Renovated Waters. Water Research. 2002, 16(4): 399~403
    89 陆兴超. 城市污水回用技术现状和发展趋势. 环境保护. 1996, (2): 15~17
    90 M. Kavanaugh, K. Sigster, A. Weber, et al. Contact Filtration for Phosphorous Removal. Water Pollut. Control Fed. 1997, 49 (10): 2157
    91 P. N.Johnson, A. Amirtharajah. Ferric Chloride and Alum as Single and Duble Coagulants. J. American Waters Association. 1999, 75 (5): 232
    92 陈频. 污水回用技术与应用. 金陵职业大学学报. 2003, 18 (1): 42~44
    93 李军, 杨秀山, 彭永臻. 微生物与水处理工程. 化学工业出版社, 2002: 343~405
    94 K.J. Ives. Deep Bed Filtration: Theory and Practice. Filtration and Separation .1998, 17 (2): 157~166
    95 K. J. Ives. Capture Mechanism in Filtration. Filtration and Separation. 1975, (3): 13~15
    96 C. Ventresque, G. Tumer and G. Bablen. Nanofiltration: from Prototype to Full Scale. Awwa. 1997,89 (10): 65~76
    97 B.V. Brugen, J. Schaep, W. Maes, et al. Vandecasteele, Nanofiltration as A Treatment Method for the Removal of Pesticides from Ground Waters. Desalination.1998, (117): 139~147
    98 K. Kimura, G. Amy, J. Drewes, et al. Adsorption of Hydrophobic Compounds onto NF/RO Membranes. J. Mem. Sci. 2003, (221): 89~101
    99 E. Eriksson, K. Auffarth, M. Henze, et al. Characteristics of Grew Wastewater. Urban Water. 2002, (4): 85~104
    100 绍刚. 膜法水处理技术. 北京冶金工业出版社, 2000: 241~247
    101 朱杰, 付永胜, 朱松岭. 污水回用—解决城市缺水危机的有效途径. 水利发展研究. 2004, (7): 30~33
    102 安鼎年, 张俊贞. 污水回用技术国内外现状及发展远景.中国环保产业. 2003, 56 (3): 39~44
    103 A. Dixon, D.Butler, A.Fewkes. Water Saving Potential of Domestic Water Reuse Systems Using Greywater and Rainwater in Combination. Water.Sci.Tech.1999, 39 (5): 25~32
    104 T. Wintgens, T. Melin, A. Schafer. The role of Menbrane Processes in Municipal Wastewater Reclamation and Reuse. Desalination. 2005, (178): 1~17
    105 B. Jefferson, A. Laine, S. Parsons, et al. Technologies for Domestic Wastewater Recycling. Urban Water. 1999, (1): 285~292
    106 J. Anderson, A. Adin, J. Crook, et al. Climbing the Ladder: A Step by Step Approach to International Guidelines for Water Recycling. Wat. Sci. Tech. 2001, 43 (10): 128
    107 J. Niemczynowicz. Urban Hydrology and Water Management: Present and Future Challenges.Urban Water. 1999, (1): 1~14
    108 于鑫, 李旭东, 杨俊仕等. 微污染原水生物预处理工艺中生物膜的形态和活性. 城市环境与城市生态. 2003, 16(1): 37~39
    109 D. Urfer, M. H. Peter. Measurement of Biomass Activity in Drinking Water Biofilters Using A Respirometric Method. Wat.Res. 2001, 35(6): 1469~1477
    110 V. Lazarova, J. Manem. Biofilm Characterization and Activity Analysis in Water and Wastewater Treatment. Wat. Res. 1995, 29(10): 2227~2245
    111 王建龙, 吴立波, 钱星. 用氧吸收速率(OUR)表征活性污泥硝化活性的研究. 环境科学学报. 1999, 19(3): 225~229
    112 E. Metcalf. Wastewater Engineering: Treatment, Disposal and Reuse, 3rd Ed. Mcgraw-Hill, New York, 2001:117
    113 A. J. Guwy, H. Buckland, F. R. Hawkes, et al. Active Biomass in Activated Sludge: Comparison of Resperometry with Catalase Activity Measured Using an On-Line Minitor. Wat. Res. 1998, 32(12): 3705
    114 G.B. Timothy, S.B. Daniel, F. S. Barth, et al. Respirometric Technique for Determination of Extant Kinetic Parameters Describing Biodegradation. Wat. Res.. 1996, 68(5): 917~925
    115 马放, 任南琪, 杨基先. 污染控制微生物学实验. 哈尔滨工业大学出版社, 2002:48~84
    116 刘雨, 赵庆良, 郑兴灿. 生物膜法污水处理技术. 中国建筑工业出版社, 2000:128~143
    117 淌鸿德, 褚遂遂, 彭楚身. 天津城市污水回用的研究. 中国给水排水. 1989, 5(6): 24~27
    118 张俊贞. 二级出水及海水直接过滤的研究. 中国给水排水. 1993, 9(1): 14~15
    119 张自杰. 污水处理. 中国建筑工业出版社, 1998:56~58
    120 B.E. Rittmann. Aerobic Biological Filter. Erviron. Sci. & Technol. 1987,21:
    128~135
    121 M. Dennis, B.John. Inter-relationship between Adsorption and pH in Peat Biofilters in the Context of A Cation-Exchange Mechanism. Wat. Res. 2001, 35(3): 736~744
    122 M. Rodger.Organic Caobon Removal Using A New Biofilm Reactor.Wat. Sci. Tech.. 1999, 33(6): 1495~1499
    123 G. R. Dillon, V. K. Thomas. A Pilot-scale Evaluation of the ‘Biocarbone Process’ for the Treatment of Settled Sewage and for Tertiary Nitrification of Secondary Nitrification of Secondary Effluent. Wat. Sci. Tech. 1990, 22(1): 305~316
    124 S. Villaverde, F. F. Polanco, P. A. Garcí. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters Start-Up Influence. Wat. Res.. 2000, 34(2): 602~610
    125 C. S. Huang, N. E. Hopson. Metal Inhibition of Nitrification. In Proc. 37th. Ind. Waste Conf. Purdue University, Indiana, 1982:85~98
    126 D.L. Ford. Comprehensive Analysis of Nitrification of Chemical Processing Wastewaters. J. W. P. C. F.. 1980, 52(11): 2726~2746
    127 郑兴灿, 李亚新. 污水除磷脱氮技术. 中国建筑工业出版社, 1998:21~61
    128 N. Laitinen. Effect of Backflushing Conditions on Ultrafiltration of Board Industry Wastewaters with Ceramic Membranes. Sep. Pur. Tech. 2001, 25:323~331
    129 陈美感,阌航,何林军等. A/O 工艺处理城市污水中微生物种群的研究. 中国沼气. 1994,12(4):8~12
    130 J.f. Wu, S.P. Li. New Hanging Bio-Membrance Method of Biological Aerated Filter. Environmental Engineering. 2003, 21(2): 22~25
    131 S. W?she, H. Horn, D.C. Hempel. Mass Transfer Phenomena in Biofilm Systems. Wat. Sci. Tech. 2000, 41(4-5): 357~360
    132 T. M. Atlas, T. Bartha. Microbial Ecology: Fundamentals and Applications. Benjamin/Cumming Pub. Redwood City, Calif, 1993:365~377
    133 P. Niquette. Shutdown of BAC Filters: Effects on Water Quality. AWWA. 1998, 90(12): 56~62
    134 A.M. Ravazzini, A.F. van Nieuwenhuijzen, J.H.M.J. van der Graaf. Direct Ultrafiltration of Municipal Wastewater: Comparison between Filtration of Raw Sewage and Primary Clarifier Effluent. Desalination. 2005, 178: 51~62
    135 I. B. Law, R. Hill. Australia's First Full Scaledomestic Non-potable Reuse Application, Water Sci.Technol. 2005, 33(10~11): 77~78
    136 J.H. Roorda, S.E. Poele and J.H.J.M. van der Graaf, The Role of Microparticles in Dead-end Ultrafiltration of WWTP-effluent. J. Membr. Sci. 2005, 149: 33~38
    137 D. Bixioa, C. Thoeyea, J.D. Koningb, et al. Wastewater Reuse in Europe.Desalination. 2006, 187: 89~101.
    138 R. Hochstrat and T. Wintgens. Aquarec, Report on Milestone M3.I, Draft of Wastewater Reuse Potential Estimation, Desalination.2003,132:137~138
    139 Organization for Economic Co-operation and Development. Water — Performance and Challenges in the OECD Countries. Environmental Performance Reviews. 2003, 11: 77~78
    140 T. Melin, B. Jefferson, D. Bixio, et al. Membrane Bioreactor Technology for Wastewater Treatment and Reuse. Desalination. 2006, 187: 271~282.
    141 M.P. der Pino, B. Durham. Wastewater Reuse through Dual Membrane Processes: Opportunities for Sustainable Water Resources. Desalination. 2001, 124: 271~277.
    142 A. Urkiagaa, L. De las Fuentesa, B. Bisb, et al. Methodologies for Feasibility Studies Related to Wastewater Reclamation and Reuse Projects. Desalination .2006, 187: 263~269
    143 N. Icekson-Tal, O. Avraham, J. Sack, et al. Water Reuse in Israel — The Dan Region Project: Evaluation of Water Quality and Reliability of Plant’s Operation. Water Supply. 2003,3(4): 231~237.
    144 J. Ganoulis. Evaluating Alternative Strategies for Wastewater Recycling and Reuse in the Mediterranean Area. Water Sci. Tech. Water Supply. 2003, 3(4): 11~19.
    145 M.A. Economopoulou, A.P. Economopoulous. Expert System for Municipal Wastewater Management with Emphasis in Reuse. Water Sci. Tech. Water Supply. 2003, 3(4): 79~88
    146 J.B. Thomas, B. Durham. Integrated Water Resource Management: Looking at the Whole Picture. Desalination. 2003,156:21~28.
    147 J. Anderson. The Environmental Benefits of Water Recycling and Reuse. Water Sci. Tech. Water Supply. 2003,3(4): 1~10.
    148 M. Bazza. Wastewater Recycling and Reuse in the Near East Region: Experiences and Issues. Water Sci. Tech. 2003, 3(4): 33~50.
    149 T. Wintgens, A. T. Melin, A. Schiller, et al. The Role of Membrane Processes in Municipal Wastewater Reclamation and Reuse. Desalination. 2005, 178: 1~11
    150 V. Lazarova, P. Shields, B. Levine, et al. Renaud, Wat. Sup. 2003,3(3): 167~175
    151 National Research Council. Issues in Potable Reuse—the Viability of Augmenting Drinking Water Supplies with Reclaimed Water. Washington. D.C, National Academy Press, 1998:77
    152 王剑琴. 经济技术分析. 广东科技出版社. 1995:68~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700