二氧化钛光催化纸张的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气污染已成为一个普遍关注的问题,而最近几十年发展起来的光催化技术则成为了解决该问题的重要方法。本实验以具有吸附能力的活性炭纤维作为载体,将纳米TiO2通过湿部添加或者浸渍等方式,制成了具有纸页结构和高光催化活性的纸张,以期为光催化纸张的进一步研究提供理论基础。
     首先利用电阻式半导体VOC传感器设计了一组简单的能直接读取甲醛浓度的光催化装置。该装置首先保证了气密性良好,其次传感器检测时较稳定,灵敏度较高。通过检测发现,传感器灵敏度和甲醛浓度呈现的是反对数关系,且绘制的标准曲线线性关系良好。
     用湿部添加纳米TiO2的方法所抄造的光催化纸张,考察其与纸张中活性炭纤维的协同作用。单独活性炭纤维、纳米TiO2光催化纸、活性炭纤维/纳米TiO2光催化纸第一次、第二次使用时甲醛气体降解率(或吸附率)依次是65%/15%,80%/80%,90%/89%,活性炭纤维和纳米TiO2同时使用时有效地克服了活性炭纤维的饱和现象,而且提高了单独TiO2纸的降解率。用30%、35°SR的北木纤维配抄,活性炭纤维:TiO2为1:2,6%的胶乳增强剂以及0.15%PEI/0.2%APAM助留剂抄造的活性炭纤维/TiO2光催化纸张获得的抗张指数、TiO2留着率、透气度以及光催化效率最好,分别为4.7N·m/g、94%、2000mL/min、94%。
     制备较稳定的TiO2悬浮液,控制悬浮液pH<3.0或pH>9.5,超声分散时间15min,分散剂用量0.15%时的TiO2悬浮液平均粒径最小,分散性良好。然后用2%PPE作为湿强剂抄成活性炭纤维浸渍原纸。浸渍以后的光催化纸张,负载了6g/m2TiO2后反应210min的光催化效率达到了84%,相比于前一种湿部添加方法抄造的光催化纸负载44g/m2TiO2后反应210min的光催化效率是93%而言,具有负载量虽然较少但是光催化效率高的优点。SEM图观察到该浸渍纸的纳米TiO2非常均匀的附着在纤维表面,而湿部添加纸的TiO2则絮聚相对严重,且有部分填覆在活性炭纤维的沟槽内,两种附着方式的接触面积均较大。
     研究光催化纸使用时光催化剂的光催化活性、光源种类、光照强度、甲醛气体初始浓度以及环境湿度对光催化效率的影响,发现:光催化活性是保证光催化效率的关键;254nm紫外灯光催化效率好于365nm紫外灯的效果,而白炽灯几乎没有光催化作用,三种灯的甲醛降解效率依次是99%以上,99%,55%;随光照强度的增加,光催化效率的增长速率逐渐变缓;甲醛初始浓度较低时,满足零级反应方程,而浓度较高,则满足一级反应方程;当环境湿度为45%左右时的光催化效率最高。
Over the past several decades, photocatalytic degradation of indoor volatile organic pollutants (VOC) by titanium dioxide (TiO2) had attracted much attention. In this paper, actived carbon fibers (ACF) were used as the nano-TiO2 carrier, and the ACF/TiO2 photocatalytic sheet was prepared by a papermaking technique in an attempt to offer technological and theoretical support for the research of photocalytic paper.
     A simple photocatalytic device to test formaldehyde concentration was designed using resistance-type semiconductor VOC sensor. This device not only had good air tightness, but also was stable and sensitive. The detection results showed that the sensor sensitivity and concentration of formaldehyde is presented inverse logarithm relationship.
     The synergistic effect of ACF and nano-TiO2 was tested, the results indicated that the first and second time using ACF sheet, TiO2 sheet and ACF/TiO2 sheet, the photocatalytic dagradation rate were 65%/15%, 80%/80%, 90%/89%. We found that the ACF/TiO2 sheet could overcome the saturation of ACF sheet and increase the degradation rate of TiO2 sheet. With 30% and 35°SR softwood pulp, the ACF/TiO2 ratio of 1:2, 6% latex, 0.15% PEI and 0.2% APAM, the tensile index, retension rate of TiO2, air permeability and photocatalytic degradation rate can reach about 4.7N·m/g、94%, 2000mL/min, 94% respectively.
     To prepare stable TiO2 suspension in water, the optimal dispersion treatment parameters were as following: the pH<3.0 or pH>9.5, Ultra sonic dispersion time 15 min, amount of sodium hexametaphosphate 0.2%. And the ACF base sheet was prepared with 2% PPE to increase the wet strength. After dipping, the dipped sheet with 6g/m2 TiO2 can degrade 84% formaldehyde after 210 min. By the way, the TiO2 added in the wet-end sheet can degrade 93% formaldehyde after 210 min. The SEM images showed nano-TiO2 distributed uniform on the ACF about the dipped sheet, while the nano-TiO2 filled in the goove of ACF about the wet-end sheet, but both methods could improve the contact area.
     Some factors, such as the photocatalytic activity of photocatalyst, lamps, light intensity, concentration of formaldehyde, and humidity, were researched. And the results showed that the photocatalytic activity of photocatalyst is the key point to degrade formaldehyde efficiently; the degradation rate of 254nm, 365nm, and incandescent lamp were 99%, 99%, 55%, this means the incandescent lamp hardly photocatalytic degaraded formaldehyde; the increasing speed of photocatalytic degradation became slower and slower as increasing the light intensity; the lower concentration of formaldehyde was fit for zero order reaction, while the higher concentration was fit for first order reaction; the photocatalytic degradation rate was highest when the humidity remain about 45%.
引文
[1] Mills A, Hunte S. An overview of semiconductor photocatalysis[J]. Journal of photochemistry and photobiology A:Chemistry, 1997, 108: 1-35
    [2] Zhao J, Yang X.D. Photocatalytic oxidation for indoor air purification: a literature review[J]. Building and Environment, 2003, 38: 645-654
    [3] Pirkanniemi K , Sillanpa M, et al. Heterogeneous water phase catalysis as an environmental application:a review[J]. Chemoshere, 2002, 48: 1047-1060
    [4]万金泉,马邕文,张勇.漂白废水中氯酚光催化降解及其动力学研究[J].中国造纸学报, 2004(1): 62-65
    [5] Fujishima. K.H. Electrochemical Photolysis of Water at a Semiconductor electrode[J]. Nature, 1972, 238: 37-38
    [6] Carey J.H, Lawrence J. Tosine H.M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxidol, 1976, 16: 697-701
    [7] Pruden A.L, Ollis D.F. Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water[J]. Journal of Catalysis, 1983, 82(2): 404-417
    [8] Hsiav H.Y, Lee C.L, Ollis D.F. Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst[J]. Journal of Catalysis, 1983, 82(2): 418-423
    [9] Wang R, Hashimoto K, Fujishima A. et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432
    [10]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002
    [11] Gaya U.I, Abdullah A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal Photochemistry Photobiology C, 2008, 9: 1-12
    [12]沈伟韧,赵文宽,贺飞等. TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998, 10(4): 349-361
    [13] Carp O, Huisman C.L, Reller A. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry, 2004, 32(1-2): 33-177
    [14] Kim W.W, Lee E.H, Kim Y.J, et al. A relation between the non-stoichiometry and hydroxyl radical generated at photocatalytic TiO2 on 4CP decomposition[J]. Photochemistry Photobiology A, 2003, 159: 301-310
    [15] Clarke J, Hill R. R. R D R. Primary Processes in the Catalytic Photooxidation of p-Cresol[J]. Journal of Chemical Technology Biotechnology, 1997, 68: 397-404
    [16] Sleiman M, Conchon P, Ferronato C, et al. Iodosulfuron degradation by TiO2 photocatalysis: Kinetic and reactional pathway investigations[J]. Applied Catalysis B-Environment, 2007, 71: 279-290
    [17] Fujishima A, Zhang X.T. Titanium dioxide photocatalysis: present situation and future approaches[J]. C. R. Chimie, 2006, 9: 750-760
    [18] Fujishima A, Rao T.N, Tryk D.A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1-21
    [19] Regan B.O, Gratzel M. Low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-740
    [20] Alfano O.M, Bahnemann D, Cassano A.E. Photocatalysis in water environments using artificial and solar light[J]. Catalysis Today, 2000, 58(3): 199-230
    [21] Ruapp G.B, Alexiadis A, Hossain M.M. First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification[J]. Catalysis Today, 2001, 69: 41-49
    [22] Hossain M.M, Raupp G B, Hay S.O, et al. Three-dementional developing flow model for photocatalytic monolith reactors[J]. Aiche J, 1999,45(6): 1309-1321
    [23]鹿院卫,马重芳,王伟等.几种光催化空气净化器的性能测试分析[J].北京工业大学学报, 2005, 31(1): 58-62
    [24] Fujishima A., Hashimoto K. Watnabe T. TiO2 Photocatalysis: Fundamentals and Applications[M]. Tokyo Japan: BKC, Inc,1997
    [25] Wang C, Xua B.Q., Wang X.M. et al. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture[J]. Journal of Solid State Chemistry, 2005, 178: 3500-3506
    [26] Liu H.T Gao Y. Photocatalytic decomposition of phenol over a novel kind of loaded photocatalyst of TiO2/Acticated carbon/silicon rubber film[J]. Akademiai Kiado, Budapest and Kluwer Academic Publishers, Dordrecht, 2004, 83(2): 213-219
    [27] Corma A. State of the art and future challenges of zeolites as catalysts[J]. Journal of catalysis, 2003, 216: 298-312
    [28] Tsoukleris D.S, Maggos T, Vassilakos C, et al. Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules[J]. Catalysis today, 2007, 129: 96-101
    [29] Matsubara H, Takada M, Koyama S, et al. Photoactive TiO2 containing paper: preparation and its photocatalytic activity under weak UV light illumination[J]. Chemistry Letters, 1995(9): 767-768
    [30] Akihiko H, Yoshifutions T. A celeration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst[J]. J Electronchem Soc, 2000, 147(6): 2279-2283
    [31]单志强,王晓林. La3+掺杂及载体类型对纳米TiO2薄膜光[J].水处理技术, 2006, 32(1): 30-32
    [32] Kata K.T, Suzki A, Torll Y, et al. Morphology of thin anatase coatings prepared form alkoxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid[J]. J mater Sci, 1995, 30(3): 837-841
    [33]朱永法,张利,姚文清等.溶胶-凝胶法制备薄膜型TiO2光催化剂[J].催化学报, 1999, 20(3): 362-364
    [34] Takahashi M, Keisude M, Toyuki H, et al. Pt-TiO2 thin films on glass substrates as efficient photocatalys[J]. J Mater Sci, 1989, 24(1): 243-246
    [35] Kuo D. H, Zeng K.H. Growth and properties of titania and aluminum titanate thin films obtained by r. f. magnetron sputterin[J]. Thin Solid Films, 2002, 420: 497-499
    [36] Mardare D, Baban C, et al. Study on the structure, morphology and electrical conductivities of titanium oxide thin films[J]. Surface Science, 2002, 510: 468-471
    [37] Dongjin B, Yongki J, bumjoon K, et al. Photocatalytic TiO2 deposition by chemical vapor deposition[J]. Journal of Hazardous Materials, 2000, 73(2): 199-202
    [38] Wang X.P, Yu Y, Hu X.F, et al. Hydrophilicity of TiO2 films prepared by liquid phase deposition[J]. Thin Solid Films, 2000, 371(1-2): 148-151
    [39] Richardson T.J, Rubin M.D. Liquid phase deposition of electrochromica thin films[J]. .Electrochimica Acta, 2007, 46(13-14): 2119-2121
    [40] Kow W.S. Preparation and photocatalytic activity of metal supported resin-bonded titania[J]. Environ Sci Health Part A: Toxic/Hazard subst environ, 2000, 35(3): 419-421
    [41] Fujiwara H. Application of Nanotechnology in Pulp and Paper in Japan[J]. Proceedings of the Tappi 2006 International Conference on Nanotech, Atlanta, pp, 2006: 62-66
    [42] Nishbori S. Photocatalytic pulp composition:US, 6419792[P]
    [43] Aguedach A., Brosillon S, Morvan J. et al. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder[J]. J. Hazardous Material, 2008, 150: 250-256
    [44] Ichiura H, Kitaoka T, Tanaka H. Preparation of composite TiO2-zeolite sheets using a papermaking technique and their application to environmental improvement-Part I: Removal of acetaldehyde with and without UV irradiation[J]. Journal of Material Science, 2002, 37: 2937-2941
    [45] Ichiura H, Kitaoka T, Tanaka H. Preparation of composite TiO2-zeolite sheets using a papermaking technique and their application to environmental improvement-Part II: Effect of zeolite coexisting in the composite sheet on NOx removal[J]. Journal Material Science, 2003, 38: 1611-1615
    [46] Iguchi Y, Ichiura H, Kitaoka T, et al. Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fiber matrix[J]. Chemosphere, 2003, 53: 1193-1199
    [47] Ichiura H, Kitaoka T, Tanaka H. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique[J]. Chemosphere, 2003, 50: 79-83
    [48] Fukahori S, Ichiura H, Kitaoka T, et al. Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets[J]. Applied Catalysis B: Environment, 2003, 23: 453-462
    [49] Fukahori S, Ichiura H, Kitaoka T, et al. Photocatalytic decomposition of bisphenol A in water using composite TiO2-Zeolite sheets prepared by a papermaking technique[J]. Environmental Science and Technology, 2003, 37: 1048-1051
    [50] Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound[J]. Chemosphere, 2003, 51: 855-860
    [51] Fukahori S, Iguchi Y, Ichiura H, et al. Effect of void structure of photocatalyst paper on VOC decomposition[J]. Chemosphere, 2007, 66: 2136-2141
    [52]陈晓东.中国室内装修污染及健康危害研究进展[J].中国公共卫生, 2003, 19(10): 1263-1266
    [53]王喜元.《民用建筑工程室内环境污染控制规范》辅导教材[M].北京:中国计划出版社, 2002
    [54]周光.室内游离甲醛的危害性及其对策[J].重庆建筑, 2002(1): 48-50
    [55]曾汉民.功能纤维[M].北京:化学工业出版社, 2005
    [56]胡晓敏,刘化章.活性炭纤维及其在催化中的应用[J].工业催化, 2005, 13(1): 1-4
    [57]胡又牧,魏邦柱.胶乳应用技术[M].北京:化学工业出版社, 1990
    [58]张洪涛,黄锦霞.聚合物胶乳配方与应用[M].北京:化学工业出版社, 2008
    [59] Alince B, Inoue M, Robertson A.A. Latex-fiber interaction and paper reinforcement[J]. Tappi, 1976, 20: 2209-2219
    [60]毕松林.造纸化学品及其应用[M].北京:中国纺织出版社, 2007
    [61]徐青林,胡惠仁,谢来苏等.造纸工业中几种常见的复式助留体系[J].湖南造纸, 2000, 3: 34-46
    [62]欧秀娟,杜海燕.纳米TiO2粉体的分散性研究[J].硅酸盐通报, 2006(2): 74-78
    [63]胡杰,陈维国.水体系中纳米二氧化钛的分散性能[J].现代纺织技术, 2008(1): 58-60
    [64]李建英,李博,许同文.先进陶瓷浆料稳定化原理与技术[J].绝缘材料, 2007, 40(6):39-42
    [65]李延盛,尹其光等.超声化学[M].北京:科学出版社, 1995
    [66]李爱元.纳米粉体表面改性技术及应用[J].化工新型材料, 2002, 30(10): 25-28
    [67]钟永科.水热法合成锐钛型纳米TiO2的研究[J].功能材料, 2003, 34(1): 86-87
    [68] Sunsap P, Kim D.J. Analysis of preparation of TiO2 particles by diffusion flame reactor for photodegradation of phenol and toluene[J]. Res. Chem. Intermed, 2008, 34(4): 319-329
    [69]陈金堂,颜进华,陈克复.涂布颜料最佳分散剂用量研究[J].广东造纸, 2000(3): 17-20
    [70] OkamotoK, YamamotoY, TanakaH, et al. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder[J]. Chem Soc Jpn, 1985, 58(7): 2023-2028
    [71] Ollis D.F, Pelizzetti E, Serpone N. Destruction of water contaminants[J]. Environ. Sci. Technol, 1991, 25: 1523-1528
    [72] Obee T.N,Hay S.O. Effects of moisture and temperature on the photooxidafion of ethylene on titania[J]. Environ. Sci. Technol, 1997, 31: 2304-2308
    [73] NoguchiT, fujishima A, Sawunytama P, et al. Photocatalyticdegradation of gaseous formaldehyde using TiO2 film[J]. Environ. Sci. Technol, 1998, 32: 3831-3833
    [74] Cao L. Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts[J]. Journal of catalysis, 1999, 188: 48-57
    [75] Bard A.J. Photoelectrocbemistry and heterogeneous photocatalysis at semiconductor[J]. J. Photochem Photobiol A: Chem, 1879, 10(1): 59-68
    [76]鹿院卫.纳米光催化空气净化技术的基础研究与应用开发[M].北京:北京工业大学, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700