有机复合光电导材料及其单层光导体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机光电导材料已经成为信息社会不可或缺的高技术材料之一。随着信息与科学技术的高速发展,呼唤着光谱响应速度更快、光谱响应范围更宽、光敏性更高以及成本更低的有机光电导材料与之相匹配,显然,常规的单一材料很难满足这一要求。大量研究结果表明,复合化和低维化是提高材料基本性能的有效途径,因此通过有机光电导材料复合化与低维化的研究,以满足上述要求,就成为当前国际上有机光电材料科学研究的前沿与热点之一,同时有机光电导材料的复合化和低维化的研究必将有助于发现许多新现象和新效应,有助于阐明有机材料的光电导机理,建立完善的有机光电导理论,为高性能有机光电导材料的设计提供理论基础。
     本文主要从有机半导体材料的复合化和低维化出发,通过光电导功能复合和纳米化等手段,制备新型高效的多种有机半导体复合光电导材料体系及其相应的有机单层光电导体,研究复合化与低维化给有机光电导材料体系带来的一系列新现象和新效应,并初步探索相关的复合原理和光电导机理。本论文的主要研究内容如下:
     1.合成了芴酮基偶氮(F-Azo)与噁唑基偶氮(O-Azo)两种光敏性优良的偶氮化合物,并以此制备了芴酮基偶氮/酞菁氧钛和噁唑基偶氮/酞菁氧钛复合光电导材料体系及其单层光电导体。研究发现这两种复合材料体系在可见光区和近红外光区(450~850nm)均有光谱响应,光谱响应范围得到了拓宽,并在该波长范围内都有优良的光电导性能,呈现出明显的光电导性能协同增强和互补效应,该复合材料体系中酞菁向偶氮发生的部分定向的电荷转移是光电导性能协同增强和互补效应产生的物理起因。
     2.通过改进的液相直接沉淀法成功制备了粒径在40~60nm的噁唑基偶氮微粒,并将噁唑基偶氮纳米材料与碳纳米管复合,制备了偶氮/碳纳米管纳米复合材料体系。研究发现该复合材料体系在可见光区和近红外光区(470~800nm)均有光谱响应,光谱响应范围得到了拓宽,并在该波长范围内的光电导性能有大幅度提高。进一步的研究表明,偶氮/碳纳米管纳米复合材料引起的光生材料与传输材料之间接触面积迅速增大,以及复合材料中偶氮向碳纳米管发生
    
    鱼鱼人圣盛士全位查文___一_一___.。二有热烹手体天合志鸣房.然料蕉共平层奋等件硕然鑫
    的电荷转移是偶氮/碳纳米管纳米复合光电导材料体系的光谱响应范围拓宽和
    光敏性能显著增强的主要物理起因。
     3.成功合成了以化学键合方式连接的四氨基酞著锰一碳纳米管分子内复合
    光电导材料体系,并用FTIR、UV-vis、TEM和XRD等手段表征了其化学结构
    和聚集态结构。研究发现该复合光电导材料体系的光电导性能在500一760nm波
    长范围内都有大幅度提高,例如679nm波长激发时,该复合材料的光敏性是同
    等条件下酞著锰的4倍,是四氨基酞背锰/碳纳米管简单物理共混材料的8.5
    倍。研究发现四氨基酞著锰和碳纳米管之间的电荷转移是该复合材料具有较高光
    敏性的物理起因。
     4.研究和制备了三类新型的有机复合单层光导体器件,包括偶氮/酞莆复
    合单层光电导体系、偶氮/碳纳米管纳米复合单层光电导体系和以化学键合方
    式连接的四氨基酞着锰一碳纳米管分子内复合单层光电导体体系,它们的最高光
    敏性分别达到0.95、1.11和1.19(lux·s)一,,并摸索出一套有机复合单层光导体的
    制备工艺和配方,为新一代有机光电导体的产业化提供了技术储备。
     5.设计和制备了新型的有机小分子(四氯苯醒)共升华可控p型掺杂有机
    光电导材料(酞普镍)体系。研究发现掺杂后的有机光电导材料的电阻率明显下
    降、光谱响应范围变宽、失去电子能力减弱以及掺杂和被掺杂分子之间发生了一
    定程度的电荷转移,表明共升华可控掺杂是改善有机半导体材料光电导性能的一
    种有效手段,为有机光电导材料的高性能化提供一种新的选择。
Organic photoconductive materials have become one of the high-tech materials that are needed in the modern information society. Due to the rapid development of information technology, organic photoconductive materials with high photo-responsive speed, wide photo-responsive range, high photosensitivity and low cost are required. Pristine materials evidently can't meet such requirements. It has been demonstrated that preparations of hybrid and nanoscale materials are effective ways to improve material properties, the field of which are becoming one of hot research in organic photoconductive materials at present. New phenomena and new effects can also be derived from these hybrid and nanoscale organic photoconductive materials, which can help to illuminate photocarrier generation mechanism of organic photoconductive materials.
    By using the composite and nanoscalization approaches, we fabricated and investigated in this thesis new kinds of organic / organic and organic / inorganic hybrid photoconductive materials and their single-layered configuration organic photoreceptors, where the charge generation material and charge transportation material display their functions, respectively, in the same layer. A series of new phenomena and new effects of these organic photoconductive materials caused by hybrid and nanoscalization are studied. Their photoconductive properties and mechanism are investigated as well. The main content are described in the following paragraphs.
    1. Two kinds of azo pigments with excellent photosensitivity, named as Flurenone bisazo (F-Azo) and oxazole bisazo (O-Azo), are synthesized. The preparation of organic photoconductive blended materials and their photoconductivity in single-layered photoreceptors made from F-Azo / titanium oxide phthalocyanine (TiOPc) composite and O-Azo / TiOPc, respectively, are investigated. The composites not only show excellent photo-responsive properties in the visible and near-IR region (450~850 nm), but also show complementary and synergetic enhancement effects in
    
    
    
    photosensitivity in the visible and near-IR region. The reasons for the enhanced photoconductive properties and new effects are explained in terms of the partial and directional charge transfer from phthalocyanine to azo compound in these azo / TiOPc composites.
    2. The nanometer particles of O-Azo with diameters in the range of 40-60 nm and carbon nanotubes (CNTs) immobilized by nanoscale O-Azo are successfully obtained by modified liquid phase direct precipitation (LPDP). The O-Azo / CNTs nanocomposites show better photosensitivity than the bulk material in the visible and near-IR region, as well as enhancement effects in photo-response in the visible and near-IR region (470-800 nm). The main reasons for the enhanced photoconductive properties and the new effects of O-azo / CNTs nanocomposites are owing to the increase of the interface area between charge generation material and charge transportation material and the charge transfer from nanoscale O-azo to CNTs in O-azo / CNTs nanocomposites.
    3. The multiwalled carbon nanotube (MWCNT) bonded by 2,9,16,23-tetra amino manganese phthalocyanine (TAMnPc) was obtained and both its chemical and aggregated structures were characterized by means of FTIR, UV-Vis, TEM, and XRD. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was studied by the xerographic photoinduced discharge method. The photosensitivity of MWCNT-b-TAMnPc was better than that of pristine TAMnPc and MWCNT/ TAMnPc composite obtained by simply physical blending. It is the photoinduced charge transfer from TAMnPc to MWCNT in MWCNT-b-TAMnPc that contributes to the higher photosensitivity of MWCNT-b-TAMnPc.
    4. New types of single-layered photoreceptors were prepared based on the above organic composite semiconductors. The best photosensitivity of TiOPc / azo composite and O-azo / CNTs nanocomposites and CNTs-b-TAMnPc composite are 0.95, 1.11 and 1.19 (lux s)-1, respectively. Furthe
引文
1 Parkinson B.,Acc. Chem. Res. 1984, 17: 431.
    2 Fox M. A.,Acc. Chem. Res. 1983, 16: 314.
    3 Wrighton M. S.,Acc. Chem. Res. 1979, 12: 303.
    4 Wohrle D., Meissnet D., Adv. Mater. 1991, 3: 129.
    5 Tang C. W., Appl. Phys. Lett. 1986, 48: 183.
    6 Hor A. M., Loutfy, R. O., Hsiao, C. K.,Appl. Phys. Lett. 1983, 42: 165.
    7 Pai D. M., Melnyk A. R.,Proc. SPIE-Int. Soc. Opt. Eng. ed. Edler, D. 81 (1986).
    8 Nguyen K. C., Weiss D. S., J Imaging Technol. 1989, 15 (4): 158.
    9 Law K. Y., et al., Chem. Rev., 1993, 93: 446.
    10 Katz H.E., et al., Nature, 2000, 404: 478.
    11 Horowitz G., et al., Adv Mater, 1999, 11: 234.
    12 Sakamoto Y., et al., J Am Chem Soc, 2000, 122: 1832.
    13 周雪琴,基于偶氮、酞菁复合光电导材料的研究,浙江大学博士学位论文,2001.
    14 Nalwa H. S., Handbook of Organic Conductive Materials and Polymers, vol., 1, Wiley, New York, 1998.
    15 Wang M., Yang S. L., Ma, X. F., Electrophotography 1989, 28(2): 134.
    16 Wang M., Chen H. Z., Yang, S. L., J. Photochem. Photobiol. A 1995, 58: 88.
    17 Jiang K. J., Chen H. Z., Wang M., Mater. Sci. & Engi. B: 1999, 57(2): 87.
    18 汪茫,杨士林,马兴法.中国发明专利88100213.5(1991).
    19 Fujimori M., Yamada Y., JP Patent 0705711 (1995).
    20 Kurimoto E., Ikegami, T., Rokutanzo S., JP Patent 08044091 (1996).
    21 Enokida T., Kurata R., Shimojima S., JP Patent 05072766 (1993).
    22 Gerardus R. B., Achilles W. M., Clemens T., US Patent 5330865 (1994).
    23 Kawamorita Y., Nakamura K., dP Patent 05072774 (1993).
    24 Loutfy R. O., et al. US Patent 4882254 (1989).
    25 Naito K., Ikezaki T., Kimotsuki T., JP Patent 07005715 (1995).
    26 Takamura H., et al. JP Patent 09222743 (1997).
    27 Tsal L. C., GB Patent 2231166A (1990).
    28 Yanagida K., Mashita K., Shige T., JP Patent 05281771 (1993).
    
    
    29 Yeng F. W., Lin, J. M., US Patent 5270139 (1993).
    30 汪茫,孙景志,周成,高等学校化学学报,2002,23(3):448.
    31 孙景志,汪茫,曹健,陈红征,周成,功能材料,2003,34(1):83.
    32 孙景志,汪茫,周成,陈红征,张启光,功能材料,2003,34(1):100.
    33 Dubler T. K., Glowacki I., Scherf U., et al., J. Appl. Phys., 1999, 86: 6815.
    34 Takada J., Awaji H., Koshioka M., et al., Appl. Phys. Lett., 1992, 61(18): 2184.
    35 Ramos G., Belenguer T., Bernabeu E., et al., J. Phys. Chem. B 2003, 107: 110.
    36 Schroder R., Ullrich B., Appl. Phys. Lett., 2002, 81(3): 556.
    37 Zengin H., Zhou W. S., Jin J. Y., et al., Adv. Mater. 2002, 20(14): 1480.
    38 Coleman J. N., Curran S., Dalton A. B., et al., Synth. Met. 1999, 102: 174.
    39 Woo H. S., Czerw R., Webster S., et al., Synth. Met. 2001, 116: 369.
    40 Geng H. Z., Rosen R., Zhang B., et al., Adv. Mater., 2002, 19: 1387.
    41 Kagan C. R., et al., Science, 1999, 286: 945.
    42 Can L, Chen H. Z., Wang M., Sun J. Z. et al., J. Phys. Chem. B 2002, 106: 8971.
    43 Can L, Chen H. Z., Zhou H. B., Zhu L., Sun J. Z., Wang M., et al., Adv. Mater. 2003, 15: 909.
    44 Miyamoto E., et al. dP Patent 04045167 (1992).
    45 Miyamoto E., Hanatani Y., Iwasaki H., dP Patent 05150520 (1993).
    46 Law L. Y., USPatent 5077161 (1991).
    47 Akao J., et al. dP Patent 03291668 (1991).
    48 张立德,牟季美,纳米材料学,辽宁科学技术出版社(1994).
    49 Haskal E.I, Zhang Y., Burrows P. E., Forrest S. R., Chem. Phys. Lett. 1994, 219: 325.
    50 Haskal E.I, Shen Z., Burrows P.E., Forrest S. R., Phys. Rev. B 1995, 51: 4449.
    51 Umeda M., et al., J. Appl. Phys., 1992, 72: 117.
    52 楚宪锋,有机复合光电导材料,浙江大学硕士学位论文(1998)
    53 徐明生,有机酞菁复合光生载流子材料的制备与研究,浙江大学硕士学位论文(1999)
    54 Xu M. S., Xu J. B., Tian D. X., et al., Thin Solid Films, 2001, 384: 109.
    55 Martin C. R., Science, 1994, 266: 1961.
    56 Cepak V. M., Gulteen J. C., Che G., et al., Chem. Mater., 1997, 9: 1065.
    57 Ohmori Y., Fujii A., Uchida M., et al., Appl. Phys. Lett., 1993, 62: 3250.
    58 Jenekhe S.A., Yi S.J., Adv. Mater. 2000, 12(17): 1274.
    59 Enokida T., Hirohashi R., Mizukami S., J.Imaging Sci., 1991, 35: 235.
    60 Pietro W. J., Adv. Mater. 1994, 3: 6.
    61 Chen H.Z., Jiang K.J., Wang M., J.Photochem. Photobiol., A:Chem., 1998, 117: 149.
    
    
    62 Kasai H., Kamatani H., Okada S., et al., Jpn. J. Appl. Phys. 1996, 35: L221.
    63 Kasai H., Nalwa H. S., Oikawa H., et al., Jpn. J. Appl. Phys. 1992, 31: L1132.
    64 Chen H. Z., Pan C., Wang M., Nanostructured Materials, 1999, 11(4): 523.
    65 徐瑞松,有机/聚合物光电导材料结构与性能的研究,硕士毕业论文,(2000).
    66 Lorenz W., J. Phys. Chem. 1991, 95(26): 10566.
    67 Diol S. J., R. J. D. Miller, J. Imaging Sci. & Technol. 1997, 41(2): 99.
    68 Zhou X. Q., P. D. Pan, H. Z. Chen, Wang M., J. Photochem. Photobio. A1998, 115: 207.
    69 Mulliken R. S., J. Am. Chem. Soc. 1952, 74: 811.
    70 Shen Z., Forrest S. R., Phys. Rev. B 1997, 55(16): 10578.
    71 汪茫,陈红征,沈菊李,杨士林.中国科学 A1994,24(3):311.
    72 Sebastian I., et al,. Chem. Phys. 1983, 75: 103.
    73 Saito T., et al. J. Phys. Chem. 1993, 97(30): 8026.
    74 Tokura Y., et al., Chem. Phys. Lett. 1990, 102(2,3): 174.
    75 Davidenko N. A., et al., Adv. Mater. Optics Electro. 1997, 7: 201.
    76 魏先福,邸振文,阎建民等,感光科学与光化学,2002,20(3):191.
    77 蒲嘉陵,张伟民,付一良,感光科学与光化学,1995,13(1):68.
    78 蒲嘉陵,焦文化,感光科学与光化学,1997,15(4):303.
    79 周晶,DMTNF静电照像性能考察,北京印刷学院硕士学位论文(2000)。
    80 叶坚,汪茫,潘浦敦,陈红征,功能材料,2003,34(1):61.
    81 Pan P. D., Ye J., Wang M., Mater. Chem. Phys., 2002, 77: 733.
    82 Lei Y., Sun J. Z., Wang M., Xu R. S., Mater. Chem. Phys., 2003, 78: 852.
    83 Kubo K., Kobayashi T., Nagae S., Fujimoto T., J. Imag. Sci. Tech., 1999, 43: 248.
    84 Grammatica S. J., Limburg W. W., et al., EP 0550161 (1993).
    85 Spiewak J W, Yanus J F, et al., US5336577 (1994).
    86 Yoshikazu S., JP9050141 (1997).
    87 Yoshikazu S., et al., JP8171218 (1996).
    88 Hisao K., et al., JP 8062875 (1996).
    89 Hisao K., et al., JP 7175235 (1995).
    90 Emi K., et al., JP 7175234 (1995).
    91 Jun A., et al., JP Patent 2003005391.
    92 Osamu N., Toshio T, et al., US2003059696.
    93 Omokawa S., Matsumoto S., US 20030134213.
    94 Masayuki S., Yuko K., et al., JP Patent 2002351108.
    
    
    95 Susumu H., Eiichi M., dP Patent 2000338694.
    96 Hajime S, Masaki S., Toshihiko K., JP Patent 2001109179.
    97 Akao A., Kuwakubo S., et al., DE4215201 (1992).
    98 Toshiyuki F., Junji F., JP Patent 2000019748.
    99 Yoshida et al., US005968696 (1999).
    100 Tashiro K, Kobayashi M, Kawai T, Yoshino K. Polymer, 1997, 38(12): 2867
    101 http://ppprs1.phy.tu-dresden.de/~pfeiffer/pDop/pDop.html.
    102 Huisman C L, Goossens A, Schoonman J. J Phys Chem B, 2002, 106: 10578.
    103 Murr J, Ziegler C. Phys Rev B, 1998, 57: 7299.
    104 Nollau A, Pfeiffer M, Fritz T, Leo K. J Appl Phys, 2000, 87: 4340.
    105 Blochwitz J, Pfeiffer M, Fritz T, Leo K. [J]. Appl Phys Lett, 1998, 73(6): 729
    106 Pfeiffer M, Beyer A, Fritz T, Leo K. Appl Phys Lett, 1998, 73: 3202.
    107 Gao W Y, Kahn A. Appl Phys Lett, 2001, 79(24): 4040
    108 Pfeiffer M, Beyer A, Plnnigs, et al. Sol Eng Mater & Sol Cells, 2000, 63: 83.
    109 Yakimov A, Forresta S R. Appl Phys Lett, 2002, 80(9): 1667.
    110 Blochwitz J, Pfeiffer M, Hofmann M, Leo K. Synth Met, 2002, 127: 169.
    111 Huang J S, Blochwitz J, Pfeiffer M, Leo K. J Appl Phys, 2003, 93 (2): 838.
    112 Huang J S, Pfeiffer M, Werner A, et al. Appl Phys Lett, 2002, 80: 139.
    113 张德强,邱勇,董桂芳等.发光学报,2000,21(3):253.
    114 Gao Y D, Wang L D, Zhang D Q, et al. Applied Physics Letters, 2003, 82 (2): 155.
    115 Qiu Y, Gao Y D, Wei P, Wang L D. Applied Physics Letters, 2002, 80(15): 2628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700