硅基拉曼激光器在气体浓度测量中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开采,机械制造以及冶炼过程中所排放的易燃易爆、有毒、有害气体严重影响了人类的健康和生存环境。因此,对这些气体进行实时有效的监测,是人们健康生活的基本保障。光纤环形腔衰荡光谱技术是在光纤通信和光纤传感技术的基础上发展起来的吸收光谱技术,由于这种技术具有较高的测量灵敏度,现已被广泛应用于痕量气体浓度测量领域。痕量气体浓度测量需要泵浦光源具有较高的功率密度,在追求高性能价格比的趋势下,本文对硅基拉曼激光器系统进行了研究设计,并将其应用到气体浓度测量领域。主要内容包括:
     首先,分析了光纤环形腔衰荡光谱技术的气体浓度传感原理,并建立了气体浓度测量的数学模型,同时分析讨论了影响测量精度的因素。介绍了硅基拉曼激光器的工作原理-受激拉曼散射效应,并进行了理论研究。
     其次,基于光纤环形腔衰荡光谱技术建立气体浓度测量系统,并重点研究设计了硅基拉曼激光器系统,对两个系统中的关键器件的性能和工作原理进行了分析,并建立了影响激光器性能的载流子寿命理论模型。采用提升小波变换对实验数据进行消噪处理,并对提升小波变换方法的消噪效果进行了仿真研究。
     最后,通过实验对所设计的硅基拉曼激光器的性能进行了分析。选用甲烷气体作为待测气体,对所设计的气体浓度测量系统进行了验证,并通过对比实验验证了提升小波变换方法对提高系统测量精度的作用。并实验测量了甲烷在不同浓度下的对数衰荡曲线以及衰荡时间与气体浓度的关系。
The poisonous, harmful ,combustible and explosive gases produced in the process of mine mining, mechanical manufacturing and melting , affected the human health and survival environment seriously. So it is the basic guarantee of the human safety and healthy lives to monitor these gases effectively in time. Fiber loop ring-down spectral technology is based on the fiber communication and fiber sensor technology, because of the high sensitivity, and is widely used to measure the trace gases. Due to the high power density needed for the pump source to measure the trace gases, with the trend to pursue the high performance price ratio, I make a research on the Si-based Raman laser, and apply it to measure the gas concentration. The major content includes:
     Firstly, the gas concentration measurement principle of fiber loop cavity ring-down spectroscopy is analyzed, and the corresponding mathematical model is established. At the same time, the factor that influences the concentration precision is discussed. The stimulated Raman scattering which is the principle of Raman laser is introduced, and is investigated theoretically.
     Secondly, the gas concentration measurement system based on fiber loop cavity ring-down spectral technology is introduced and the Si-based Raman laser system is mainly investigated. Then the performance and principle of the key cells of the system are analyzed, and the carrier lifetime that affects the output performance of Raman laser is analyzed theoretically. At last, the lifting wavelet transform is adopted to denoise the experimental data, and the performance of the lifting wavelet transform to denoise is simulated.
     Finally, the performance of the Si-based Raman laser is analyzed experimentally. The system chooses the methane as the detected gas, and is demonstrated experimentally. The lifting wavelet transform to improve the measurement precision is demonstrated by the compared experiment. The absorption performance of methane and the relationship between the ring-down time and gas concentration are analyzed.
引文
1 A.O’Keefe, D.A.G. Decon. Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Source. Rev.Sci.Instrurn, 1988, 59(12):2544-2550
    2 R.S. Brown, I. Kozin. Fiber-Loop Ring-Down Spectroscopy. J. Chem. Phys., 2002, 117(23): 10444-10447
    3 J.M. Herbelin, J.A. Mckay, et al. Sensitive Measurement of Photo Lifetime and True Reflectances in an Optical Cavity by a Phase-Shift Method Cavity Ring-down. Appl. Opt., 1980, 19: 144-147
    4 D.Z. Anderson, J.C.Frisch, et al. Mirror Reflectometer Based on Optical Cavity Decay Time. Appl.Opt., 1984, 23(8): 1238-1245
    5 D. Romanino, K.K. Lehmann. Cavity Ring-Down Overtone Spectroscopy of HCN and H13CN. J. Chem. Phys. Lett., 1995, 102: 633-642
    6 D. Romanino, A.A. Kachanov, et al. Cavity Ring-Down Spectroscopy: Broadband Absolute Absorption Measurement. Chem. Phys. Lett., 1997, 270: 546-550
    7 M. Hippler, M. Quack. CW Cavity Ringdown Infrared Absorption Spectroscopy in Pulsed Supersonic Jets: Nitrous Oxide and Methane. Chem. Phys. Lett., 1997, 314: 273-281
    8 M.Hippler, M.Quack. Overtone Spectroscopy by Vibrationally Assisted Dissociation and Pulsed Supersonic Jets: Nitrous Oxide and Methane. Chem. Phys. Lett., 1994, 231: 75-80
    9 H.Yabai, O.B.J. Ringdown and Cavity-Enhanced Absorption Spectroscopy Using a Continuous-Wave Tunable Diode Laser and a Rapidly Swept Optical Cavity. Chem. Phys. Lett., 2000, 319: 131-137
    10 Y. He,G.W.Baxter et al. Locking the Cavity of a Pulsed PPLN Optical Parametric Oscillator to the Wavelength of a CW Injection-Seeder by Intensity-Dip Method. Rev. Sci. Instrum, 1999, 70: 3203-3213
    11 K. Atherton, G. Stewart, et al. Fiber Optical Intra-Cavity Spectroscopy: CombinedRing-Down and ICLAS Architectures Using Fiber Laser. In Proc. SPIE, 2001, 4204: 124-130
    12 K. Atherton, G. Stewart, et al. Gas Detection by Cavity Ringdown Absorption with a Fiber Optic Amplifier Loop. In Proc. SPIE, 2002, 4577: 25-31
    13 N. Trefiak, J. Brown, et al. Optical Loss Measurements Using Photon Lifetime in Optical Waveguides. In IEEE LEOS NEWSLETTER, 2005: 9-11
    14 Z.G. Tong, T.Mccomick. Phase-Shift Fiber-Loop Ring-Down Spectroscopy. Anal. Chem., 2004, 76: 6594-6599
    15 P.B. Tarsa, D.M. Brzowski. Cavity Ringdown Gauge. Opt. Lett., 2004, 29: 1339-1441
    16 P.B. Tarsa, A.D. Wist, et al. Singal-Cell Detection by Cavity Ring-Down Spectroscopy. Appl. Phys. Lett., 2004, 85: 4523-4525
    17戴东旭,孙福革,康路,等.高重复频率实时采集的光腔衰荡光谱.化学物理学报, 1997, 6: 481-486
    18马辉,董国轩,何秋荣,等.腔衰荡吸收多指数模型研究.光谱学与光谱分析, 1998, 18(2): 135-138
    19赵宏太,柳晓军,王瑾,等.用光腔衰荡测定腔镜及镜片的反射率.光电子·激光, 2001, 12(1): 71-73
    20赵宏太,柳晓军,詹明生.衰荡法四腔镜反射率及腔内吸收测量.量子电子学报, 2001, 18(3): 213-216
    21孙宏波,熊胜明,高丽峰.基于光腔衰荡的反射率测量技术的研究.光学仪器, 2004, 26(2): 174-177
    22易亨瑜,吕百达,彭勇,等.探测器孔径大小对衰荡腔测量精度的影响.激光技术, 2004, 28(3): 231-234
    23易亨瑜,吕百达,张凯,等.探测器应特性对光腔衰荡法测量结果的影响.中国激光, 2005, 32(7): 997-1000
    24易亨瑜.衰荡腔失调下的波形仿真.中国激光, 2006, 33(3): 399-404
    25 L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004)
    26 G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, WestSussex, 2004).
    27 R. Claps, D. Dimitropoulos, Y. Han, et al. Observation of Raman Emission in Silicon Waveguides at 1.54μm..Opt. Express, 2002, 10: 1305-1313
    28 Ansheng Liu, Haisheng Rong, Richard Jones, et.al. Optical Amplification and Lasing by Stimulated Raman Scattering in Silicon Waveguides. Lightwave technology, 2006,24: 1440-1455
    29 R.W. Boyd, Nonlinear Optics, Academic Press, San Diego., 1992.
    30 H.M.Pask. The Design and Operation of Solid-state Raman Lasers. Progress in Quantum Electronics, 2003, 27: 3-56.
    31 C.V. Raman. Indian Journal of Physics, 1928, 2 : 387
    32 E.J. Woodbury, W.K.Ng. Proceedings of the IRE ,1962, 50: 2367
    33 G.P.Dzhotyan, E.D’Yakov Yu, I.G.Zubarev, et al. Soviet Journal of Quantum Electronics ,1977, 7(6): 685-691
    34 Liang, T. K. & Tsang, H. K. Efficient Raman Amplification in Silicon-on-insulator Waveguides. Appl. Phys. Lett., 2004, 85: 3343–3345
    35 J.F. Reintjes, in: M.J. Weber(Ed.). Handbook of Laser Science and Technology, Supplement 2:Optical Materials, CRC Press, Boca Raton, FL, 1995.
    36 G. Franzo, S.Coffa, F.Priolo, et al. Mechanism and Performance of Forward and Reverse Bias Electroluminescence at 1.54um from Er-doped Si Diodes. J.Appl.phys.,1997, 81: 2784-2793
    37 Ansheng Liu, Ling Liao, Doron Rubin, et.al. High-speed Optical Modulation Based on Carrier Depletion in a Silicon Waveguide. Optical society of America,2007.
    38 J.M.Ralston and R.K.Chang. Spontaneous-raman-scattering Efficiency and Stimulated Scattering in Silicon. Phys.Rev.B, Condens Matter, 1970, 2: 1858-1862
    39 A.Liu, H.Rong, M.Paniccia, et al. Net Optical Gain in a Low Loss Silicon-on–insulator Waveguide by Stimulated Raman Scattering. Opt. Express, 2004, 12: 4261-4267
    40 Q.Xu, V.Almeida, M.Lipson. Time-resolved Study of Raman Gain in Highly Confined SOI Waveguides. Opt.Express, 2004, 12: 4437-4442
    41 T.K.Liang, H.K.Tsang. Efficient Raman Amplification in SOI Waveguides. Appl. Phys. Lett., 2004, 85: 3343-3356
    42 B.Jalali, V.Raghunathan, O.Boyraz, et al. Wavelength Conversion and Light Amplification in Silicon Waveguides. Proc. Group IV Photonics Conf., Hong Kong, 2004: 10-12
    43 Richard Jones, Haisheng Rong, Ansheng Liu, et.al. Net Continuous Wave Optical Gain in a Low Loss Silicon-on-insulator Waveguide by Stimulated Raman Scattering. Opt. Express, 2005, 13: 519-525
    44 H.Rong, A.Liu, R.Jones, et al. An all-silicon Raman Laser. Nature, 2005, 433: 292-294
    45 H.Rong, R.Jones, A.Liu, et al. A Continuous-wave Raman Silicon Laser. Nature, 2005, 433: 725-728
    46李文超,田秀仙,吴飞,等.光纤环路光腔循环衰荡多组分气体浓度在线测量系统的研究.传感技术学报, 2008, 21: 1466-1471
    47刘新跃,郭建强.利用CO的吸收光谱测量其浓度的装置研究.工业安全与环保, 2008, 34(11): 28-29
    48 W.C. Chenl. Investigation on Infrared Laser Absorption Spectroscopy Measurement of Acetylene Trace Quantities. Infrared Physics & Technology, 2000, 41: 339-348
    49 D. Romanino, K.K. Lehmann. Ring-Down Cavity Absorption Spectroscopy of the very Weak HCN Overtone Bands with Six, Seven, and Eight Stretching Quanta. J. Chem. Phys., 1993, 99(9): 6287-6301
    50 G. Stewart, K. Atherton, et al. An Investigation of an Optical Fiber Amplifier Loop for Intra-Cavity and Ring-Down Cavity Loss Measurements. Mea. Sci. Technol., 2001, 12: 843-849
    51刘兆军.高效非线性光学频率变换研究. [山东大学博士学位论文].20080403:1-2.
    52 O.Frazao, C.Correia, M.T.M.Rocco Giraldi, et.al. Stimulated Raman Scattering and its Applications in Optical Communications and Optical Sensors. The open optics journal, 2009, 3: 1-11.
    53李红莲,李小亭,李金海.光纤光栅传感器的工作原理及发展前景.物理通报,2008, 10: 55-57
    54张溪文,董博,洪炜,等.光隔离器及其相关的磁光材料.材料科学与工程, 2002,
    20(3): 428-430
    55杜延飞.掺铒光纤放大器(EDFA)原理及应用.聊城大学学报, 2005, 18(3): 35-36
    56苑立波.光纤实验技术,哈尔滨工程大学出版社, 2005:9-12
    57 D.Dimitropoulos, R.Jhaveri, R.Claps, et.al. Lifetime of Photogenerated Carriers in Silicon-on-insulator Rib Waveguides. Applied physics letters, 2005,86: 1-3
    58刘欣平,张杏娟,杨艳霞,等.提升小波变换在振动信号去噪中的应用.汽轮机技术, 2009, 1(36): 8-10
    59唐贵基,王誉蓉,郭新富,等.基于第二代小波变换的振动信号去噪与故障诊断.汽轮机技术, 2006, 48: 295-297
    60郭显久,何东钢,吕显强,等.提升小波变换及其在信号去噪中的应用.大连水产学院学报, 2005, 20: 51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700