光折变空间暗孤子分裂的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光折变空间孤子是晶体的光折变非线性严格平衡衍射效应的结果。自从光折变空间孤子的预言和实验观察以来,由于其在低功率和所有横向维的存在以及它们在光束控制、光互连和非线性光学器件等方面的潜在应用已经引起了更多的兴趣。
     本论文主要是从理论上利用相干密度法研究了非相干屏蔽灰孤子和非相干屏蔽光伏孤子分裂,利用光束传播法研究与时间有关的开环相干光伏孤子分裂,并从实验上研究非相干光伏孤子分裂,具体结论如下:
     1.非相干光伏孤子实验研究
     无背景光辐照时,利用振幅掩模穿过一束空间非相干光的方法产生暗迹,将暗迹成像在晶体前表面上,在LiNbO3:Fe晶体内形成偶数序列的非相干暗光伏孤子。实验结果表明,无背景光辐照时可以在非瞬时响应的光折变光伏晶体内形成非相干暗光伏孤子序列,形成的孤子分裂数目与入射宽度和光束相干长度有关。
     在给定光束的空间相干长度时,形成孤子数目与入射暗纹的宽度有关,当入射的暗纹宽度较小时,只能形成一个Y结孤子对;随着入射宽度的增加,可以形成偶数序列暗光伏孤子,在晶体前表面入射的暗纹宽度越宽,形成孤子数目越多,这与相干孤子FWHM的变化规律一致。形成多孤子时,位于中心的孤子对灰度最小,其他孤子对与中心距离越远,灰度越大;孤子数目越多,孤子间隔越小,每个孤子的宽度都比N=2时孤子宽度稍微小一点。另外,光束的相干长度对孤子分裂有影响,入射光束的空间相干性越好,相干长度越大,形成孤子所需入射宽度越小。
     2.非相干灰屏蔽孤子
     利用相干密度法研究非相干屏蔽灰孤子在偏压光折变非线性介质中的传输特性和空间相干性。数值模拟结果表明,可以在偏压SBN晶体内形成非相干屏蔽灰孤子。
     当偏压较小时,只能形成非相干的Y结屏蔽灰孤子,对应最低阶的孤子,当外偏压增加时,非相干光束趋于分裂为偶数序列的非相干屏蔽灰孤子;如果给定入射光束灰度,增加外偏压和入射光束宽度也可以产生偶数序列非相干屏蔽灰孤子;或者给定入射光束宽度,通过增加外偏压并减小光束灰度仍可以产生那样的偶数序列非相干灰屏蔽孤子。
     非相干屏蔽灰孤子的相干长度在孤子区域变大,孤子最小强度越小,相干长度越大,而远离孤子区域趋于恒定不变。
     3.相干暗光伏孤子
     利用光束传播法研究在非线性光折变光伏介质中形成的开环暗光伏孤子分裂。数值模拟结果表明,根据初始条件不同,在均匀光束中心形成的暗纹能在光折变光伏非线性材料中分裂为奇数或偶数序列的暗光伏孤子。
     对于一个给定的物理系统,多模暗光伏孤子的形成与初始条件和入射光束强度半高宽有关。一方面,奇初始位相光束总是趋于分裂为奇数序列暗光伏孤子,偶初始位相光束趋于分裂为偶数序列暗光伏孤子;另一方面,当入射宽度较小时,只能形成一个基本孤子或Y结孤子对,随着入射宽度的增加,入射暗光束可以分裂为多暗光伏孤子,入射暗纹宽度越大,形成的孤子数目越多,当有更多孤子产生时,相邻孤子间隔变小,远离中心的孤子可见度下降。
     4.非相干屏蔽光伏孤子
     利用相干密度法研究非相干屏蔽光伏暗孤子和灰孤子在有偏压的光折变光伏晶体内的传输特性及空间相干性,数值模拟结果表明可以在偏压光折变晶体内形成非相干屏蔽光伏暗孤子和灰孤子。
     非相干屏蔽光伏暗孤子的形成依赖初始入射条件和入射暗纹宽度。在奇或偶初始条件下,通过增加入射暗纹宽度可以在晶体内形成奇、偶数序列的非相干屏蔽光伏孤子,入射暗纹宽度越大,形成孤子数目越多;当形成多孤子分裂时,相邻孤子之间的间隔越小,远离中心的孤子对可见度下降。对于给定物理系统和确定的孤子分裂数,入射暗纹宽度越大,相邻孤子间隔越小。
     非相干屏蔽光伏灰孤子的形成依赖非相干光束灰度和入射暗纹宽度。在偶初始条件下,如果入射的非相干光束的灰度或者入射光束的强度半高宽较小时,只能形成一个Y分裂,而如果非相干光束的强度半高宽或光束灰度增大时可以在晶体内形成偶数序列的非相干灰屏蔽光伏孤子。
     通过对非相干灰屏蔽光伏孤子的相干长度研究发现,非相干孤子的相干长度在孤子区域及附近变化剧烈,特别是中心孤子对,在暗槽内部相干长度增加,而在中心处相干长度急速下降,而相干长度在远离中心的孤子区域是增加的,孤子的强度越小,相干长度越大。
     此外,通过研究在有偏压光折变光伏晶体中的非相干屏蔽光伏孤子特性,发现当晶体内的光伏效应可以忽略时,非相干屏蔽光伏孤子的物理系统就转变为非相干屏蔽孤子的物理系统,非相干屏蔽光伏孤子变为非相干屏蔽孤子;而如果去掉外偏压,此时非相干屏蔽光伏孤子的物理系统变为非相干光伏孤子分裂的物理系统,非相干屏蔽光伏孤子变为非相干光伏孤子。
Photorefractive (PR) spatial solitons is the result of PR effect balanced thediffraction. Since the prediction and the observation of PR spatial solitons, it hasattracted more attention in the formation and characters of PR spatial solitons owingto the potential application in beam steering and manipulating light by light, all-optical switching, optical interconnects and optical nonlinear devices et al.
     In this paper, I theoretically studied the multiple incoherent gray screeningsolitons splitting and incoherent screening-photovoltaic dark (gray) solitons splittingby using of coherent density method. I investigate the time-dependent coherentphotovoltaic spatial solitons splitting under open-circuit conditions using beampropagation method. In addition, I experimentally study the incoherent photovoltaicsolitons splitting in LiNbO3:Fe crystal without background light. The detailedconclusions as follow:
     1. Experimental study on incoherently photovoltaic solitons
     A dark stripe is generated when the partially spatially incoherent beam passesthrough amplitude mark without background illumination. The dark stripe is imagedinto the front face of the crystal. The even-number sequence of incoherent darkphotovoltaic solitons is generated. The experimental results indicate that theincoherent photovoltaic soliton sequence can be generated in non-instantaneousnonlinearity photorefractive photovoltaic crystal and that the number of solitons isdependent on the initial input width of the dark stripe and the coherence length of thebeam.
     For a fixed beam’s spatial coherence, the number of solitons is dependent to theinitial input width of the dark stripe. Only a Y-junction solitons pair can be observedwhen the input width is small. With the increasing of the initial input width, theeven-number sequence of dark photovoltaic solitons is generated. The more solitonsare formed for wider initial input dark stripe, which is similar to coherent solitonsplitting. When more solitons are generated, the separations between adjacent dark solitons become smaller and the grayness of solitons is grayer as their transversedistance from the center increases. In addition, the coherence length of the incoherentbeam affects the number of solitons splitting. The bigger the coherence length of thebeam, the smaller the input width of the dark stripe needed.
     2. Incoherent screening grey solitons
     We study the propagation properties and spatial coherence of multiple incoherentscreening grey soliotns in biased photorefractive media by using the coherent densitymethod. The numerically studies results demonstrate that even-number sequence ofmultiple incoherent gray screening solitons is possible.
     We find that when the external voltage is small, only an incoherent Y-junctionscreening soliton is generated, corresponding to the lowest order in the even-numberincoherent screening soliton sequence. When the external voltage is increased, theincoherent gray beam splits into an even-number sequence of multiple gray screeningsoliton. For a fixed beam’s grayness, increasing the external voltage and the full widthhalf maximum of the beam’s intensity can produce such an even-number sequence ofmultiple incoherent gray screening solitons. Moreover, for a fixed full width at halfmaximum of the initial input beam’s intensity, increasing the external voltage anddecreasing the beam’s grayness still produces such an even-number sequence ofmultiple incoherent gray screening solitons.
     In addition, we find that the coherence length of multiple incoherent grayscreening solitons becomes higher around the soliton regions and that the smaller theminimum intensity of multiple incoherent gray screening solitons, the bigger itscorrelation length. We also find that the correlation length is changeless far away fromthe solitons.
     3. Incoherent dark photovoltaic solitons
     We study the formation of the multiple dark photovoltaic solitons splitting inphotorefractive photovoltaic nonlinear media under open-circuit condition by using ofbeam propagation method. The simulated results indicate that a single dark stripe onan otherwise uniform optical beam can be split into odd (or even) number sequence ofdark photovoltaic solitons in the photovoltaic photorefractive nonlinear media according to different initial conditions.
     We find that for a given physical system, the formation of multiple darkphotovoltaic solitons is depended on the initial input conditions as well as on the fullwidth at half maximum (FWHM) of the input beam’s intensity. On one hand, anodd-phase input beam always tends to split into the odd-number sequence of multipledark photovoltaic solitons, whereas the even-phase input beam tends to split into theeven-number sequence of multiple dark photovoltaic solitons. On the other hand,when the initial input width of the dark stripe is small, it only can form a foundationalsolitons or a Y-junction solution pair. With the increasing of the input width of thedark stripe, it can split into multiple dark photovoltaic solitions. The wider the inputwidth of the dark stripe, the more the number of solitons is generated. When moresolitons are generated, the separations between adjacent solitons become smaller andthe visibility of the solitons far away from the center decrease.
     4. Incoherent screening-photovoltaic solitons
     We study the propagation properties and the spatial coherences of the incoherentdark and gray screening-photovoltaic spatial solitons in biased photorefractive-photovoltaic crystals by using the coherent density method. The results of numericalsimulation demonstrate that the incoherent screening-photovoltaic dark (or gray)solitons can be generated in biased photorefractive photovoltaic crystal.
     For the incoherent screening-photovoltaic spatial dark solitons, formation of it isdependent on the initial input conditions as well as the initial input width of the darkstripe. Under the odd or even initial conditions, the odd or even number sequence ofincoherent screening-photovoltaic solitons is generated throught increasing theintensity FWHM of the optical beam. The wider the input width of the dark stripe, themore the number of incoherent dark screening-photovoltaic solitons is generated.When the more incoherent solitons are generated, the separations between adjacentdark solitons become smaller and the solitons far away from the center become lessvisible. For a given physical system and splitting number, the separations betweenadjacent dark solitons decrease with the increasing of width of the dark stripe.
     For the incoherent gray screeing-photovoltaic solitons, its formation is effected by the incoherent beam’s grayness and the FWHM of the incoherent beam’s intensity.Under even initial conditions, if the incoherent beam’s grayness or FWHM of theincoherent beam intensity is small, only a Y-junction soliton is generated. Withincreasing of the grayness of the incoherent beam or FWHM of the incoherent beam’sintensity, the incoherent multiple gray screening-photovoltaic solitons can be formedin the biased photorefractive-photovoltaic crystal.
     The coherence length of the incoherent beam is invariable far away from thesoliton region; however the coherence length is tempestuously changed, in particular,the coherence length of the incoherent beam becomes higher within the center solitonpair, with a depression an the center.
     In addition, we study the characters of the dark and gray incoherent screening-photovoltaic spatial solitons in biased photorefractive-photovoltaic crystals. We foundthat it translates into the dark incoherent screening soliton splitting when the bulkphotovoltaic effect is neglectable and the dark incoherent photovoltaic solitonsplitting when the external bias field is absent.
引文
[1] Russell J S. Report of wave[J]. In:14thmeeting of the British association foradvancement of science London,1844,311-390.
    [2] Korteweg D J, De Vires G Phil Mag. On the change of form long wavesadvancing in a rectangular canal, and on a new type of long stationary waves[J].Phil. Mag,1895,39:422-443.
    [3] Zabusky N. J, Kruskal M. D. Interaction of “Solitons” in a Collisionless Plasmaand the Recurrence of Initial States[J]. Phys. Rev. Lett,1965,15:240-243.
    [4] Segev M Soliton: A Universal phenomenon of Self-Trapped Wave Packets[J].Optics&Photonics News,2002,2:27.
    [5] http://wap.tiexue.net/bbs/ThreadShow.aspx?ThreadID=4474537&ThreadType=NewThread&&page=1.
    [6] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses indispersive dielectric fibers II. Normal Dispersion[J]. Appl. Phys. Lett,1973,23:171-172.
    [7] Mollenauer L F, Stolen R H, Gordon J P. Experiental observation of pico-secondpulse narrowing and solitons in optical Fibers[J]. Phys. Rev. Lett,1980,45:1095-1098.
    [8] Haus H A, Wong W S. Solitons in optical communications[J]. Rev. Mod. Phys,1996,68(2):423-444.
    [9] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Phys. Rev.Lett,1964,13(12):479-482.
    [10] Bjorkholm J E, Ashkin A. Self-focusing and self-trapping of light in sodiumvapor[J]. Phys. Rev. Lett,1974,32:129-132.
    [11] Silberberg Y, Stegman G I, in Spatial Solitons, Trillo S, Torruellas W. New York,Springer,2001, Chap.1.
    [12] Segev M, Crosignani B, Yariv A, et al. Spatial Solitons in PhotorefractiveMedia[J]. Phys. Rev. Lett.,1992,68(7):923-927.
    [13] Duree G, Shultz J L, Salamo G, et al. Observation of self-trapping of an opticalbeam due to the photorefractive effect[J]. Phys. Rev. Lett,1993,71(4):533-536.
    [14] Malomed B A, Mihalache D, Wise F, et al. Spatiotemporal optical solitons[J]. J.Opt. B: Quantum Semiclass. Opt,2005,7: R53-R72.
    [15]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004:2-3.
    [16]侯春风,李师群,李斌,等.光折变介质中的空间孤子[J].物理学进展,2001,21(2):237-254.
    [17]戴翠霞,刘立人,刘德安.光折变空间光孤子[J].激光与光电子学进展,2005,42(9):17-21.
    [18]张冰志,崔虎,佘卫龙.光折变空间孤子研究进展[J].物理,2008,37(3):152-163.
    [19] Shih M F, Leach P, Segev M, et al. Two-dimensional steady-state photorefractivescreening solitons. Opt. Lett,1996,21(5):324-326.
    [20]杨联弟.光折变空间光孤子的最新研究进展[J].长春师范学院学报(自然科学版),2011,30(1):22-24.
    [21] Segev M, Valley G C, Crosignani B, et al. Steady-Steady Spatial ScreeningSolitons in Photorefractive Materials with External Applied Field[J]. Phys. Rev.Lett,1994,73(24):3211-3214.
    [22] Segev M, Shih M F, Vally G C. Photorefractive screening solitons of high andlow intensity[J]. J. Opt. Soc. Am. B,1996,13(4):706-718.
    [23] Chen Z G, Mitchell M, Shih M F, et al. Steady-state dark photo-refractivescreening solitons[J]. Opt. Lett,1996,21(9):629-631.
    [24] Chen Z G, Mitchell M, Segev M. Steady-state photorefractive soliton-inducedY-junction waveguides and high-order dark spatial solitons[J]. Opt. Lett,1996,21(10):716-718.
    [25] Valley G C, Fejer M M, Bashaw M C. Dark and bright photovoltaic spatialsolitons[J]. Phys. Rev. A,1994,50(6): R4457-R4460.
    [26] Taya M, Bashaw M C, Fejer M M, et al. Observation of dark photovoltaic spatialsolitons[J]. Phys. Rev. A,1995,52(4):3095-3112.
    [27] Segev M, Valley G C, Bashaw M C, et al. Photovoltaic spatial solitons[J]. J. Opt.Soc. Am. B,1997,14(7):1772-1781.
    [28] She W L, Lee K K, Lee W K. Observation of Two-Dimensional BrightPhotovoltaic Spatial Solitons[J]. Phys. Rev. Lett,1999,83(16):3182-3185.
    [29] Segev M, Agranat A J. Spatial solitons in centrosymmetric photorefractivemedia[J]. Opt. Lett,1997,22(17):1299-1301.
    [30] DelRe E, Tamburrini M, Segev M, et al. Two-dimensional photorefractive spatialsolitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate[J].Appl. Phys. Lett,1998,73(1):16-18.
    [31]李金萍,卢克清,赵卫,等.有偏压中心对称光折变晶体中的屏蔽孤子[J].光子学报,2006,35(2):257-260.
    [32] Stepken A, Kaiser F, Belic M R. Anisotropic interaction of three-dimensionalspatial screening solitons[J]. J. Opt. Soc. Am. B,2000,17(1):68-77.
    [33] Mamaev A V, Saffman M, Anderson D Z, et al. Propagation of light beams inanisotropic nonlinear media: From symmetry breaking to spatial turbulence[J].Phys. Rev. A,1996,54(1):870-879.
    [34]钟卫平,易林.光束自陷形成的光折变空间孤子[J].光通信技术,2007,8:51-54.
    [35]陈守满,石顺祥.光折变空间暗孤子特性研究[J].陕西理工学院学报,2006,22(1):4-7.
    [36]王晓生,佘卫龙.光折变空间孤子及其研究进展(I)[J].2001,40(5):32-35.
    [37] Chen Z G, Shih M F, Segev M, et al. Steady-state vortex-screening solitonsformed in biased photorefractive media[J]. Opt. Lett,1997,22(23):1751-1753.
    [38] Chen Z G, Segev M, Wilson D W, et al. Self-trapping of an optical vortex by useof the bulk photovoltaic effect[J]. Phys. Rev. Lett,1997,78(15):2948-2951.
    [39] Christodoulides D N, Singh S R, Carvalho M I, et al. Incoherent coupled solitonpairs in biased photorefractive crystals[J]. Appl. Phys. Lett,1996,68(13):1763-1765.
    [40]凌振芳,郭儒,刘思敏,等.光生伏打-光折变介质中光学涡旋孤子[J].物理学报,2000,49(3):455-459.
    [41]朱楠,郭儒,刘思敏,等.光折变晶体中的光生伏打灰空间孤子[J].中国激光,2005,32(7):903-907.
    [42] Hou C F, Li Y, Zhang X F, et al. Grey screening-photovoltaic spatial soliton inbiased photovoltaic photorefractive crystals[J]. Opt. Commun,2000,181:141-144.
    [43] Chen Z G, Segev M, Christodoulides D N. Experiments on partially coherentphotorefractive solitons[J]. J. Opt. A: Pure Appl. Opt,2003,5: S389-S397.
    [44] Fressengeas N, Wolfersberger D, Maufoy J, et al. Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screeningsolitons[J]. Opt. Commun,1998,145:393-400.
    [45] Chauvet M. Temporal analysis of open-circuit dark photovoltaic spatial solitons. J.Opt. Soc. Am. B,2003,20(12):2515-2522.
    [46] Couton G, Maillotte H, Chauvet M. Self-formation of multiple spatial photo-voltaic solitons[J]. J. Opt. B: Quantum Semiclass. Opt,2004,6: S223-S230.
    [47] Bodnar M. Dark Photovoltaic Spatial Solitons: Experiment and NumericalSolution[J]. Proc. Of SPIE,2007,6582:65821P.
    [48] She W L, Lee K K, Lee W K. All Optical Quasi-Steady-State PhotorefractiveSpatial Solitons[J]. Phys. Rev. Lett,2000,85(12):2498-2501.
    [49]佘卫龙,李荣基.全光双准稳态空间孤子[J].物理学报,2001,50(5):886-891.
    [50] Chen Z G, Segev M, Singh S R, et al. Sequential formation of multiple darkphotorefractive spatial solitons: experients and theory[J]. J. Opt. Soc. Am. B,1997,14(6):1407-1417.
    [51] She W L, Chan C W, Lee W K. Dark and bright photovoltaic spatial solitons inphotorefractive crystals with positive refractive-index perturbation[J]. Opt. Lett,2001,26(14):1093-1095.
    [52]佘卫龙,王晓生,何国岗,等.折射率改变为正的光折变晶体中形成一维光伏暗孤子[J].物理学报,2001,50(11):2166-2171.
    [53]卢克清,唐天同.有偏压的光伏光折变晶体中的空间孤子[J].物理学报,1999,48(11):2070-2075.
    [54] Liu J S, Lu K Q. Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection[J]. J. Opt. Soc. Am. B,1999,16(4):550-555.
    [55] Lu K Q, Tang T T, Zhang Y P. One-dimensional steady-state spatial solitons inphotovoltaic photorefractive materials with an external applied field[J]. Phys. Rev.A,2000,61(5):053822.
    [56] Lu K Q, Zhang Y P, Tang T T, et al. Steady-state spatial solitons in biasedphotovoltaic-photorefractive crystals for short circuits[J]. J.Opt. A: Pure Appl.Opt,2001,3(4):262-266.
    [57] Lu K Q, Zhang Y P, Tang T T, et al. Steady-state Screening-Photovoltaic SpatialSolitons in Biased Photorefractive-Photovoltaic Crystals[J]. Chin. Phys. Lett,2001,18(2):233.
    [58] Malmberg J N, Carlsson A H, Anderson D, et al. Vector solitons in (2+1)dimensions[J]. Opt. Lett,2000,25(9):643-645.
    [59] Krolikowski W, Ostrovskaya E A, Weilnau C, et al. Observation of Dipole-ModeVector Solitons[J]. Phys. Rev. Lett,2000,85(7):1424-1427.
    [60] Lu K Q, Qian S X, Zhao W, et al. Steady-state bright-dark vector spatial solitonsin biased photorefractive-photovoltaic crystals[J]. Opt. Commun,2002,209(4-6):437-444.
    [61] Mitchell M, Chen Z G, Shih M F, et al. Self-Trapping of Patially SpatiallyIncoherent Light[J]. Phys. Rev. Lett,1996,77(3):490-493.
    [62] Mitchell M, Segev M. Self-Trapping of incoherent white light[J]. Nature,1997,387(6636):880-883.
    [63] Chen Z G, Mitchell M, Segev M, et al. Self-Trapping of Dark Incoherent LightBeams [J]. Science,1998,280:889-893.
    [64]张玉虹,卢克清,张美志,等.在LiNbO3:Fe晶体中写入偶数序列孤子的实验研究[J].光电子·激光,2010,21(7):1093-1096.
    [65]陈志刚,许京军,楼慈波.光诱导光子晶格结构中新型的离散空间光孤子[J].物理,2005,34(1):12-17.
    [66]楼慈波,宋道红,唐莉勤,等.光子晶格中新颖的空间带隙孤子[J].物理,2008,37(4):239-246.
    [67] Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensionaldiscrete solitons in optically induced nonlinear photonic lattices [J]. Nature,2003,422(3):147-150.
    [68] Fleischer J W, Carmon T, Segev M, et al. Observation of Discrete Solitons inOptically Induced Real Time Waveguide Arrays [J]. Phys. Rev. Lett,2003,90(2):023902.
    [69] Wang X S, Chen Z G. Observation of Discrete Solitons and Soliton Rotation inOptically Induced Periodic Ring Lattices [J]. Phys. Rev. Lett,2006,96(8):083904.
    [70] Lederer F, Stegeman G I, Christodoulides D N, et al. Discrete solitons in optics[J]. Physics Reports,2008,463:1-126.
    [71] Fedele F, Yang J K, Chen Z G. Properties of Defect Modes in One-DimensionalOptically Induced Photonic Lattices [J]. Studyies in Applied Mathematics,2005,115(2):277-300.
    [72] Yang J K, Chen Z G. Defect solitons in photonic lattices [J]. Phys. Rev. E,2006,73(2):026609.
    [73] Wang J D, Yang J K, Chen Z G. Two-dimensional defect modes in opticallyinduced photonic lattices [J]. Phys. Rev. A,2007,76(1):013828.
    [74] Makris K G, Suntsov S, Christodoulides D N, et al. Discrete surface solitons [J].Opt. Lett,2005,30(18),2466-2468.
    [75] Molina M I, Garanovich I L, Sukhorukov A A, et al. Discrete surface solitons insemi-infinite binary waveguide arrays [J]. Opt. Lett,2006,31(15):2332-3334.
    [76] Vicencio R A, Flach S, Molina M I, et al. Discrete surface solitons in two-dimensional anisotropic photonic lattices [J]. Phys. Lett. A,2007,364:274-276.
    [77] Suntsov S, Makris K G, Christodoulides D N, et al. Observation of discretesurface solitons [J]. Phys. Rev. Lett,2006,96(6):063901.
    [78] Castro-Camus E, Magana L F. Prediction of the physical response for thetwo-photo photorefractive effect [J]. Opt. Lett,2003,28(13):1129-1131.
    [79] Hou C F, Pei Y B, Zhou Z X, et al. Spatial solitons in two-photon photorefractivemedia [J]. Phys. Rev. A,2005,71(5):053817.
    [80] Hou C F, Zhang Y, Jiang Y Y, et al. Photovoltaic solitons in two-photonphotorefractive materials under open-circuit conditions [J]. Opt. Commun,2007,273(2):544-548.
    [81] Lu K Q, Zhao W, Yang Y L, et al. One-dimensional incoherently coupled greysolitons in two-photon photorefractive media [J]. Appl.Phys.B: Lasers and Optics,2007,87(3):469-473.
    [82] Asif N, Shwetanshumala S, Konar S. Photovoltaic spatial soliton pairs in two-photon photorefractive materials[J]. Phys. Lett. A,2008,372(5):735-740.
    [83]张宇,侯春风,孙秀冬.双光子光折变介质中的非相干耦合空间孤子对[J].物理学报,2007,56(6):3261-3265.
    [84] Zhang Y, Hou C F, Sun X D. Grey photovoltaic solitons in two-photon photo-refractive materials under the open-circuit case[J]. J. Opt. A: Pure Appl. Opt,2008,10(2):025101.
    [85] Zhang G Y, Liu J S. Screening-photovoltaic spatial solitons in biased two-photonphotovoltaic photorefractive crystals[J]. J. Opt. Soc. Am.B,2009,26(1):113-120.
    [86] Shih M F, Sheu F W. Photorefractive polymeric optical spatial solitons[J]. Opt.Lett,1999,24(24):1853-1855.
    [87] Wang X S, She W L, Lee W K. Optical spatial solitons supported byphotoisomerization nonlinearity in a polymer[J]. Opt. Lett,2004,29(3):277-279.
    [88] Segev M, Crosignani B, Porto P D, et al. Stability of photo-refractive spatialsolitons[J]. Opt. Lett,1994,19(17):1296-1298.
    [89] Facao M, Parker D F. Stability of screening solitons in photorefractive media[J].Phys. Rev. E,2003,68:016610.
    [90] Bigelow M S, Park Q H, Boyd R W. Stabilization of the propagation of spatialsolitons[J]. Phys. Rev. E,2002,66:046631.
    [91] ReeceP J, WrightE M, Dholakia K. Experimental observation of modulationinstability and optical spatial soliton arrays in soft condensed matter[J]. Phys. Rev.Lett,2007,98(20):203902.
    [92] Lin Y Y, Lee R K, Kivshar Y S. Transverse instability of transverse-magneticsolitons and nonlinear surface plasmons[J]. Opt. Lett,2009,34(19):2982-2985.
    [93] Skupin S, Bang O, Edmundson D, et al. Stability of two-dimensional spatialsolitons in nonlocal nonlinear media[J]. Phys. Rev. E,2006,73:066603.
    [94] Shih M F, Chen Z G, Mitchell M, et al. Waveguides induced by photorefractivescreening solitons[J]. J. Opt. Soc. Am. B,1997,14(11):3091-3101.
    [95] Klotz M, Meng H X, Salamo G J, et al. Fixing the photorefractive soliton[J]. Opt.Lett,1999,24(2):77-79.
    [96] Lan S, DelRe E, Chen Z G, et al. Directional coupler with soliton-inducedwaveguides[J]. Opt. Lett,1999,24(7):475-477.
    [97] Krolikowski W, Denz C, Stepken A, et al. Interaction of spatial photorefractivesolitons[J]. Quantum Semiclass. Opt,1998,10:823-837.
    [1] Valley G C, Segev M, Crosignani B, et al. Dark and bright photovoltaic spatialsolitons[J]. Phys. Rev. A,50(6):R4457-R4460.
    [2] Taya M, Bashaw M C, Fejer M M, et al. Observation of dark photo-voltaicspatial solitons[J]. Phys. Rev. A,1995,52(4):3095-3102.
    [3] Taya M, Bashaw M C, Fejer M M. Y junctions arising from dark-solitonpropagation in photovoltaic media[J]. Opt. Lett,1996,21(13):943-945.
    [4] Segev M, Valley G C, Bashaw M C, et al. Photovoltaic spatial solitons[J]. J. Opt.Am. B,1997,14(7):1772-1781.
    [5] Chen Z G, Segev M, Wilson D W, et al. Self-trapping of an optical vortex by useof the bulk photovoltaic effect[J]. Phys. Rev. Lett,1997,78(15):2948-2951.
    [6] Anastassiou C, Shih M F, Mitchell M, et al. optically induced photovoltaicself-defocusing-to-self-focusing transition[J]. Opt. Lett,1998,23(12):924-926.
    [7] She W L, Lee K K, Lee W K. Observation of two-dimensional brightphotovoltaic spatial solitons[J]. Phys. Rev. Lett,1999,83(16):3182-3185.
    [8] Mitchell M, Chen Z G, Shih M F, et al. Self-Trapping of Patially SpatiallyIncoherent Light[J]. Phys. Rev. Lett,1996,77(3):490-493.
    [9] Mitchell M, Segev M. Self-Trapping of incoherent white light[J]. Nature,1997,387(6636):880-883.
    [10] Coskun T H, Christodoulides D N, Chen Z G, et al. Dark incoherent solitonsplitting and “phase-memory” effects: Theory and experiment[J]. Phys. Rev. E,1999,59(5): R4777-R4780.
    [11] Katz O, Carmon T, Schwartz T, et al. Observation of elliptic incoherent spatialsolitons[J]. Opt. Lett,2004,29(11):1248-1250.
    [12] Chen Z G, McCarthy K. Spatial soliton pixels from partially incoherent light. Opt.Lett,2002,27(15):2019-2021.
    [13] Segev M, Christodoulides D N. Incoherent Solitons: Self-Trapping of WeaklyCorrelated Wave Packets[J]. Optics&Photonics News,2002,70-76.
    [14] Chen Z G, Segev M, Christodoulies D N. Experiments on partially coherentphotorefractive solitons[J]. J. Opt. A: Pure Appl. Opt,2003,5: S389-S397.
    [15] Chen Z G, Segev M, Christodoulides D N, et al. Waveguides formed byincoherent dark solitons[J]. Opt. Lett,1999,24(16):1160-1162.
    [16] Lan S, DelRe E, Chen Z G, et al. Directional coupler with soliton-inducedwaveguides[J]. Opt. Lett,1999,24(7):475-477.
    [17] Mitchell M, Segev M, Coskun T H, et al. Theory of Self-Trapped SpatiallyIncoherent Light Beams[J]. Phys. Rev. Lett,1997,79(25):4990-4993.
    [18] Coskun T H, Christodoulides D N, Mitchell M, et al. Dynamics of incoherentbright and dark self-trapped beams and their coherence properties inphotorefractive crystals[J]. Opt. Lett,1998,23(6):418-420.
    [19] Christodoulides D N, Coskun T H, Mitchell M, et al. Theory of incoherentself-focusing in biased photorefractive media[J]. Phys. Rev. Lett,1997,78(4):646-649.
    [20] Lu K Q, Zhang Y H, Tian N, et al. Multiple incoherent gray photo-refractivespatial solitons[J]. Opt. Quant. Electron,2011,42(5):277-284.
    [21] Buljan H, Segev M, Soljacic M, et al. White-light solitons[J]. Opt. Lett,2003,28(14):1239-1241.
    [22] Buljan H, Siber A, Soljacic M, et al. Incoherent white light solitons inlogarithmically saturable noninstantaneous nonlinear media[J]. Phys. Rev. E,2003,68(3):036607.
    [23] Zhang Y Q, Lu K Q, Zhang M Z, et al. Dark incoherent spatial solitons inlogarithmically saturable nonlinear media[J]. Chin. Phys. B,2009,18(6):2359-2363.
    [24]王晓生,佘卫龙.部分空间非相干光光伏空间孤子[J].物理学报,2002,51(3):573-577.
    [25]陆猗,刘思敏,郭儒,等.完全非相干白光一维光生伏打暗空间孤子[J].物理学报,2003,52(12):3075-3081.
    [26] Li J P, Lu K Q, Zhao W, et al. Two-Dimensional Photovoltaic Dark SpatialSolitons of Partially Incoherent Light[J]. Chin. Phys. Lett,2005,22(6):1423-1425.
    [27]李金萍,卢克清,赵卫,等.暗光伏孤子的实验研究[J].光子学报,2006,35(8):1225-1228.
    [28] Zhang M Z, Lu K Q, Cheng G H, et al. One-dimensional steady-state brightphotovoltaic solitons in LiNbO3: Fe crystal with background illumination[J].Optik,2010,121:575-580.
    [29] Lu Y, Liu S M, Zhang G Q, et al. Waveguides and directional coupler induced bywhite-light photovoltaic dark spatial solitons[J]. J. Opt. Soc. Am. B,2004,21(9):1674-1678.
    [30]曲迪,刘思敏,陆猗,等.部分空间非相干光光生伏打暗空间孤子及其定向耦合器[J].南开大学学报(自然科学版),2006,39(2):11-15.
    [31]张美志,卢克清,程光华,等.部分空间非相干暗光伏孤子诱导一维波导研究[J].光子学报,2008,37(10):1942-1946.
    [32] Zhang Y Q, Lu K Q, Zhang M Z, et al. Dynamics of Incoherent PhotovoltaicSpatial Solitons[J]. Chin. Phys. Lett,2009,26(3):034212.
    [33] Lu K Q, Miao C Y, Lu P Y, et al. Dark incoherent soliton splitting in biasedphotorefractive-photovoltaic crystals[J]. Opt. Commun,2009,282(16):3335-3338.
    [34] Lu K Q, Miao C Y, Wei J F, et al. Sequential formation of incoherent multiplegray solitons in biased photorefractive-photovoltaic crystals[J]. Opt. Mater,2010,32(5):561-565.
    [35]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004:178-181.
    [1] Segev M, Valley G C, Crosignani B, et al. Steady-state spatial screening solitonsin photorefractive materials with external applied field[J]. Phys. Rev. Lett,1994,73(24):3211-3214.
    [2] Segev M, Shih M F, Valley G C. Photorefractive screening solitons of high andlow intensity[J]. J. Opt. Soc. Am. B,1996,13(14):706-718.
    [3] Chen Z G, Mitchell M, Shih M F, et al. Steady-state dark photo-refractivescreening solitons[J]. Opt. Lett,1996,21(9):629-631.
    [4] Chen Z G, Segev M, Singh S R, et al. Sequential formation of multiple darkphotorefractive spatial solitons: experiments and theory[J]. J. Opt. Soc. Am. B,1997,14(6):1407-1417.
    [5] Christodoulides D N, Carvalho M I. Bright, dark, and gray spatial soliton states inphotorefractive media[J]. J. Opt. Soc. Am. B,1995,12(9):1628-1633.
    [6] Mitchell M, Chen Z G, Shih M F, et al. Self-trapping of partially spatiallyincoherent light[J]. Phys. Rev. Lett,1996,77(3):490-493.
    [7] Mitchell M, Segev M. Self-Trapping of incoherent white light[J]. Nature,1997,387(6636):880-883.
    [8] Mitchell M, Chen Z G, Segev M, et al. Self-trapping of incoherent bright and darklight beams[J]. Asian Journal of Physics,1998,7:687.
    [9] Chen Z G, McCarthy K. Spatial soliton pixels from partially incoherent light[J].Opt. Lett,2002,27(22):2019-2021.
    [10] Segev M, Christodoulides D N. Incoherent Solitons: Self-Trapping of WeeklyCoherented Wavepachets[J]. Optics&Optinics News,2002,70-76.
    [11] Mitchell M, Chen Z G, Shih M F, et al. Self-Trapping of Partially SpatiallyIncoherent Light Beams[J]. Optics&Photonic News,1996,7(12):17-18.
    [12] Chen Z G, Segev M, Christodoulides D N. Experiments on partially coherentphotorefractive solitons[J]. J. Opt. A: Pure Appl. Opt,2003,5: S389-S397.
    [13] Chen Z G, Segev M, Christodoulides D N, et al. Waveguides formed byincoherent dark solitons[J]. Opt. Lett,1999,24(16):1160-1162.
    [14] Lan S, DelRe E, Chen Z G, et al. Directional coupler with soliton-inducedwaveguides[J]. Opt. Lett,1999,24(7):475-477.
    [15] Pasmanik G A. Self-action of incoherent light beams[J]. Sov. Phys. JETP,1974,39:234-238.
    [16] Shkunov V V, Anderson D Z. Radiation Transfer Model of Self-TrappingSpatially Incoherent Radiation by Nonlinear Media[J]. Phys. Rev. Lett,1998,81(13):2683-2686.
    [17] Mitchell M, Segev M, Coskun T H, et al. Theory of Self-Trapped SpatiallyIncoherent Light Beams[J]. Phys. Rev. Lett,1997,79(25):4990-4993.
    [18] Christodoulides D N, Coskun T H, Mitchell M, et al. Multimode IncoherentSpatial Solitons in Logarithmically Saturable Nonlinear Media[J]. Phys. Rev. Lett,1998,80(11):2310-2313.
    [19] Christodoulides D N, Coskun T H, Mitchell M, et al. Theory of incoherent darksolitons[J]. Phys. Rev. Lett,1998,80(23):5113-5116.
    [20] Carvalho M I, Coskun T H, Christodoulides D N, et al. Coherence properties ofmultimode incoherent spatial solitons in noninstantaneous Kerr media[J]. Phys.Rev. E,1999,59(1):1193-1199.
    [21] Akhmediev N, Krolikowski W, Snyder A W. Partially Coherent Solitons ofVariable Shape[J]. Phys. Rev. Lett,1998,81(21):4632-4635.
    [22] Sukhorukov A A, Akhmediev N N. Coherent and Incoherent Contributions toMultisoliton Complexes[J]. Phys. Rev. Lett,1999,83(23):4736-4739.
    [23] Buljan H, Schwartz T, Segev M, et al. Polychromatic partially spatiallyincoherent solitons in a noninstantaneous Kerr nonlinear medium[J]. J. Opt. Soc.Am. B,2004,21(2):397-404.
    [24] Christodoulides D N, Coskun T H, Mitchell M, et al. Theory of IncoherentSelf-Focusing in Biased Photorefractive Media[J]. Phys. Rev. Lett,1997,78(4):646-649.
    [25] Coskun T H, Christodoulides D N, Chen Z G, et al. Dark incoherent solitonsplitting and “phase-memory” effects: Theory and experiment[J]. Phys. Rev. E,1999,59(5): R4777-R4780.
    [26] Coskun T H, Christodoulides D N, Mitchell M. Dynamics of incoherent brightand dark self-trapped beams and their coherence properties in photorefractivecrystals[J]. Opt. Lett,1998,23(6):418-420.
    [27]杨娟.光折变介质中部分相干光孤子的研究[D].杭州:浙江工业大学,2008:20-29.
    [28] Buljan H, Segev M, Soljacic M, et al. White-light solitons[J]. Opt. Lett.,2003,28(14):1239-1241.
    [29] Zhang Y Q, Lu K Q, Zhang M Z, et al. Dynamics of Incoherent PhotovoltaicSpatial Solitons[J]. Chin. Phys. Lett,2009,26(3):034212.
    [30] Lu K Q, Miao C Y, Lu P Y, et al. Dark incoherent soliton splitting in biasedphotorefractive-photovoltaic crystals[J]. Opt. Commun,2009,282(16):3335-3338.
    [31] Lu K Q, Miao C Y, Wei J F, et al. Sequential formation of incoherent multiplegray solitons in biased photorefractive-photovoltaic crystals[J]. Opt. Mater,2010,32(5):561-565
    [32] Zhang Y Q, Lu K Q, Zhang M Z, et al. Dark incoherent spatial solitons inlogarithmically saturable nonlinear media[J]. Chin. Phys. B,2009,18(6):2359-2363.
    [33] Buljan H, Siber A, Soljacic M, et al. Incoherent white light solitons inlogarithmically saturable noninstantaneous nonlinear media[J]. Phys.Rev. E,2003,68(3):036607.
    [34] Hansson T, Anderson D, Lisak M. Propagation of Partially Coherent Light inNonlinear Media[J]. PIERS ONLINE,2009,5(8):761-765.
    [35] Lisak M, Hall B, Anderson D, et al. Nonlinear Dynamics of Partially IncoherentOptical Waves Based on the Wigner Transform Method[J]. Phys. Scr,2002, T98:12-17.
    [36] Snyder A W, Mitchell D J. Big Incoherent Solitons[J]. Phys. Rev. Lett,1998,80(7):1422-1424.
    [37] Krolikowski W, Bang O. Solitons in nonlocal nonlinear media: Exact solutions[J].Phys. Rev. E,2000,63(1):016610.
    [38] Christodoulides D N, Eugenieva E D, Coskun T H, et al. Equivalence of threeapproaches describing partially incoherent wave propagation in inertial nonlinearmedia[J]. Phys. Rev. E,2001,63(3):035601.
    [1] Swartzlander G A, Andersen D R, Regan J J, et al. Spatial dark-solitons stripesand grids in self-defocusing materials[J]. Phys. Rev. Lett,1991,66(12):1583-1586.
    [2] Barry L D, Yang X P. Waveguides and Y junctions formed in bulk media by usingdark spatial solitons[J]. Opt. Lett,1992,17(7):496-498.
    [3] Swartzlander G A, Law C T. Optical Vortex Solitons Observed in Kerr NonlinearMedia[J]. Phys. Rev. Lett,1992,69(17):2503-2511.
    [4] Zakharov V E, Shabat A B. Interaction between solitons in a stable medium[J].Sov. Phys. JETP,1973,37(5):823-828.
    [5] Blow K J, Doran N J. Multiple dark soliton solutions of the nonlinearSchrodinger equation[J]. Phys. Lett. A,1985,107(2):55-58.
    [6] Skinner S R, Allan G R, Andersen D R, et al. Dark Spatial Soliton Propagation inBulk ZnSe[J]. IEEE J. Quantum Electron,1991,27(9):2211-2219.
    [7] Segev M, Crosignani B, Yariv A, et al. Spatial Solitons in PhotorefractiveMedia[J]. Phys. Rev. Lett,1992,68(7):923-927.
    [8] Chen Z G, Mitchell M, Segev M. Steady-state photorefractive soliton-inducedY-junction waveguides and high-order dark spatial solitons[J]. Opt. Lett,1996,21(10):716-718.
    [9] Chen Z G, Segev M, Singh S R, et al. Sequential formation of multiple darkphotorefractive spatial solitons: experiments and theory[J]. J. Opt. Soc. Am. B,1997,14(6):1407-1417.
    [10] Valley G C, Segev M, Crosignani B, et al. Dark and bright photovoltaic spatialsolitons[J]. Phys. Rev. A,50(6):R4457-R4460.
    [11] Taya M, Bashaw M C, Fejer M M, et al. Observation of dark photovoltaic spatialsolitons[J]. Phys. Rev. A.,1995,52(4):3095-3102.
    [12]朱楠,郭儒,刘思敏,等.光折变晶体中的光生伏打灰空间孤子[J].中国激光,2005,32(7):903-907.
    [13] She W L, Chan C W, Lee W K. Dark and bright photovoltaic spatial solitons inphotorefractive crystals with positive refractive-index perturbation[J]. Opt. Lett,2001,26(14):1093-1095.
    [14] Taya M, Bashaw M C, Fejer M M. Y junctions arising from dark-solitonpropagation in photovoltaic media[J]. Opt. Lett,1996,21(13):943-945.
    [15] Chen Z G, Segev M, Wilson D W, et al. Self-Trapping of an Optical Vortex byUse of the Bulk Photovoltaic Effect[J]. Phys. Rev. Lett,1997,78(15):2948-2951.
    [16] Zhang G Y, Liu J S, Liu S X, et al. The self-deflection of photovoltaic brightspatial solitons on the basis of highter-order space-charge field[J]. J. Opt. A: PureAppl. Opt,2006,8(5):442
    [17] Liu S M, Zhang G Q, Tian G Y, et al.(1+1)-Dimensional and (2+1)-demensionalwaveguides induced by self-focused dark notches and crosses in LiNbO3: Fecrystal[J]. Appl. Opt,1997,36(34):8982-8986.
    [18] Segev M, Valley G C, Taya M, et al. Photovoltaic spatial solitons[J]. J. Opt. Soc.Am. B,1997,14(7):1772-1781.
    [19]刘思敏,张国权,张光寅,等.由光折变空间孤子写入并存储波导的研究[J].物理,1997,26(4):217-221.
    [20]曲迪,刘思敏,陆猗,等.部分空间非相干光光生伏打暗空间孤子及其定向耦合器[J].南开大学学报(自然科学版),2006,39(2):11-15.
    [21] Zhang M Z, Lu K Q, Cheng G H, et al. One-dimensional steady-state brightphotovoltaic solitons in LiNbO3: Fe crystal with background illumination[J].Optik,2010,121(6):575-580.
    [22] She W L, Chan C W, Lee W K. Dark and bright photovoltaic spatial solitons inphotorefractive crystals with positive refractive-index perturbation[J]. Opt. Lett,2001,26(14):1093-1095.
    [23] Li J P, Lu K Q, Zhao W, et al. Two-Dimensional Photovoltaic Dark SpatialSolitons of Partially Spatially Incoherent Light[J]. Chin. Phys. Lett,2005,22(6):1423-1425.
    [24] Fressengeas N, Wolfersberger D, Maufoy J, et al. Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screeningsolitons[J]. Opt. Commun,1998,145:393-400.
    [25] Chauvet M. Temporal analysis of open-circuit dark photovoltaic spatialsolitons[J]. J. Opt. Soc. Am. B,2003,20(12):2515-2522.
    [26] Couton G, Maillotte H, Chauvet M. Self-formation of multiple spatialphotovoltaic solitons[J]. J. Opt. B: Quantum Semiclass Opt,2004,6: S223-S230.
    [27] Bodnar M. Dark Photovoltaic Spatial Solitons: Experiment and NumericalSolution[J]. Proceedings of SPIE,2007,6582:65821P.
    [28] Zhang L, Lu K Q, Yang Y, et al. Temporal analysis of open-circuit low-amplitudephotovoltaic spatial solitons[J]. Acta Photonic Sinica,2008,37(9):1760-1763.
    [29] Lu K Q, Zhao W, Zhang L, et al. Temporal behavior of dark spatial solitons inclosed-circuit photovoltaic media[J]. Opt. Commun,2008,281:2913-2917.
    [30]刘思敏,郭儒,许京军,编著.光折变非线性光学及其应用(第二版)[M].北京:科学出版社,2004:17.
    [31] Kukhtarev N V, Markov V B, Odulov S G, et al. Holograghic storage inelectronoptic crystals. I. steady state[J]. Ferroelectrics,1979,22(1):949.
    [32] Carvalho M I, Singh S R, Christodoulides D N. Self-deflection of steady-statebright solitons in biased photorefractive crystals[J]. Opt. Commun,1995,120:311-315.
    [33] Shih M F, Leach P, Segev M, et al. Two-dimensional steady-state photorefractivescreening solitons[J]. Opt. Lett,1996,21(5):324-326.
    [34] Thylen L, Yevick D. Beam Propagation method in anisotropic media[J]. Appl.Opt,1982,21(15):2751-2754.
    [35] Roey J V, J. van der Donk, Lagasse P E. Beam-propagation method: analysis andassessment[J]. J. Opt. Soc. Am. B,1981,71(7):803-810.
    [36] Agrawal G P.贾东方,余震虹,等译.非线性光纤光学原理及应用(第二版)[M].北京:电子工业出版社,2010:32-35.
    [37] Zhang M Z, Lu K Q, Cheng G H, et al. Temporal behaviour of open-circuitphotovoltaic solitons. Chin. Phys.B,2009,18(7):2839-2845.
    [1]刘劲松,卢克清.外加电场的光伏光折变晶体中的空间孤子波[J].物理学报,1998,47(9):1509.
    [2]卢克清,唐天同.有偏压的光伏光折变晶体中的空间孤子[J].物理学报,1999,48(11):2070-2075.
    [3] Liu J S, Lu K Q. Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection[J]. J. Opt. Soc. Am. B,1999,16(4):550-555.
    [4] Lu K Q, Tang T T, Zhang Y P. One-dimensional steady-state spatial solitons inphotovoltaic photorefractive materials with an external applied field[J]. Phys. Rev.A,2000,61(5):053822.
    [5] Lu K Q, Zhang Y P, Tang T T. Steady-state spatial solitons in biased photovoltaic-photorefractive crystals for short circuits[J]. J. Opt. A: Pure Appl. Opt,2001,3(4):262-266.
    [6] Lu K Q, Zhang Y P, Tang T T, et al. Steady-State Screening-Photovoltaic SpatialSolitons in the Biased Photorefractive-Photovoltaic Crystals[J]. Chin. Phys. Lett,2001,18(2):233-235.
    [7] Hou C F, Li Y, Zhang X, et al. Grey screening-photovoltaic spatial soliton inbiased photovoltaic photorefractive crystals[J]. Opt. Commun,2000,181(1-3):141-144.
    [8]卢克清,朱京平,张彦鹏,等.有偏压的光伏光折变晶体中的空间灰孤子[J].光子学报,2001,30(5):
    [9]侯春风,袁保红,孙秀冬,等.非相干耦合屏蔽光伏孤子对[J].物理学报,2000,49(10):1969-1972.
    [10] Liu J S, Zhang D Y, Hao Z H. Self-deflection of screening-photovoltaic spatialsolitons in biased photovoltaic photorefractive crystals[J]. J. Mod. Opt,2001,48(12):1803-1810.
    [11] Lu K Q, Qian S X, Zhao W, et al. Steady-state bright-dark vector spatial solitonsin biased photorefractive-photovoltaic crystals[J]. Opt. Commun,2002,209(4-6):437-444.
    [12] LU K Q, Qian S X, Dou C S, et al. Bright-Dark Vector Screening-PhotovoltaicSpatial Solitons in Biased Photorefractive-Photovoltaic Crystals[J]. Chin. Phys.Lett,2002,19(9):1298-1300.
    [13]卢克清,李金萍,赵卫,等.有偏压光伏光折变晶体中明暗矢量孤子的演化[J].中国激光,2005,32(3):323-326.
    [14] Fazio E, Renzi F, Rinaldi R, et al. Screening-photovoltaic bright solitons inlithium niobate and associated single-mode waveguides[J]. Appl. Phys. Lett,2004,85(12):2193-2195.
    [15] Zhang G Y, Liu J S. Screening-photovoltaic spatial solitons in biased two-photonphotovoltaic photorefractive crystals[J]. J. Opt. Soc. Am. B,2009,26(1):113-120.
    [16] Mitchell M, Chen Z G, Shih M F, et al. Self-trapping of partially spatiallyincoherent light[J]. Phys. Rev. Lett,1996,77(3):490-493.
    [17] Christodoulides D N, Coskun T H, Mitchell M, et al. Theory of IncoherentSelf-Focusing in Biased Photorefractive Media[J]. Phys. Rev. Lett,1997,78(4):646-649.
    [18] Coskun T H, Christodoulides D N, Mitchell M. Dynamics of incoherent brightand dark self-trapped beams and their coherence properties in photorefractivecrystals[J]. Opt. Lett,1998,23(6):418-420.
    [19] Mitchell M, Segev M, Coskun T H, et al. Theory of Self-Trapped SpatiallyIncoherent Light Beams[J]. Phys. Rev. Lett,1997,79(25):4990-4993.
    [20] Coskun T H, Christodoulides D N, Chen Z G, et al. Dark incoherent solitonsplitting and “phase-memory” effects: Theory and experiment[J]. Phys. Rev. E,1999,59(5): R4777-R4780.
    [21] Chen Z G, Mitchell M, Segev M, et al. Self-Trapping of Dark Incoherent LightBeams[J]. Science,1998,280:889-893.
    [22] Chen Z G, McCarthy K. Spatial soliton pixels from partially incoherent light[J].Opt. Lett,2002,27(15):2019-2021.
    [23] Chen Z G, Segev M, Christodoulides D N, et al. Waveguides formed byincoherent dark solitons[J]. Opt. Lett,1999,24(16):1160-1162.
    [24] Segev M, Valley G C, Taya M, et al. Photovoltaic spatial solitons[J]. J. Opt. Soc.Am. B,1997,14(7):1772-1781.
    [25] Chen Z G, Segev M, Singh S R, et al. Sequential formation of multiple darkphotorefractive spatial solitons: experiments and theory[J]. J. Opt. Soc. Am. B.,1997,14(6):1407-1417.
    [26] Chen Z G, Segev M, Christodoulies D N. Experiments on partially coherentphotorefractive solitons[J]. J. Opt. A: Pure Appl. Opt.2003,5: S389-S397.
    [27] Bodnar M. Dark Photovoltaic Spatial Solitons: Experiment and NumericalSoliton[J]. Proc. Of SPIE.2007,6582:65821P.
    [28] Christodoulides D N, Coskun T H, Joseph R I. Incoherent spatial solitons insaturable nonlinear media[J]. Opt. Lett.,1997,22(14):1080-1082.
    [29] Christodoulides D N, Coskun T H, Mitchell M, et al. Multimode IncoherentSpatial Solitons in Logarithmically Saturable Nonlinear Media[J]. Phys. Rev. Lett.,1998,80(11):2310-2313.
    [1] Lu K Q, Tang T T, Zhang Y P. One-dimensional steady-state spatial solitons inphotovoltaic photorefractive materials with an external applied field[J]. Phys. Rev.A,2000,61(5):053822.
    [2] Lu K Q, Zhang Y P, Tang T T. Steady-state spatial solitons in biasedphotovoltaic-photorefractive crystals for short circuits[J]. J. Opt. A: Pure Appl.Opt,2001,3(4):262-266.
    [3] Christodoulides D N, T H Coskun T H, M Mitchell M, et al. Theory of IncoherentSelf-Focusing in Biased Photorefractive Media[J]. Phys. Rev. Lett,1997,78(4):646-649.
    [4] Coskun T H, Christodoulides D N, Mitchell M. Dynamics of incoherent brightand dark self-trapped beams and their coherence properties in photorefractivecrystals[J]. Opt. Lett,1998,23(6):418-420.
    [1] Lan S, Shih M F, Mizell G, et al. Second-harmonic generation in waveguidesinduced by photorefractive spatial solitons[J]. Opt. Lett,1999,24(16):1145-1147.
    [2] Lan S, Anastassiou C, Segev M, et al. Tuning of second-harmonic generation inwaveguides induced by photorefractive spatial solitons[J]. Appl. Phys. Lett,2000,77(14):2101-2103.
    [3] Pertsch T, Zentgraf T, Peschel U, et al. Anomalous Refraction and Diffraction inDiscrete Optical Systems[J]. Phys. Rev. Lett,2002,88(9):093901.
    [4] Boardman A D, Ilecki W, Liu Y. Spatial solitons in a photorefractive mediumsustaining second-harmonic generation[J]. J. Opt. Soc. Am. B,2002,19(4):832-838.
    [5] Lou C B, Xu J J, Qiao H J, et al. Enhanced second-harmonic generation by meansof high-power confinement in a photovoltaic soliton-induced waveguide[J]. Opt.Lett,2004,29(9):953-955.
    [6]杨立森,陈玉和,陆改玲,等.光折变孤子晶格中空间二次谐波的产生[J].物理学报,2007,56(7):3966-3971.
    [7] Pettazzi F, Coda V, Fanjoux G, et al. Dynamics of second-harmonic generation ina photovoltaic photorefractive quadratic medium[J]. J. Opt. Soc. Am. B,2010,27(1):1-9.
    [8] Christodoulides D N, Joseph R I. Discrete self-focusing in nonlinear arrays ofcoupled waveguides[J]. Opt. Lett,1988,13(9):794-796.
    [9] Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensionaldiscrete solitons in optically induced nonlinear photonic lattices[J]. Nature,2003,422(3):147-150.
    [10] Fleischer J W, Carmon T, Segev M, et al. Observation of Discrete Solitons inOptically Induced Real Time Waveguide Arrays[J]. Phys. Rev. Lett,2003,90(2):023902.
    [11]陈志刚,许京军,楼慈波.光诱导光子晶格结构中新型的离散空间光孤子[J].物理,2005,34(1):12-17.
    [12]楼慈波,宋道红,唐莉勤,等.光子晶格中新颖的空间带隙孤子[J].物理,2008,37(4):239-246.
    [13] Fedele F, Yang Jianke, Chen Zhigang. Properties of Defect Modes inOne-Dimensional Optically Induced Photonic Lattices[J]. Studyies in AppliedMathematics,2005,115(2):277-300.
    [14] Makris K G, Suntsov S, Christodoulides D N, et al. Discrete surface solitons[J].Opt. Lett,2005,30(18),2466-2468.
    [15] Molina M I, Garanovich I L, Sukhorukov A A, et al. Discrete surface solitons insemi-infinite binary waveguide arrays[J]. Opt. Lett,2006,31(15):2332-3334.
    [16] Yang J K, Chen Z G. Defect solitons in photonic lattices[J]. Phys. Rev. E,2006,73(2):026609.
    [17] Wang X S, Chen Z G. Observation of Discrete Solitons and Soliton Rotation inOptically Induced Periodic Ring Lattices[J]. Phys. Rev. Lett,2006,96(8):083904.
    [18] Suntsov S, Makris K G, Christodoulides D N, et al. Observation of discretesurface solitons[J]. Phys. Rev. Lett,2006,96(6):063901.
    [19] Wang J D, Yang J K, Chen Z G. Two-dimensional defect modes in opticallyinduced photonic lattices[J]. Phys. Rev. A,2007,76(1):013828.
    [20] Vicencio R A, Flach S, Molina M I, et al. Discrete surface solitons in two-dimensional anisotropic photonic lattices[J]. Phys. Lett. A,2007,364:274-276.
    [21] Chen Wu-He, He Ying-Ji, Wang He-Zhou. Surface defect superlattice solitons[J].J. Opt. Soc. Am. B,2007,24(10):2584-2588.
    [22] Terhalle B, Desyatnikov A S, Bersch C, et al. Anisotropic photonic lattices anddiscrete solitons in photorefractiove media[J]. Appl. Phys. B,2007,86:399-405.
    [23] Lederer F, Stegeman G I, Christodoulides D. N, et al. Discrete solitons in optics[J]. Physics Reports,2008,463:1-126.
    [24] Hutsebaut X, Cambournac C. Single-component higher-order mode solitons inliquid crystals[J]. Opt. Commun,2004,233:211-217.
    [25] Khoo I C, Zhuang S L, Shepard S. Self-focusing of a low power CW laser beamvia optically induced birefringence in a nematic liquid-crystal film[J]. Appl. Phys.Lett,1981,39(12):973-940.
    [26] Henninot J, Debailleul M, et al.(2D+1) spatial optical solitons in dye dopedliquid crystals[J]. Synthetic Metals.2001,124:9-13.
    [27] Makris K G, Sarkissian H, Christodoulides D N, et al. Incoherent spatial solitonsin nematic liquid crystals[J]. Quantum Electronics and Laser Science Conference,2005,1:395-397.
    [28] Aguanno G D, Mattiucci N, Scalora M, et al. Bright and dark gap solitons inanegative index Fabry-Perot etalon[J]. Phys. Rev. Lett,2004,93(21):213902.
    [29] Assanto G, Peccianti M, Umeton C, et al. Coherent and Incoherent SpatialSolitons in Bulk Nematic Liquid Crystals Molecular Crystals and LiquidCrystals[J]. Molecular Crystals and Liquid Crystals,2002,375:617-629.
    [30]谢小涛.冷原子介质中的时间与空间光孤子[D].武汉:华中科技大学,2007:63.
    [31] Kos K, Salamo G, Segev M. High-intensity nanosecond photorefractive spatialsolitons[J]. Opt. Lett,1998,23(13):1001-1003.
    [32] Wolferberger D, Fressengeas N, Maufoy J, et al. Self-focusing of a single laserpulse in a photorefractive medium. Phys. Rev. E,2000,62(6):8700-8704.
    [33] Wolfersberger D, Fressengeas N, Maufoy J, et al. Experimental self-focusing of asing laser pulse in photorefractive Bi12TiO20. J. Appl. Phys,2001,89:2511-2515.
    [34] Wolfersberger D, Lhommé F, Fressengeas N, et al. Simulation of the temporalbehavior of one single laser pulse in a photorefractive medium. Opt. Commun,2003,222:383-391.
    [35] Imbrock J, Heese C, Denz C. Spatial photorefractive solitons with picosecondlaser pulses[J]. Appl. Phys. B: Lasers and Opt,2009,95(2):261-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700