抗凋亡蛋白Bcl-2在岗田酸诱导的神经细胞退化中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗凋亡蛋白Bcl-2在岗田酸诱导的神经细胞退化中的作用研究
     凋亡机制参与了AD中神经细胞退化过程。Bcl-2家族在凋亡信号转导通路中起重要调节作用。Bcl-2家族包括促凋亡和抑凋亡两类作用相反的蛋白,Bcl-2是起抑凋亡作用的代表性成员,其抗凋亡作用与家族中促凋亡蛋白Bax密切联系,Bcl-2与Bax之间的比例对细胞是否发生凋亡起重要作用。岗田酸(OA)是蛋白磷酸酶抑制剂,在整体或离体条件OA能使神经细胞微管相关蛋白tau异常高度磷酸化而使神经细胞退化,部分模拟了AD样病理特征。离体时OA所致神经细胞退化为凋亡,而整体时也发现OA能引起神经细胞发生凋亡样DNA双链断裂。为了研究Bcl-2相关凋亡调节机制在OA所致神经细胞退化中的影响,本课题首先采用大鼠脑额叶皮质定位注射OA的整体模型,观察OA致神经细胞退化时Bcl-2和Bax的表达变化规律,探讨Bcl-2在OA致神经细胞退化时的作用特征以及Bcl-2是否参与此过程中细胞自身代偿性保护机制;继而采用OA诱导体外培养神经细胞凋亡性退化的离体模型,研究Bcl-2过表达是否抑制OA所致神经细胞退化,以进一步确定Bcl-2在OA诱导的神经细胞退化过程中是否具有细胞保护作用。
     整体实验部分Bcl-2在OA诱导大鼠脑神经细胞退化中的作用分析
     为探讨Bcl-2相关凋亡调节机制与整体时OA致神经细胞tau蛋白高度磷酸化和退化之间的关系,采用大鼠额叶皮质定位注射OA的模型,应用免疫组织化学、免疫荧光三标结合激光共聚焦扫描的方法,检测OA致神经细胞退化时对Bcl-2表达和Bax表达的影响及二者与tau蛋白磷酸化的共存关系。结果如下:
     1.在OA作用皮质,神经细胞高表达Bcl-2蛋白,OA作用皮质表达Bcl-2的细胞数明显增加,且具有时间和剂量反应特征,对各时间反应组的细胞计数显示,注射20ng OA 12h、1d、3d时Bcl-2免疫阳性细胞的数目显著高于相应时间点的生理盐水对照组(p<0.001),且OA 12h、1d、3d组与OA 3h、6h、7d组相比有显著性差异(12h,p<0.01;1d、3d,p<0.05);对注射1d时各剂量反应组的细胞计数显示,20ng、50ng、100ng OA组均大量表达Bcl-2蛋白,与生理盐水对照组相比有显著差异(20ng,p<0.01;50ng、100ng,p<0.05),20ng和100ng组与10ng组相比也有显著差异(p<0.05);
     2.在OA作用皮质,神经细胞高表达Bax蛋白,且具有时间和剂量反应特征,对各时间反应组的细胞计数显示,注射20ng OA 12h、1d、3d时Bax免疫阳性细胞的数目显著高于相应时间点的生理盐水对照组(p<0.01);对注射1d时各剂量反应组的细胞计数显示,与生理盐水对照组和10ng组相比,20ng、100ng OA组的Bax免疫阳性细胞数有增多趋势,接近统计学显著性差异水平;
     3.比较OA 20ng 1d组大鼠的相邻平面脑片AT-8、Bcl-2和Bax三种免疫组化染色,形态学观察显示,在OA注射皮质,三种免疫阳性细胞的分布位置大体一致,Bcl-2阳性细胞的分布范围和细胞数目明显大于或多于其他两种免疫阳性细胞,在三种免疫阳性细胞中,Bax阳性细胞的分布范围最小,阳性细胞数目最少,AT-8阳性细胞居中;对OA 20ng 1d组大鼠的AT-8、Bcl-2和Bax免疫荧光三标显示,在距OA注射位点较近的周边区域,Bcl-2表达与AT-8表达、Bax表达共存,或Bcl-2表达仅与AT-8表达共存;在距OA注射位点较远周边区域,仅见Bcl-2高表达,未见AT-8和Bax表达。
     这部分结果提示,OA上调额叶皮质神经细胞中Bcl-2和Bax蛋白表达,且具有时程规律和剂量反应特征,并与OA所致tau蛋白磷酸化的时程规律和剂量反应特征较为一致,提示OA所致Bcl-2和Bax高表达与tau蛋白磷酸化之间可能存在内在联系;OA作用皮质区域,AT-8、Bcl-2、Bax表达三者共存或AT-8表达仅与Bcl-2表达二者共存,这提示Bcl-2家族活跃参与OA所致神经细胞退化过程,但Bcl-2、Bax高表达时的活性状态及其对OA所诱导细胞损伤的功能意义还有待证实。
     离体实验部分Bel-2在OA诱导体外培养神经细胞退化中的作用分析
     为了进一步探讨OA致神经细胞损伤过程中Bcl-2表达上调的功能意义,采用OA诱导人神经母细胞瘤SH-SY5Y细胞退化的离体模型,应用脂质体介导质粒DNA转染细胞的方法、DNA荧光染料Hoechst 33258染色法、MTT还原法,首先明确OA引起SH-SY5Y细胞凋亡性退化,鉴定质粒转染引起SH-SY5Y细胞外源性过表达功能性Bcl-2,进而研究Bcl-2过表达对OA所致体外培养神经细胞退化的影响。结果如下:
     1.MTT还原法对细胞活力的检测显示,OA剂量依赖性地降低SH-SY5Y细胞活力,其中60nM/80nM/100nM OA作用24h显著降低细胞活力(60nM、80nM,p<0.05;100nM,p<0.01);Hoechst 33258染色显示,80nM OA作用24h引起该种细胞出现多量核浓聚、核碎裂的凋亡样核型;
    2.脂质体介导pEGFP-N1-Bcl-2和空质粒pEGFP-N1瞬时转染SH-SY5Y细胞,转染效率分别为2.01%和2.18%,细胞分别过表达Bcl-2-GFP和GFP蛋白,Bcl-2-GFP融合蛋白主要分布于近核的细胞胞体,而GFP蛋白则在胞质和胞核中均有分布;Hoechst 33258染色法显示,200nM促凋亡剂星形孢菌素(STS)作用细胞24h,Bcl-2重组质粒转染组的细胞凋亡率显著低于空质粒转染组的细胞凋亡率(p<0.01);
     3.Hoechst 33258染色法显示,80 nM OA作用细胞24h,Bcl-2重组质粒转染组的细胞凋亡率显著低于空质粒转染组的细胞凋亡率(p<0.05)。
     这部分结果提示,OA剂量依赖性引起体外培养神经细胞SH-SY5Y凋亡性退化,Bcl-2重组质粒瞬时转染引起该种细胞过表达功能性融合蛋白Bcl-2-GFP,Bcl-2过表达能部分抑制OA所致SH-SY5Y细胞退化,这显示Bcl-2在OA所致神经细胞退化过程中可能起重要的调节作用,Bcl-2表达上调在OA损伤通路中具有细胞保护作用。
     结论
     1.大鼠脑额叶皮质定位注射OA能诱导该区神经细胞Bcl-2和Bax表达上调,且呈时间和剂量反应特征,二者的表达上调可能与OA致tau蛋白高度磷酸化有关,OA作用皮质区域AT-8、Bcl-2、Bax表达三者共存或AT-8表达仅与Bcl-2表达二者共存,这提示Bcl-2家族活跃参与OA所致神经细胞退化过程。
     2.外源性Bcl-2高表达能部分抑制OA所致体外培养神经细胞SH-SY5Y凋亡性退化,提示Bcl-2相关凋亡调节机制参与了OA所致神经细胞退化过程,在该损伤通路中Bcl-2表达上调具有细胞保护的功能意义。
     3.综合分析整体与离体实验的结果,提示Bcl-2相关凋亡调节机制参与OA所致神经细胞退化过程,OA引起的Bcl-2表达上调可能是机体神经细胞针对损伤信号的自身代偿性保护机制。
Apoptosis involves in progressive neurodegeneration in AD. Bcl-2 family plays important role in apoptotic signal transduction pathway. The family members are classified as two kinds according to their opposite functions, pro-apoptotic or anti-apoptotic activity. Bcl-2 and Bax are representative of anti-apoptotic and pro-apoptotic proteins, respectively. The anti-apoptotic activity of Bcl-2 associates closely with the pro-apoptotic activity of Bax. Occurrence of cell apoptosis is decided by the ratio of Bcl-2 versus Bax under certain physiological and pathological conditions. Okadaic acid (OA), a protein phosphatase inhibitor, induces microtubule-associated protein tau hyperphosphorylation both in vitro and in vivo, which is considered to associate with pathogenesis of neurodegeneration. Apoptosis is responsible for neurodegeneration induced by OA in vitro. It has also been found that apoptosis-like DNA double strand damage appeared in OA-induced neurodegeneration in vivo. In the present study, microinjection of OA into rat frontal cortex was used to explore the possible roles of Bcl-2-related apoptotic regulatory mechanism in OA-induced neurodegeneration process in vivo. Immunohistochemistry was applied to observe alteration of Bcl-2 and Bax expression following OA injection. Triple immuno-fluorescent labeling combined with cofocal laser scanning microscopic analysis was performed to illustrate the topographic relationship among tau hyperphosphorylation, Bcl-2 expression and Bax expression induced by OA. Furthermore, human SH-SY5Y neuroblastoma cells were applied to investigate the influence of exogenous Bcl-2 overexpression on apoptotic neuronal death induced by OA. The results are as follows:
    Experiment in vivo Effect of Bcl-2 on OA-induced neurodegeneration in rat brain
    Bcl-2 immunostaining showed that (1) the number of Bcl-2 positive staining cells significantly increased at 12 h, peaked at 1 d, then decreased at 3 d after injection of 20 ng OA compared with the number of Bcl-2-positive cells after vehicle
    injection (p<0.001); 12 h, 1 d and 3 d of 20 ng OA treatment significantly increased the number of Bcl-2-positive cells compared with 3 h, 6 h and 7 d of 20 ng OA treatment (12 h, p<0.01; 1 d, 3 d, p<0.05); (2) compared with vehicle injection, injection of, 20 ng, 50 ng and 100 ng OA significantly increased the number of Bcl-2-positive cells at 1 d (20 ng,p<0.01; 50 ng, 100 ng,p<0.05); compared with 10 ng OA injection, injection of 20 ng and 100 ng OA also significantly increased the number of Bcl-2-positive cells at 1 d (p<0.05)
    Bax immunostaining showed that (1) the number of Bax-positive cells also significantly increased at 12 h, peaked at 1 d, then decreased at 3 d after injection of 20 ng OA compared with the number of Bax-positive cells after vehicle injection (p<0.01); (2) injection of 50 ng and 100 ng OA tended to elevate the number of Bax-positive cells at 1 d, but not reach statistical level.
    Immunohistochemistry of adjacent brain slices from the same rat delineated that the distributional profiles of AT-8-, Bcl-2- and Bax-positive cells were similar. However, the distributional range and the number of these positive cells were obviously different from one another. Among them, the range of Bcl-2-positive cells was most widely and the number was largest, the range of Bax-positive cells was least widely and the number was smallest and these two indices of AT-8-positive cells were in the middle.
    Triple immuno-fluorescent staining delineated that Bcl-2 expression co-stained with AT-8 and Bax expression or only co-stained with AT-8 expression in the affected area more adjacent to OA injected site. But in the affected area less neighboring to OA injected site, only Bcl-2 immunoreactivity was observed, but neither AT-8 nor Bax immunoreactivity.
    Experiment in vitro Effect of Bcl-2 overexpression on OA-induced cell death in SH-SY5Y cells
    OA decreased cell viability of SH-SY5Y cells in dose dependent manner. 60 nM, 80 nM and 100 nM OA significantly reduced cell viability after 24 h of treatment (60 nM, 80 nM,p<0.05; 100 nM,p<0.01). Hoechst staining showed that a lot of chromatin condensation and fragmentation typical of apoptosis appeared following 24 h of 80 nM OA treatment.
    The transfection efficiency of recombinant plasmid pEGFP-N1-Bcl-2 and empty plasmid pEGFP-N1 was 2.01% and 2.18% respectively. Exogenous Bcl-2-GFP induced by recombinant plasmid transfection mainly resided in peri-nucleus cell bodies, while Exogenous GFP induced by vector transfection located in cytosol, nuclei and processes. Hoechst staining showed that apoptotic Bcl-2 transfected cells were markedly less than apoptotic vector transfected cells after 24 h of 200 nM staurosporine (STS) exposure (p<0.01).
    Hoechst staining further revealed that apoptotic Bcl-2 transfected cells were markedly less than apoptotic vector transfected cells after 24 h of 80 nM OA exposure (p<0.05).
    Conclusion
    1. Microinjection of OA into rat frontal cortex upregulated Bcl-2 and Bax protein expression in affected brain area. Moreover, induction of Bcl-2 and Bax expression by OA had temporal change and dose response feature. The upregulation of these two apoptotic regulatory protein probably attributed to tau hyperphosphorylation stimulated by OA. In affected cortex by OA, AT-8, Bcl-2 and Bax expression co-stained or AT-8 and Bcl-2 expression co-stained, suggestive of Bcl-2 family actively participated in OA-induced neurodegeneration process.
    2. Exogenous Bcl-2 overexpression partially inhibited OA-induced apoptosis in SH-SY5Y neuronal cells, suggesting that Bcl-2 related apoptotic regulatory mechanism involved in OA-induced neurodegenerative pathway and that Bcl-2 had neuronal protective role in it.
    3. Taken together, the results in vivo and in vitro indicated that Bcl-2 related apoptotic regulatory mechanism participated in OA-induced neurodegeneration and that the upregulation of Bcl-2 protein expression probably represented neuronal compensatory mechanism in response to OA toxicity to neuronal cytoskeleton.
引文
1. Vickers JC, Dickson TC, Adlard PA, et al. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol, 2000, 60:139-165.
    
    2. Czech C, Tremp G, Pradier L. Presenilin and Alzheimer's disease: Biological function and pathogenic mechanisms. Prog Neurobiol, 2000, 60: 363-384.
    
    3. St George-Hyslop PH. Molecular genetics of Alzheimer's disease. Biol Psychiatry, 2000, 47: 183-199.
    
    4. Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 1992,42:631-639.
    
    5. Iqbal K, Alonso AC, Gong CX, et al. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl, 1998, 53: 169-80.
    
    6. Iqbal K, Alonso AD, Gondal JA, et al. Mechanism of neurofibrillary degeneration and pharmacological therapeutic approach. J Neural Transm Suppl, 2000,59:213-22.
    
    7. Tachibana K, Scheuer PJ, Tsuitani Y, et al. Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc, 1981, 103: 2469-2471.
    
    8. Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J, 1988, 256: 283-290.
    
    9. Arendt T, Hanisch F, Holzer M, et al. In vivo phosphorylation in the rat basal nucleus induces PHFs-like and APP immunoreactivity. Neuroreport, 1994 , 5: 1397-400.
    
    10. Arendt T, Holzer M, Fruth R, et al. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of Phosphatase 1 and 2A. Neuroscience, 1995, 69: 691-8.
    
    11. Arendt T, Holzer M, Bruckner MK, et al. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer's disease. Neuroscience, 1998,85: 1337-40.
    
    12. Arendt T, Holzer M, Fruth R, et al. Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging, 1998, 19: 3-13.
    13. Tanaka T, Zhong J, Iqbal K, et al. The regulation of phosphorylation of tau in SY5Y neuroblastoma cells: the role of protein phosphatases. FEBS Lett, 1998, 426: 248-54.
    14. Kim D, Su J, Cotman CW. Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res, 1999, 839: 253-62.
    15. Kim D, Koh WK, Kim JU, et al. Okadaic acid-induced upregulation of nitrotyrosine and heme oxygenase-1 in rat cortical neuron cultures. Neurosci Lett, 2001, 297: 33-36.
    16. Sim A, Lloyd H, Jarvie R et al. Synaptosomal amino acid release: effect of inhibiting protein phosphatases with okadaic acid. Neurosci Lett, 1993, 160: 181-184.
    17. Fladmark KE, Brustugun OT, Hovland R, et al. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death Differ, 1999, 6: 1099-108.
    18.魏建设,张玲妹,黄娅琳,杨增进,孙凤艳.岗田酸诱导大鼠脑tau蛋白磷酸化和神经细胞退化.中国神经科学杂志,2002,18:577-582.
    19. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci, 1997, 20: 245-67.
    20. Krajewski S, Mai JK, Krajewska M, et al. Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci, 1995, 15: 6364-76.
    21. Kitamura Y, Shimohama S, Kamoshima W, et al. Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Res, 1998, 780: 260-9.
    22. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol, 1997, 56: 86-93.
    23. Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407: 770-6.
    24. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997, 275: 1129-32.
    25. Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997, 275: 1132-6.
    26. Kins S, Crameri A, Evans DR, et al. Reduced protein Phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem, 2001, 276: 38193-200.
    
    27. Bennecib M, Gong CX, Grundke-Iqbal I, et al. Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett, 2001, 490: 15-22.
    
    28. Kins S, Crameri A, Evans DR, et al. Reduced protein Phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem, 2001, 276: 38193-200.
    
    29. Nuydens R, Dispersyn G, de Jong M, et al. Aberrant tau phosphorylation and neurite retraction during NGF deprivation in PC 12 cells. Biochem Biophys Res Commun, 1997, 240: 687-91.
    
    30. Stoothoff WH, Johnson GV. Hyperosmotic stress-induced apoptosis and tau phosphorylation in human neuroblastoma cells. J Neurosci Res, 2001, 65: 573-82.
    
    31. Bennecib M, Gong CX, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett, 2000, 485: 87-93.
    
    32. Clarke PR, Hoffmann I, Draetta G, et al. Dephosphorylation of cdc25-C by a type-2A protein Phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol Biol Cell, 1993, 4: 397-411.
    
    33. Yamashita K, Yasuda H, Pines J, et al. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/Hl kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J, 1990, 9: 4331-8.
    
    34. Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J, 1993, 296: 15-9.
    
    35. Raghupathi R, Conti AC, Graham DI, et al. Mild traumatic brain injury induces apoptotic cell death in the cortex that is preceded by decreases in cellular Bcl-2 immunoreactivity. Neuroscience, 2002, 110: 605-16.
    
    36. Vila M, Jackson-Lewis V, Vukosavic S, et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc Natl Acad Sci U S A, 2001, 98: 2837-42.
    
    37. Martin LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol, 1999,58:459-71.
    
    38. Sawa A, Oyama F, Cairns NJ, et al. Aberrant expression of bcl-2 gene family in Down's syndrome brains. Brain Res Mol Brain Res, 1997, 48: 53-9.
    
    39. Adams JM, Cory S. The Bcl-2 protein family, arbiters of cell survival. Science, 1998,281: 1322-6.
    
    40. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 1994, 369: 321-3.
    
    41. Putcha GV, Deshmukh M, Johnson EM Jr. BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci, 1999, 19: 7476-85.
    
    42. Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol, 2000, 2: 553-5.
    
    43. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399: 483-7.
    
    44. Kluck RM, Esposti MD, Perkins G, et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol, 1999, 147: 80-229.
    
    45. Krajewski S, Tanaka S, Takayama S, et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res, 1993, 53:4701-14.
    
    46. Krajewski S, Krajewska M, Shabaik A, et al. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol, 1994, 145: 1323-36.
    
    47. Satou T, Cummings BJ, Cotman CW. Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer's disease brain increases with disease severity. Brain Res, 1995,697:35-43.
    
    48. Nuydens R, Dispersyn G, Van Den, et al. Bcl-2 protects against apoptosis-related microtubule alterations in neuronal cells. Apoptosis, 2000, 5: 43-51.
    49. Klumpp S, Krieglstein J. Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol, 2002, 2: 458-62.
    
    50. Ruvolo PP, Clark W, Mumby M, et al. A functional role for the B56 alpha-subunit of protein Phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem, 2002, 277: 22847-52.
    
    51. Ruvolo PP, Deng X, Ito T, et al. Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem, 1999, 274: 20296-300.
    
    52. Chiang CW, Harris G, Ellig C, et al;. Protein Phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood, 2001, 97: 1289-97.
    
    
    
    
    
    53. Verma S, Zhao LJ, Chinnadurai G. Phosphorylation of the pro-apoptotic protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem, 2001,276:4671-6.
    
    54. Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci U S A, 1995, 92: 4507-11.
    
    55. Silverstein AM, Barrow CA, Davis AJ, et al. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A, 2002, 99: 4221-6.
    
    56. Li X, Scuderi A, Letsou A, et al. B56-associated protein Phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol, 2002, 22: 3674-84.
    
    57. Boe R, Gjertsen BT, Vintermyr OK, et al. The protein Phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res, 1991, 195: 237-46.
    
    58. Yuste VJ, Sanchez-Lopez I, Sole C, et al. The prevention of the staurosporine-induced apoptosis by Bcl-X(L), but not by Bcl-2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. J Neurochem, 2002, 80: 126-39.
    
    59. Figueroa-Masot XA, Hetman M, Higgins MJ, et al. Taxol induces apoptosis in cortical neurons by a mechanism independent of Bcl-2 phosphorylation. J Neurosci, 2001,21:4657-67.
    1. Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci, 1998, 21: 428-33.
    
    2. Gotz J. Tau and transgenic animal models. Brain Res Brain Res Rev, 2001, 35: 266-86.
    
    3. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991, 82: 239-59.
    
    4. Lewis J, McGowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet, 2000, 25: 402-5.
    
    5. Friedhoff P, von Bergen M, Mandelkow EM, et al. Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta, 2000, 1502: 122-32.
    
    6. Wille H, Drewes G, Biernat J, et al. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol, 1992, 118: 573-84.
    
    7. Schweers O, Schonbrunn-Hanebeck E, Marx A, et al. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem, 1994, 269: 24290-7.
    
    8. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry, 1992, 31: 10626-33.
    
    9. Himmler A, Drechsel D, Kirschner MW, et al. Tau consists of a set of proteins with repeated C-terminal microtubule- domains and variable N-terminal domains. Mol Cell Biol, 1989,9: 1381-8.
    
    10. Kosik KS, Orecchio LD, Bakalis S, et al. Developmentally regulated expression of specific tau sequences. Neuron, 1989,2: 1389-97.
    
    11. Kosik KS, Crandall JE, Mufson EJ, et al. Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment. Ann Neurol, 1989,26:352-61.
    
    12. LoPresti P, Szuchet S, Papasozomenos SC, et al. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci U S A , 1995, 92: 10369-73.
    13. Brady RM, Zinkowski RP, Binder LI. Presence of tau in isolated nuclei from human brain. Neurobiol Aging, 1995, 16: 479-86.
    
    
    14. Georgieff IS, Liem RK, Couchie D, et al. Expression of high molecular weight tau in the central and peripheral nervous systems. J Cell Sci, 1993, 105: 729-37.
    
    15. Khatoon S, Grundke-Iqbal I, Iqbal K. Guanosine triphosphate binding to beta-subunit of tubulin in Alzheimer's disease brain: role of microtubule-associated protein tau. J Neurochem, 1995, 64: 777-87.
    
    16. Lee G, Newman ST, Gard DL, et al. Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci, 1998, 111: 3167-77.
    
    17. Hwang SC, Jhon DY, Bae YS, et al. Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J Biol Chem, 1996, 271: 18342-9.
    
    18. Sobue K, Agarwal-Mawal A, Li W, et al. Interaction of neuronal cdc2-like protein kinase with microtubule-associated protein tau. J Biol Chem, 2000, 275: 16673-80.
    
    19. Sontag E, Nunbhakdi-Craig V, Lee G, et al. Molecular interactions among protein Phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem, 1999, 274: 25490-8.
    
    20. Carlier MF, Simon C, Cassoly R, et al. Interaction between microtubule-associated protein tau and spectrin. Biochimie, 1984, 66: 305-11.
    
    21.Correas I, Padilla R, Avila J. The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J, 1990, 269: 61-4.
    
    22. Brandt R, Leger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J Cell Biol, 1995, 131: 1327-40.
    
    23. Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A, 2001, 98: 6923-8.
    
    24. Litersky JM, Johnson GV. Phosphorylation of tau in situ: inhibition of calcium-dependent proteolysis. J Neurochem, 1995, 65: 903-11.
    
    25. Busciglio J, Lorenzo A, Yeh J, et al. beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 1995, 14: 879-88.
    26. Busciglio J, Lorenzo A, Yeh J, et al. beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 1995, 14: 879-88.
    
    27. Gotz J, Chen F, van Dorpe J, et al. Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293: 1491-5.
    
    28. Pigino G, Pelsman A, Mori H, et al. Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci, 2001, 21: 834-42.
    
    29. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron, 1990,4: 105-17.
    
    30. Nath R, Davis M, Probert AW, et al. Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun, 2000, 274: 16-21.
    
    31. Corsellis JA, Bruton CJ, Freeman-Browne D. The aftermath of boxing. Psychol Med, 1973,3:270-303.
    
    32. Korneyev AY. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1+2 immunoreactivity. Neurochem Res, 1998 , 23: 1539-43.
    
    33. Shanavas A, Papasozomenos SC. Tau kinases in the rat heat shock model: possible implications for Alzheimer disease. Proc Natl Acad Sci U S A, 2000, 97: 14139-44.
    
    34. Planel E, Yasutake K, Fujita SC, et al. Inhibition of protein Phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J Biol Chem, 2001 , 276: 34298-306.
    
    35. Grober E, Dickson D, Sliwinski MJ, et al. Memory and mental status correlates of modified Braak staging. Neurobiol Aging, 1999, 20: 573-9.
    
    36. Lu Q, Wood JG. Functional studies of Alzheimer's disease tau protein. J Neurosci, 1993, 13: 508-15.
    
    37. Terry RD, Wisniewski HM. Ultrastructure of senile dementia and of experimental analogs. In aging and the brain: advances in behavioral biology. Plenum press: New York, 1972: 89-116.
    
    
    38. Iqbal K, Alonso AD, Gondal JA, et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J Neural Transm Suppl, 2000,59:213-22.
    39. Kim D, Koh WK, Kim JU, et al. Okadaic acid-induced upregulation of nitrotyrosine and heme oxygenase-1 in rat cortical neuron cultures. Neurosci Lett, 2001,297:33-36.
    
    40. Nuydens R, de Jong M, Van Den Kieboom G, et al. Okadaic acid-induced apoptosis in neuronal cells: evidence for an abortive mitotic attempt. J Neurochem, 1998, 70: 1124-33.
    
    41. Nuydens R, Dispersyn G, de Jong M, et al. Aberrant tau phosphorylation and neurite retraction during NGF deprivation in PC 12 cells. Biochem Biophys Res Commun, 1997, 240: 687-91.
    
    42. Mookherjee P, Johnson GV. Tau phosphorylation during apoptosis of human SH-SY5Y neuroblastoma cells. Brain Res, 2001, 921: 31-43.
    
    43. Stoothoff WH, Johnson GV. Hyperosmotic stress-induced apoptosis and tau phosphorylation in human neuroblastoma cells. J Neurosci Res, 2001, 65: 573-82.
    
    44. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science, 1998,281: 1322-6.
    
    45. Green DR, Reed JC. Mitochondria and apoptosis. Science, 1998, 281: 1309-12.
    
    46. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 1999, 13: 1899-911.
    
    47. Nuydens R, Dispersyn G, Van Den Keiboom G, et al. Bcl-2 protects against apoptosis-related microtubule alterations in neuronal cells. Apoptosis, 2000, 5: 43-51.
    
    48. Satou T, Cummings BJ, Cotman CW. Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer's disease brain increases with disease severity. Brain Res, 1995,697:35-43.
    
    49. Vila M, Jackson-Lewis V, Vukosavic S, et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl - 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc Natl Acad Sci U S A, 2001, 98: 2837-42.
    
    50. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol, 1997, 56: 86-93.
    
    51. Arvanitakis Z, Wszolek ZK. Recent advances in the understanding of tau protein and movement disorders. Curr Opin Neurol, 2001, 14: 491-7.
    
    52. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci., 2001,24: 1121-59.
    
    53. Manna DM, Pickering-Brown S. The status of "Pick's Disease" and other tauopathies within the frontotemporal dementias. Neurobiol Aging, 2001, 22: 109-11.
    
    54. Dickson DW. Neuropathology of Alzheimer's disease and other dementias. Clin Geriatr Med, 2001, 17: 209-28.
    
    55. Buee L, Bussiere T, Buee-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev, 2000, 33:95-130.
    
    56. Spillantini MG, Van Swieten JC, Goedert M. Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Neurogenetics, 2000, 2: 193-205.
    
    57. Reed LA, Wszolek ZK, Hutton M. Phenotypic correlations in FTDP-17. Neurobiol Aging, 2001, 22: 89-107.
    
    58. Anderton BH, Betts J, Blackstock WP, et al. Sites of phosphorylation in tau and factors affecting their regulation. Biochem Soc Symp, 2001, 67: 73-80.
    
    59. Imahori K, Uchida T. Physiology and pathology of tau protein kinases in relation to Alzheimer's disease. J Biochem (Tokyo), 1997, 121: 179-88.
    
    60. Imahori K, Hoshi M, Ishiguro K, et al. Possible role of tau protein kinases in pathogenesis of Alzheimer's disease. Neurobiol Aging, 1998, 19: S93-8.
    
    61. Flaherty DB, Soria JP, Tomasiewicz HG, et al. Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J Neurosci Res, 2000 , 62: 463-72.
    
    62. Lovestone S, Hartley CL, Pearce J, et al. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience, 1996 , 73: 1145-57.
    
    63. Yamaguchi H, Ishiguro K, Uchida T, et al. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen ynthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol, 1996, 92: 232-41.
    
    64. Pei JJ, Braak E, Braak H, et al. Distribution of active glycogen synthase kinase 3 beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol, 1999 , 58: 1010-9.
    
    65. Takashima A, Honda T, Yasutake K, et al. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res, 1998 ,31: 317-23.
    
    66. Takashima A, Noguchi K, Michel G, et al. Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci Lett, 1996, 203: 33-6.
    
    67. Tomidokoro Y, Ishiguro K, Harigaya Y, et al. Abeta amyloidosis induces the initial stage of tau accumulation in APP(Sw) mice. Neurosci Lett, 2001, 299: 169-72.
    
    68. Lucas JJ, Hernandez F, Gomez-Ramos P, et al. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J, 2001, 20: 27-39.
    
    69. Lund ET, McKenna R, Evans DB, et al. Characterization of the in vitro phosphorylation of human tau by tau protein kinase II (cdk5/p20) using mass spectrometry. J Neurochem, 2001, 76: 1221-32.
    
    70. Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402: 615-22.
    
    71.Kowsz KP, McCarthy S, Coskran T, et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A, 2000, 97: 2910-5.
    
    72. Van den Haute C, Spittaels K, Van Dorpe J, et al. Coexpression of human cdk5 and its activator p35 with human protein tau in neurons in brain of triple transgenic mice. Neurobiol Dis, 2001, 8: 32-44.
    
    73. Rapoport M, Ferreira A. PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J Neurochem, 2000, 74: 125-33.
    
    74. Perry G, Roder H, Nunomura A, T et al. Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 1999, 10: 2411-5.
    
    75. Knowles RB, Chin J, Ruff CT, et al. Demonstration by fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles: implications for MAP kinase activation in Alzheimer disease. J Neuropathol Exp Neurol., 1999, 58: 1090-8.
    76. Zhu X, Rottkamp CA, Boux H, et al. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol, 2000, 59: 880-8.
    
    77. Zhu X, Raina AK, Rottkamp CA, et al. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem., 2001, 76: 435-41.
    
    78. Reynolds CH, Berts JC, Blackstock WP, et al. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem, 2000, 74: 1587-95.
    
    79. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol, 1994, 87: 554-67.
    
    80. Gong CX, Shaikh S, Wang JZ, et al. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem, 1995, 65: 732-8.
    
    81. Gong CX, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer's disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience, 1994, 61:765-72.
    
    82. Gong CX, Grundke-Iqbal I, Damuni Z, et al. Dephosphorylation of microtubule-associated protein tau by protein Phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett, 1994, 341: 94-8.
    
    83. Gong CX, Singh TJ, Grundke-Iqbal I, et al. Alzheimer's disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J Neurochem, 1994 , 62: 803-6.
    
    84. Lian Q, Ladner CJ, Magnuson D, et al. Selective changes of calcineurin (protein Phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol, 2001, 167: 158-65.
    
    85. Arendt T, Hanisch F, Holzer M, et al. In vivo phosphorylation in the rat basal nucleus induces PHFs-like and APP immunoreactivity. Neuroreport., 1994, 5: 1397-400.
    
    86. Arendt T, Hanisch F, Holzer M, et al. In vivo phosphorylation in the rat basal nucleus induces PHFs-like and APP immunoreactivity. Neuroreport, 1994 , 5: 1397-400.
    87. Bennecib M, Gong CX, Wegiel J, et al. Inhibition of protein phosphatases and regulation of tau phosphrylation in rat brain. Alz rep, 2000, 3:295-304. 88. Kayyali US, Zhang W, Yee AG, et al. Cytoskeletal changes in the brains of mice lacking calcineurin A alpha. J Neurochem, 1997, 68: 1668-78.
    
    89. Bennecib M, Gong CX, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett, 2000, 485: 87-93.
    
    90. Goedert M, Satumtira S, Jakes R, et al. Reduced binding of protein Phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations. J Neurochem, 2000, 75: 2155-62.
    
    91. Kins S, Crameri A, Evans DR, et al. Reduced protein Phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem., 2001, 276: 38193-200.
    
    92. Korneyev A, Binder L, Bernardis J. Rapid reversible phosphorylation of rat brain tau proteins in response to cold water stress. Neurosci Lett, 1995, 191: 19-22.
    
    93. Papasozomenos SC. Heat shock induces rapid dephosphorylation of tau in both female and male rats followed by hyperphosphorylation only in female rats: implications for Alzheimer's disease. J Neurochem, 1996, 66: 1140-9.
    
    94. Yanagisawa M, Planel E, Ishiguro K, et al. Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease. FEBS Lett, 1999,461:329-33.
    
    95. Tanaka T, Zhong J, Iqbal K, et al. The regulation of phosphorylation of tau in SY5Y neuroblastoma cells: the role of protein phosphatases. FEBS Lett, 1998, 426: 248-54.
    
    96. Bennecib M, Gong CX, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett, 2000, 485: 87-93.
    
    97. Clarke PR, Hoffmann I, Draetta G, et al. Dephosphorylation of cdc25-C by a type-2A protein Phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol Biol Cell, 1993 , 4: 397-411.
    
    98. Y amashita K, Yasuda H, Pines J, et al. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/Hl kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J, 1990, 9: 4331-8.
    99. Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J, 1993, 296: 15-9.
    
    100. Virshup DM. Protein Phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol, 2000, 12: 180-5.
    
    101. Janssens V, Goris J. Protein Phosphatase 2A: a highly regulated family ofserine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001, 353: 417-39.
    
    102. Tachibana K, Scheuer PJ, Tsuitani Y, et al. Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc, 1981, 103: 2469-2471.
    
    103. Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J, 1988, 256: 283-90.
    
    104. Haystead TAJ, Sim ATR, Carling D, et al. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature, 1989,337:78-81.
    
    105. Kim D, Su J, Cotman CW. Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res, 1999, 839: 253-262.
    
    106. Kim D, Koh WK, Kim JU, et al. Okadaic acid-induced upregulation of nitrotyrosine and heme oxygenase-1 in rat cortical neuron cultures. Neuroscience Letters, 2001, 297: 33- 36.
    
    107. Lee JH, Hong HN, Im JO, et al. The formation of PHFs-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neuroscience Letters, 2000, 282: 49-52.
    
    108. Gong CX, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule- associated protein tau is regulated by protein Phosphatase 2A in mammalian brain - Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem, 2000, 275: 5535-5544.
    
    109. Wei JS, Zhang LM, Huang YL, et al. Okadaic acid induces the expression of glutamate transporter EAAT1 in the neurons of rat brain. Acta Physiologica Sinica, 2002, 54: 287-293.
    
    110. Wei JS, Zhang LM, Huang YL, et al. Okadaic acid induces tau phosphorylation and neurodegeneration in rat brain. Chin J Neurosci, 2002, 18: 577-583.
    111. Kins S, Crameri A, Evans DR, et al. Reduced protein Phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem, 2001, 276: 38193-200.
    
    112. Arendt T, Holzer M, Fruth R, et al. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of Phosphatase 1 and 2A. Neuroscience, 1995, 69: 691-8.
    
    113. Fladmark KE, Brustugun OT, Hovland R, et al. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine Phosphatase inhibitors. Cell Death Differ, 1999,6: 1099-108.
    
    114. Arendt T, Holzer M, Fruth R, et al. Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging, 1998,19:3-13.
    
    115. Perez M, Hernandez F, Gomez-Ramos A, et al. Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur J Biochem, 2002, 269: 1484-9.
    
    116. Chiang CW, Harris G, Ellig C, et al. Protein Phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood, 2001, 97: 1289-97.
    
    117. Arendt T, Hanisch F, Holzer M, et al. In vivo phosphorylation in the rat basal nucleus induces PHFs-like and APP immunoreactivity. Neuroreport, 1994, 5: 1397-400.
    
    118. Cummings BJ, Hayward N, Stolzner S, et al. Intriventricular infusion of okadaic acid induces mild changes in tau and APP, but fails to produce AD-like neuropathology in adult rats. Soc Neurosci Abstr, 1997, 232: 1639.
    
    119. Gong CX, Wegiel J, Wisniewski HM, et al. Tau pathology in brain of rats after chronic treatment with okadaic acid. Neurobiol aging, 1996, 17(Suppl): S133.
    
    120. Mudher AK, Perry VH. Using okadaic acid as a tool for the in vivo induction of hyperphosphorylated tau. Neuroscience, 1998, 85: 1329-32.
    
    121. Nelson PT, Saper CB. Injections of okadaic acid, but not beta-amyloid peptide, induce Alz-50 immunoreactive dystrophic neurites in the cerebral cortex of sheep. Neurosci Lett, 1996, 208: 77-80.
    
    122. Wilton K, Manser K, Good M. Chronic i. c. v. infusion of okadaic acid produces differential effects on spatial working and reference memory in rats. Soc Neurosci Abstr, 1997, 232: 2170.
    123. Van Dam AM, Bol JG, Binnekade R, et al. Acute or chronic administration of okadaic acid to rats induces brain damage rather than Alzheimer-like neuropathology. Neuroscience, 1998, 85: 1333-5.
    124.魏建设,张玲妹,黄娅琳,杨增进,孙凤艳.岗田酸诱导大鼠脑tau蛋白磷酸化和神经细胞退化.中国神经科学杂志,2002,18:577-582.
    125. Kim D, Koh WK, Kim JU, et al. Okadaic acid-induced upregulation of nitrotyrosine and heine oxygenase-1 in rat cortical neuron cultures. Neurosci Lett, 2001, 297: 33-36.
    126. Sim A, Lloyd H, Jarvie P, et al. Synaptosomal amino acid release: effect of inhibiting protein phosphatases with okadaic acid. Neuroscience Letters, 1993, 160: 181-184.
    127. Kim D, Su J, Cotman CW. Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res, 1999, 839: 253-62.
    128. Gong CX, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem, 2000, 275: 5535-44.
    129. Gong CX, Lidsky T, Wegiel J, et al. Metabolically active rat brain slices as a model to study the regulation of protein phosphorylation in mammalian brain. Brain Res Brain Res Protoc., 2001, 6: 134-40.
    130. Tanaka T, Iqbal K, Trenkner E, et al. Abnormally phosphorylated tau in SY5Y human neuroblastoma cells. FEBS Lett, 1995, 360: 5-9.
    131. Gjertsen BT, Doskeland SO. Protein phosphorylation in apoptosis. Biochim Biophys Acta, 1995, 1269: 187-99.
    132. Fladmark KE, Brustugun OT, Hovland R, et al. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death Differ, 1999, 6: 1099-108.
    133. Yan Y, Mumby MC. Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem, 1999, 274: 31917-24.
    134. Sayre LM, Zelasko DA, Harris PL, et al. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem, 1997, 68: 2092-7.
    135. Arias C, Sharma N, Davies P, et al. Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J Neurochem, 1993, 61: 673-82.
    
    136. Gotz J, Chen F, Barmettler R, et al. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem, 2001, 276: 529-34.
    
    137. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 1996, 274: 99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700