整星隔振用磁流变阻尼器的动态特性及控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在运载火箭的发射过程中,航天器所经历的力学环境非常恶劣,其不仅受到来自于火箭发动机工作时的随机激励,还受整流罩的气动激励、火箭分离的瞬态冲击等。为降低航天器在发射过程中受到来自于运载火箭的各种振动和冲击,迫切需要一种有效而可靠隔振平台,其中基于磁流变阻尼器的半主动隔振平台以其反应迅速(毫秒级),可靠性高(即使控制系统失效,仍能作为被动隔振器),适应性强(可达到与主动控制十分接近的控制效果),能耗小等特点,在运载火箭整星隔振领域中极具发展潜力。
     本文从整星隔振用磁流变阻尼器入手,在深入研究磁流变阻尼器几种基本模型的基础上,选定唯像的Bouc-Wen模型作为整星隔振用磁流变阻尼器的模型基础,并根据整星隔振用磁流变阻尼器高频解耦机构的机构和工作特点,提出修正的的阻尼器模型。为进一步研究整星隔振用磁流变阻尼器的动力特性,本文对实际的阻尼器进行动力特性实验,得到阻尼器力与位移随电流变化的数据。根据实验数据,利用粒子群优化算法,对阻尼器动力模型中的参数进行优化,从而得到实际阻尼器的计算模型。
     本文根据实际阻尼器的计算模型,针对两种阻尼器控制器的控制算法,利用Matlab/Simulink对其进行仿真对比分析,仿真的结果表明修正的Sigmoid函数控制器的控制效果要优于基于Sign函数的控制器。最后建立一个二自由度受迫振动系统,并利用阻尼器的计算模型和控制器模型对其进行半主动控制仿真,其中最优控制力由线性二次最优控制算法得出。仿真结果表明,对于阶跃和正弦激励,由整星隔振用磁流变阻尼器的力学模型和修正的基于Sigmoid函数控制器组成的半主动控制系统具有较好的振动控制效果。
     本文从理论上分析并建立整星隔振用磁流变阻尼器的力学模型,并对实际的阻尼器进行动力特性实验和模型参数优化,对磁流变阻尼器计算模型的建立具有普遍的指导意义。同时本文在阻尼器计算模型基础上利用改进的阻尼器控制器模型与二自由度受迫振动系统进行半主动控制仿真,在验证了模型的正确性的同时,也证明了振动半主动控制的有效性。
In the rocket launch process, satellite or spacecraft experience of dynamic environment is very bad, the excitation is not only from the random excitation when the rocket engines working, but also the pneumatic incentive and the transient shock from the separation of rockets. In order to reduce the vibration and impact from satellite or aircraft launched by rocket, a reliable and effective platform is urgently needed. A semi-active vibration isolation platform has huge potential in the carrier rockets star isolation,which is based on the isolation of magnetorheological damper(MR damper) with its fast reaction (ms), high reliability (even the control system failured, it still can work as a passive isolation system), strong adaptability (very close to the control effect), low energy consumption, etc.
     Beginning with MR damper which used for Whole-spacecraft Isolation and according to the structure of MR damper high-frequency decoupling partment and its working characteristics, a modified damper model was proposed, which is based on intensive study of several basic mechanical model of MR damper and uses the Bouc-Wen model as the foundation model. For further studies in the MR damper dynamic characteristics, a dynamic characteristics of the damper experiment has been taken, and the damper force and the dependence of displacement on the current changes were obtained. Besides, According to the experimental data and using particle swarm optimization algorithm, the dynamic model of damper parameters were optimized, then the practical calculation model of damper was obtained.
     According to the practical calculation model of damper, two kinds of damper control algorithm were simuliated and compared by Matlab/Simulink. It is showed that the control effect of the modified Sigmoid function controller is better than that of Sign function controller. Finally a reconfigurates forced vibration system was established, and a semi-active control simulation was taken by the damper simulation model and the controller model. It is showed that, at the step and sine excitation, the MR damper mechanical model and semi-active control system based on the Sigmoid function controller has good effect on vibration control.
     This paper theoretically analysis the MR damper ,establish the mechanical model for real, and optimized the model parameters and the dynamics of the real damper .It is of prevalent meaning of guidance for MR damper modeling. Furthermore, based on the MR damp simulation model and modified controller model, the semi-active control simulation was taken for two degrees of forced vibration system, the results not only verifies the validity of the model but also shows that the vibration of the semi-active control is effective.
引文
1何玲.流体阻尼器特性及其对整星隔振性能影响的研究.哈尔滨工业大学博士学位论文, 2007:2-8
    2涂奉承.整星隔振用磁流变阻尼器基础理论及其相关技术的研究.哈尔滨工业大学博士学位论文, 2010:1-15
    3 Dominguez A., Sedaghati R., Stiharu I. A new dynamic hysteresis model for magnetorheological dampers. Smart Materials and Structures, 2006, 15(5): 1179-1189
    4 Claudia Mara D.W. Fuzzy control of magnetorheological dampers for vibration reduction of seismically excited structures. Department of Civil and Environmental Engineering in Florida State University 2005: 35-37
    5 Wereley Norman M., Li Pang. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Materials and Structures, 1998, 7(5):732-743
    6 Lee Dug-Young, Wereley Norman M. Analysis of electro- and magneto-rheological flow mode dampers using Herschel-Bulkley model: Smart Structures and Materials 2000: Damping and Isolation, March 6, 2000 - March
    8, 2000, Newport Beach, CA, USA, 2000. Society of Photo-Optical Instrumentation Engineers, 2000:244-255
    7 Wang Xiaojie, Gordaninejad Faramarz. Study of field-controllable, electro- and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory: Smart Structures and Materials. Journal of Intelligent Material Systems and Structures, 1999, 10(8):608-618
    8 Stanway R Sproston J. L. Stevens. Non-linear modeling of an electrorheological vibration damper. Electrostatics, 1987, 20(2):167-184
    9瞿伟廉,周强.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动, 2002(04):144-150
    10 Wen, Yi-Kwei. METHOD FOR RANDOM VIBRATION OF HYSTERETIC SYSTEMS. 1976, 102(2):249-263
    11 Spencer Jr B. F. Dyke S. Phenomenological model of a magnetorheological damper. ASCE, 1997,123
    12 G Yang. Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. Indiana: Dissertation University of Notre Dame, 2001:2-12
    13 Wang En Rong, Ma Xiao Qing, Rakhela S.,等. Modelling the hysteretic characteristics of a magnetorheological fluid damper. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550
    14王峻,沈延.一种用于车辆半主动悬架控制的磁流变阻尼器模型.汽车工程, 2009(05):462-466
    15孙国春,史文库,田彦涛.振动主动控制技术的研究与发展.机床与液压, 2004,03:1-6
    16李忠献,丁阳,张路.阻尼力双向调节磁流变阻尼器的性能测试与滞回模型.工程力学, 2010(02):228-234
    17李忠献,丁阳,张路.全通道有效磁流变阻尼器的性能测试与滞回模型.振动工程学报, 2010(01):31-36
    18 R Ehrgott, F Masri S. Modeling the oscillatory dynamic behaviour of electrorheological materials in shear smarter. Struct, 1992, 1: 275-285
    19 P Gavin H., Filisoko Hanson R. D. Electrorheological dampers, part2: testing and modeling. Appl.Mech, 1996, 33(893-900)
    20孙炳楠,邬喆华,楼文娟. MR阻尼器的简化参数模型及其应用.防灾减灾工程学报, 2004(02):210-213
    21 Chang Chih-Chen, Zhou Li. Neural network emulation of inverse dynamics for a magnetorheological damper. Journal of Structural Engineering, 2002, 128(2): 231-239
    22 Guo D. L., Hu H. Y., Yi J. Q. Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper. JVC/Journal of Vibration and Control, 2004, 10(3):461-471
    23 M. Zapateiro, N. Luo and H.R. Karimi, Neural network-backsteppingcontrol for vibration reduction in a magnetorheological suspensionsystem, Solid State Phenomena, 2009, 147:839-844
    24 Wang D. H., Liao W. H. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 2005, 14(1): 111-126
    25欧进萍.结构振动控制——主动、半主动和智能控制.北京:科学出版社, 2003
    26周云,谭平.磁流变阻尼控制理论与技术.北京:科学出版社, 2007:20-130
    27 Shen Yu. Vehicle suspension vibration cotrol with magnetorheological dampers. University of Waterloo, 2005:2:30
    28 Laura M. Jansen, Shirley J. Dyke. Semi-Active Control Strategies for MR Dampers:A Comparative Study. Journal ofEngineering Mechanics, 2000, 126(8):795-803
    29 Dyke S. J., Spencer B. F., Sain M. K., .etc. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures, 1996, 5(5):565-575
    30 Leitmann George. Semiactive control for vibration attenuation. Journal of Intelligent Material Systems and Structures, 1994, 5(6):841-846
    31 Luo Ningsu, Villamizar Rodolfo, Vehi Josep, .etc. Semiactive backstepping control for vibration attenuation in structures equipped with magnetorheological actuators: Joint 2006 IEEE Conference on Control Applications (CCA), Computer-Aided Control Systems Design Symposium (CACSD) and International Symposium on Intelligent Control (ISIC), October 4, 2006 - October 6, 2006, Munich, Germany, 2007. Institute of Electrical and Electronics Engineers Inc.
    32 McClamroch N. Harris, Gavin Henri P. Closed loop structural control using electroheological dampers: Proceedings of the 1995 American Control Conference. Part 1 (of 6), June 21, 1995 - June 23, 1995, Seattle, WA, USA, 1995
    33李一平.磁流变阻尼器的控制器及其应用.重庆大学硕士学位论文, 2005:17-21
    34韩俊华. MR阻尼器及控制系统的研究与实现.武汉理工大学硕士学位论文, 2008:11-13
    35 Wang D. H., Liao W. H. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 2005, 14(1): 111-126
    36郭迎庆.磁流变阻尼器结构的智能减震控制研究.西安:西安建筑科技大学硕士学位论文, 2003
    37何亚东,黄金枝,何玉敖.智能磁流变(MR)阻尼器半主动控制的研究.振动工程学报, 2003(02)
    38邸龙.磁流变阻尼器对建筑结构的减震研究.西安建筑科技大学硕士学位论文, 2003
    39李宏男,李秀领.磁流变阻尼器的双sigmoid模型及试验验证.振动工程学报, 2006(02):168-172
    40 Wang D. H., Liao W. H. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 2005, 14(1): 111-126
    41柯松,张辉等.常用钢材磁特性曲线速查手册.北京:机械工业出版社, 2003:25-26
    42记震,吴青华,廖惠连.粒子群算法及应用.北京:科学出版社, 2009:15-20
    43高芳.智能粒子群优化算法研究.哈尔滨工业大学博士学位论文, 2008:2-5
    44 Shi Yuhui, Eberhart Russell. Modified particle swarm optimizer: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, ICEC'98, May 4, 1998 - May 9, 1998, Anchorage, AK, USA, 1998. IEEE
    45 Eberhart R. C., Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization: Proceedings of the 2000 Congress on Evolutionary Computation CEC 00, July 16, 2000 - July 19, 2000, California, CA, USA, 2000. IEEE
    46胡建秀,曾建潮.微粒群算法中惯性权重的调整策略.计算机工程, 2007(11): 193-195
    47王丽,王晓凯.一种非线性改变惯性权重的粒子群算法.计算机工程与应用, 2007(04): 47-48
    48 Shi Y., Eberhart R. C. Fuzzy adaptive particle swarm optimization: Congress on Evolutionary Computation 2001, May 27, 2001 - May 30, 2001, Soul, Korea, Republic of, 2001. Institute of Electrical and Electronics Engineers Inc.
    49 Ratnaweera Asanga, Halgamuge Saman K., Watson Harry C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255
    50陈水利,蔡国榕,郭文忠,等. PSO算法加速因子的非线性策略研究.长江大学学报(自科版)理工卷, 2007(04): 1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700