OTFT器件及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机薄膜晶体管(OTFT),又称为有机薄膜场效应管。因其具有低功耗、质量轻、体积小等优点自问世以来就受到研究人员的普遍关注。目前,OTFT被广泛地应用于传感器、存储卡和有源驱动平板显示等领域。本文以重掺杂的n型硅为衬底、SiO_2为绝缘层,分别以六噻吩(α-6T)和聚3-己基噻吩(P3HT)复合薄膜作为有源层制作了底栅极底接触结构的有机薄膜晶体管器件。在此基础上把器件应用于气体传感器,并测试了其对几种气体的响应特性,具体工作包含以下几个方面:
     1.采用真空蒸发法制备了六噻吩(α-6T)薄膜,研究了α-6T有机薄膜晶体管的电学性质。将制备好的六噻吩有机薄膜晶体管暴露在不同的气体中,研究了器件对各种气体的响应特性。结果表明α-6T-TFT传感器对NO_2、NH_3这两种气体表现出良好的响应特性。两种气体引起器件的漏源电流(I_(DS))变化相反。α-6T-TFT传感器对甲醇、乙醇、仲丁醇这三种有机挥发性蒸汽的也具有一定的敏感性。
     2.采用旋涂法分别制备了P3HT薄膜和P3HT/单壁碳纳米管(Single-walled Carbon Nanotubes,SWCNTs)复合薄膜。分别采用这两种材料为有源层制备了OTFT器件。比较这两种有源层器件的电学性质,结果表明,P3HT/SWCNTs薄膜晶体管的迁移率要高于P3HT-TFT。
     3.比较了P3HT/SWCNTs薄膜晶体管和P3HT-TFT对不同气体的响应。结果表明P3HT/SWCNTs薄膜晶体管对H_2S气体表现出良好的响应特性。而P3HT-TFT对H_2S并不敏感。另外,比较了P3HT-TFT和P3HT复合薄膜晶体管传感器对丙酮、甲醇、乙醇、正丁醇、异丙醇五种有机挥发性蒸汽的响应特性,结果表明,两种传感器对这几种气体都具有很好的响应性和恢复特性。但P3HT复合薄膜晶体管传感器的灵敏度要高于P3HT-TFT气体传感器。
     通过实验,还发现OTFT气体传感器的灵敏度可以通过选择合适的栅压来调制,这种优点是传统电阻式传感器所不具备的。
Organic thin-film transistors(OTFTs) is also called organic field-effect transistors. The OTFTs have attracted intense attention because of their advantages such as lower power consumption, less weight, and smaller size. At present, they have been widely used in sensors, memory devices and active-matrix flat-panel displays. In this paper, two kinds of the OTFTs with the‘‘bottom-gate’’and‘‘bottom-contact’’configuration were fabricated withα-sexithiophene (α-6T) and poly(3-hexylthiophene)(P3HT) hybrid materials as the active layer. Furthermore, the responses of these OTFTs to several kinds of gases were also described. The main research contents were as follows:
     1.α-6T thin film was doposited by vacuum evaporation. The electrical characteristics of theα-6T-TFT were investigated. In experiment, the gas sensing properties ofα-6T-TFT exposed to different gases were also tested. The results show that theα-6T-TFT exhibit a good level of performance particularly in terms of response when exposed to NO_2 and NH_3 gas. Besides,α-6T-TFT is also sensitive to volatile organic vapors such as methanol, ethanol and sec-butyl alcohol.
     2. P3HT and P3HT/Single-wall carbon Nanotubes (SWCNTs) hybrid thin films were doposited by spin coating as the active layer. The electrical characteristics of these two devices were compared. The results show that the mobility of P3HT hybrid thin film transistors is higher than that of P3HT based thin film transistors.
     3. The sensing properties of P3HT and P3HT hybrid materials based OTFTs to several gases were discussed. The results show that the P3HT hybrid thin film transistors exhibit a excellent response and recovery characteristics to hydrogen sulfide (H2S) gas, while the P3HT-TFT show insensitivity to H2S gas. Meanwhile, both the P3HT/SWCNTs-TFT and P3HT-TFT devices were exposed to five volatile organic chemicals (VOC) such as acetone, methanol, ethanol, n-butyl alcohol and isopropyl alcohol. The results show that the sensitivities of P3HT/SWCNTs-TFT are higher than those of P3HT-TFT.
     Moreover, the OTFTs devices possess a high sensitivity which can be adjusted by the gate-source voltage. It means that the sensitivity of the devices operated in a proper gate bias may be enhanced, which is superior to chemiresistor sensors.
引文
[1] Barbe D F, Westgate C R. J Phys Chem Solids, 1970, 31:2679.
    [2] A Tsurnura, Koezuka H, Ando T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film.Appl.Phys.Lett, 1986, 49(18):1210-1212.
    [3] A Tsumura, Koezuka H, Ando T. Polythiophene Field-Effect Transistor: Its Characteristics and Operation Mechanism. Synthetic Metals, 1988, 25:11-23.
    [4] Akimichi H, Waragai K, Hotta S, et al. Field-effect Transistors using alkyl substituted oligothiophenes. Appl. Phys. Lett., 1991, 58(14):1500-1502.
    [5] Garnier F, Hajlaoui R, Yassar A, et al. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science, 1994, 265(5179):1684-1686.
    [6] Dodabalapur A, Katz H E, Torsi L, et al. Organic Heterostructure Field-Effect Transistors. Science, 1995, 269:1560-1562.
    [7] Z Bao, A J, Lovinger, and A Dodabalapur. Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett., 1996, 69:3066.
    [8] A Dodabalapur, L J aquindanum, E H Katz, Z Bao. Complementary circuits with organic transistors. Appl. Phys. Lett., 1996, 69:4227.
    [9] Y.Y.Lin, D.J.Gundlach, S.F.Nelson, et al. Stacked pentacene layer organic thin film transistors with improved characteristics, IEEE Electron Device Lett., 1997, 18:606-608.
    [10] Gundlach D J, Klauk H, Sheraw C D, et al. High-mobility, low voltage organic thin film transistors. International Electron Devices Meeting, 1999, 111-114.
    [11] Klauk H, Halik M et al. High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 2002, 92:5259.
    [12] Fukuda H, Yamagishi Y et al. Gas sensing properties of poly-3-hexylthiophene thin film transistors. Sensors and Actuators B, 2005, 108:414-417.
    [13] Wei Hu, Yi Zhao et al. Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer. Microelectronics Journal, 2007, 38:632-636.
    [14] Leufgen M, Rost O, Gould C, et al. High-mobility tetrathiafulvalene organic field-effect transistors from solution processing. Organic Electronics, 2008, 9:1101-1106.
    [15] Mayumi Uno, Y. Tominari, J. Takeya. Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators. Organic Electronics, 2008, 9:753-756.
    [16] J.Kastner, J. Paloheimo, H.Kuzmany. Solid State Science.New York: Spring, 1993:515-521.
    [17] Kawakami T, Kitagawa Y, Matsuoka F,et al. Intemational Journal of Quantum Chemstry, 2001, 85:619.
    [18] Laurs H, Heiland G. Electrical and optical properties of phthalocyanine films. Thin Solid Films, 1987, 149:129-142.
    [19] L.Torsi, A.Dodabalapur, L.Sabbatini, et al. Multi-parameter gas sensors based on organic thin-film-transistors, Sensors and Actuators B, 2000, 67: 312-316.
    [20] L.Torsi, A.Dodabalapur, N.Cioffi, et al. NTCDA organic thin-film-transistor as humidity sensor: weaknesses and strengths.Sensors and Acutators B 2001, 77: 7-11.
    [21] Maria Cristina Tanese, Daniele Fine, Ananth Dodabalapur,et al. Interface and gate bias dependence responses of sensing organic thin-film transistors, Biosensors and Bioelectronics, 2005, 21: 782-788.
    [22] L.Torsi, Maria Cristina Tanese, Nicola Cioffi, et al. Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sensors and Actuators B, 2004, 98:204-207.
    [23] Frank Liao, Christopher Chen, Vivek Subramanian. Organic TFTs as gas sensors for electronic nose applications, Sensors and Actuators B, 2005, 107: 849-855.
    [24] Rafik Ben Chaabane. Eeffect of measureing environment on the electrical characteristics of NiPc based thin film transistors: The effects of ozone. Materials Science and Engineering 2006, C 26:551-554.
    [25] Rafik Ben Chaabane,Adnene Ltaief,L. Taief, et,al Influence of ambient atmosphere on the electrical properties of organic thin film transistors. Materials Science and Engineering 2006, C26:514-518.
    [26] Wenping Hu, Yunqi Liu et al. The gas sensitivity of a metal-insulator-semiconductor field-effect transistor based on Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine. Thin Solid Films, 2000, 360:256-260.
    [27] L Torsi, F Marinelli, M D Angione, et al. Contact effects in organic thin-film transistor sensors. Organic Electronics, 2009, 10:233-239.
    [28] Zhu Z T, Mason J T, Dieckmann R et al. Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett., 2002, 81:4643-4645.
    [29] Tanese M C, Fine D, Dodabalapur A, et al. High-performance organic thin film transistor sensors. Proceedings of SPIE, 2004, 55(22):22-26.
    [30] Jin Wook Jeong, Yang Doo Lee, Young Min Kim, et al. The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors. Sensors and Acuators B 2010, 146:40-45.
    [31] Xie, Dan; Jiang, Yadong; Pan, Wei; Li, Yanrong A novel microsensor fabricated with charge-flow transistor and a Langmuir-Blodgett organic semiconductor film, Thin Solid Films, 2003, 424(2): 247-252
    [32] Bo Liu, Guangzhong Xie, Xiaosong Du, et al. Poly(3-hexylthiophene) based Organic field-effect transistor as NO2 gas sensor. Proc. SPIE, 2009, 7508:55-59.
    [33] Bo Liu, Guangzhong Xie, Xiaosong Du, et al. Pentacene based organic thin-film transistor as gas sensor. International Conference on Apperceiving Computing and Intelligence Analysis 2009 (ICACIA'09), 1-4.
    [34] Maria Cristina Tanese, Daniel Fine,Ananth Dodabalapur, et al. High Performance Organic thin Film Transistor Sensors, Proceeding of SPIE, v 5522, Organic Field-Effect Transistors III, 2004, 22-26.
    [35] F. Garnier, R. Hajlaoui, M. E. Kassmi. Vertical device architecture by molding of organic-based thin film transistor, Appl. Phys. Lett, 1998, 73:1721-1724.
    [36] Satoshi Tanaka, H. Yanggisawa, M. Zuka, M. Nakamura, K. Kudo. Vertical-and Lateral-Type Organic FET Using pentacene evaporated films, Electrical Engineering in Japan, 2004, 149:43-48.
    [37] Morana M, Bret G, Brabec C. Double-gate organic field-effect transistor [J].Appl.Phys.Lett.,2005,87(15):58-61.
    [38] Baldo, M. A., Kozlov, V. G., et al. Low Pressure Organic Vapor Phase Deposition of Small Molecular Weight Organic Light Emitting Device Structures, Appl. Phys. Lett., 1997, 71:3033 .
    [39] Bhat, V. K., Bhat, K. N., Subrahamanyam, A. Effect of Pre-Oxidation Surface Preparation on the Growth of Ultrathin Oxides of Silicon, Semicond. Sci. Technol., 1999, 14: 705.
    [40] Kato Y, Iba S, Teramoto R, Sekitani T et al. High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Appl. Phys. Lett., 2004, 84:3789-3791.
    [41] Lim S C, Kim S H, Koo J B et al. Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly (4-vinylphenol) gate dielectrics. Appl. Phys. Lett., 2007, 90(17):34-38.
    [42] Sch?n, J.H., Kloc, Ch., Batlogg, B. On the Intrinsic Limits of Pentacene Field-Effect Transistors, Organic Electronics, 2000, 1: 57.
    [43] Xu, G., Bao. Z, Groves J. T. Langmuir-Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors, Langmuir, 2000, 16:1834.
    [44] Li S. T., Arenholz E., Heitz J., et al. Pulsed-Laser Deposition of Crystalline Teflon (PTFE) Films, Appl. Surf. Sci., 1998, 125:17.
    [45] Cantatore, E., Organic Materials: A New Chance for Electronics,”Proceedings of the SAFE/IEEE workshop, 2000, 27.
    [46] Okubo S., Organic Transistors Expedite Flexible EL Displays, Asia Bitz Tech., http://neasia.nikkeibp.com/nea/200112/peri_161078.html (2001).
    [47] Nichols J A, Gundlach D J, and Jackson T N. Potential imaging of pentacence organic thin-film transistors. Appl. Phys. Lett. 2003. 83(12):2366-2368.
    [48] A.Facehetti,Y.Deng,A.Wang,etal.,Tuning the semiconducting Properties ofα,ω- substitution—α,ω-DiperfluorohexylsexithioPhene: The first n-type sexithiophene for thin-film transistors. Angewandte Chemmie. 2000, 112(24), 4721-4725.
    [49] A.Facchetti,M. H. Yoon,C. L. Steoetal. Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors. Angewandte Chemie International Edition. 2003, 42(33): 3900-3903.
    [50] Inoue Y, Tokito S, Ito K et al. Organic thin-film transistors based on anthracene oligomers. Journal of Applied Physics, 2004, 95:5795-5799.
    [51] Xia Y, Kalihari V, Frisbie C D et al. Tetracene air-gap single-crystal field-effect transistors. Appl. Phys. Lett., 2007, 90:88-94.
    [52] Sundar V C, Zaumseil J, Podzorov V et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science, 2004, 303:1644-1646.
    [53] Podzorov V, Menard E, Borissov A, et al. Intrinsic charge transport on the surface of organic semiconductors. Physical review letters, 2004, 93:1314-1319.
    [54] Jurchescu Oana D, Baas Jacob, Palstra Thomas T M. The effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett., 2004, 84:3061-3063.
    [55] Dodabalapur A, Torsi L, and Katz H E. Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics. Sci. 1995, 268:270-271.
    [56] Halik M, Klauk H, Zschieschang U, et al. Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv. Mater, 2003, 15: 917.
    [57]刘博,有机薄膜晶体管气体传感器的制备及特性研究,[硕士学位论文].成都:电子科技大学, 2010, 21-22.
    [58] Yeong Don Park, Jung Ah Lim, Yunseok Jang, et al.Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9(3): 317-322.
    [59] Ando M, Suto S, Suzuki T,et al. H2S and CH3SH Sensor Using a Thick Film of Gold-Loaded Tungsten Oxide.Chem.Lett., 1994, 266(2):335-338.
    [60] Maekawa T,Tamaki J,Miura N,et al. Sensing Behavior of CuO-Loaded SnO2 Element for H2S Detection, Chem. Letts., 1991, 232(4):575-578.
    [61] Tamaki J, Maekawa T, Miura N,et al. CuO-SnO2 element for highly sensitive and selective detection of H2S.Sensors and Actuators B, 1992,9(3):197-203.
    [62] H. Liu, S.P. Gong, Y.X. Hua, et al. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors.Sensors and Actuators B: Chemical, 2009, 140(18): 190-195.
    [63] Yan Wanga, Yanmei Wanga, Jianliang Caoa, Fanhong Konga, Huijuan Xiaa, Jun Zhanga, Baolin Zhua, Shurong Wanga and Shihua Wu. Low-temperature H2S sensors based on Ag-dopedα-Fe2O3 nanoparticles, Sensors and Actuators B: Chemical, 2008, 131(1):183-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700