稀土离子掺杂的钼酸钆荧光粉的合成及其光谱性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,白光LED因具有节能、环保等诸多优势越来越受到人们的广泛关注,逐渐成为未来照明领域的主流产品。实现白光LED的方法有很多,目前比较有发展前景的一种方法是荧光粉光转换法,即用蓝光或近紫外光LED激发荧光粉而发出白光。钼酸根离子能够有效吸收近紫外光,并能将吸收的能量有效地传递给激活剂离子,因此本论文进行了单掺及共掺杂的钼酸钆荧光粉光谱性质的研究,探索其实现白光的可能性。
     我们采用传统的高温固相反应法分别合成了单掺、共掺以及单掺的钼酸钆荧光粉,通过XRD、SEM、荧光光谱、荧光动力学测试以及色坐标的计算等方法对不同浓度的激活剂离子在钼酸钆基质材料中的发光特性及能量传递行为进行研究。
     通过对掺杂的钼酸钆荧光粉的发光特性的分析,可知该体系能被近紫外光有效激发,且能量传递效率较高,浓度过高时会发生浓度猝灭现象,这是因为Dy3+之间发生交叉弛豫现象以及存在电偶极-电偶极相互作用。可发蓝光和黄光,故其有实现白光的可能,但其缺乏红光部分,故其显色性较差。
     为了补偿单掺的钼酸钆荧光粉的红光成分的缺乏,我们引入作为共掺杂发光中心。通过光谱分析了共掺钼酸钆荧光粉的发光特性,发现在近紫外区域,在Mo-O和之间起传递能量的桥梁作用,的引入增加了Mo-O到的能量传递途径,使能量传递效率更高。掺入一定量的可实现具有一定比例的蓝、黄、红的发射,同时实现红色补偿和白光发射。
     合成一系列变浓度的单掺的钼酸钆荧光粉,通过分析其激发和发射光谱以及荧光衰减曲线,观察到了之间的两个电偶极相互作用的交叉驰豫过程,而在能级上间的交换相互作用的能量迁移行为没有观察到,这主要是因为在化合物中我们所研究的浓度范围内的间的距离还不够小。同时,通过色坐标的计算发现,样品的发射色坐标随着浓度而变化。
In recent years, white light emitting diodes (white-LEDs) have attracted increasing attention because of their energy-saving and environment-friendly features. What's more, they are gradually playing an important role in the lighting field at present and in the future. The white lights can be obtained via several approaches. Amongst all the approaches the light-converting-phosphor method, namely, converting the blue lights or near ultraviolet lights from GaN-based LEDs into visible lights to form white lights, is considered to be the most promising one. In this thesis, we study on the Dy3+, Tb3+ single-doped and Dy3+/Eu3+ co-doped Gd2(MoO4)3 phosphors with the aim of exploring their feasibilities of practical applications since the MoO42- can effectively absorb the near ultraviolet light and transfer its energy to rare earth ions.
     Dy3+, Tb3+single-doped, Dy3+/Eu3+ co-doped Gd2(MoO4)3 phosphors were prepared by a conventional high-temperature solid-state reaction method. Their crystal structures, morphology, and spectroscopic properties were characterized by using XRD, SEM, optical spectroscopy and colorimetry, meanwhile, the energy transfers between rare earths and between rare earths and hosts were also studied.
     Based on the analysis of the spectral properties of Gd2(MoO4)3:Dy3+ phosphors, it was found that these phosphors could be effectively excited with near ultraviolet lights, and the energy transfer from host to Dy3+ is very effective; the energy transfers between Dy3+ ions were also studied in the framework of I-H model. The energy transfer mechanism was attributed to the electric dipole-dipole interaction. The possibility for getting white lights with the phosphors was discussed, and it was found that the red component is of lack in the emission spectra.
     In order to improve the color rendering property of Dy3+ single-doped Gd2(Mo04)3 phosphors, The Eu3+, which can emit red light, was introduced. It was found that Eu3+ can be an energy transfer bridge between the Dy3+ and Mo-O bond according to the analyses of luminescent properties of Dy3+/Eu3+ co-doped samples. The introduction of Eu3+ can increase the energy transfer efficiency. Moreover, it was also found that the comparable emission intensities for blue, yellow and red emissions and white light emission mixed by them can be achieved by properly adjusting Eu3+ and Dy3+ concentrations.
引文
[1]唐国庆,余振中.照明光源的发展历史、现状及对固态照明的期待和要求.海峡两岸第十届照明科技与营销研讨会专题报告文集[C].珠海,2003.
    [2]武茂东.漫谈城市广场照明亮化与绿色照明[J].中国照明.2006,(4):42-44.
    [3]魏戈兵.现代照明光源的发展趋势[J].灯与照明,2003,27(3):26-29.
    [4]沈季平.大力推广高强度气体放电灯的应用[J].照明工程学报.1997,8(2):39-50.
    [5]周太明,宋贤杰,周伟.LED-21世纪照明新光源[J].照明工程学报.2001,12(4):37-40.
    [6]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    [7]唐道明.无汞荧光灯和无电极荧光灯的发展动向和展望[J].照明工程学报,1992,3(1):57-60.
    [8]严增濯.荧光灯的发展动向[J].灯与照明.1997,3(2):43-47.
    [9]朱绍龙.高强度气体放电灯的研发动态[J].光源与照明.2002,(1):11-13,36.
    [10]张博洋,张云鹏.新一代照明光源——半导体照明[J].科技资讯.2007,(18):11-12.
    [11]沈季平.高强度气体放电灯的发展与展望[J].灯与照明.1992,(1):10-16.
    [12]朱绍龙.节能照明和第十届国际光源研讨会[J].中国照明电器.2004,(12):5-9.
    [13]高光义.照明光源的发展动态[J].建筑电气.2008,27(8):26-29.
    [14]姚其,陈大华.OLED应用于照明领域的探讨[J].照明工程学报.2009,20(2):35-40.
    [15]万博泉.OLED技术及其在中国的发展机遇[J].新材料产业.2008,(12):50-54.
    [16]常天海,彭双庆.OLED应用技术的发展[J].真空与低温.2008,14(2):115-118.
    [17]卢铃,黄兵,何开钧.OLED发展现状及前景[J].中国照明.2008,(11):30-32.
    [18]毛兴武.LED的发展与应用[J].电子元器件应用.2005,7(10):77-79.
    [19]Shao Q, Li H, Wu K, et al. Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor. Journal of Luminescence, 129(2009):879-883.
    [20]杨志平,刘海燕.新型照明光源——白光LED的研究进展[J].物理通报.2008,(5):55-57.
    [21]臧竞存,祁阳,刘燕行.固体白光照明和稀土发光材料[J].材料导.2006,20(7):6-9.
    [22]Zhu C, Xiao S, Ding J, et al. Synthesis and photoluminescent of Eu3+-doped (1-x)CaO-xLi2O-WO3 phosphors. Materials Science and Engineering B,150(2008):95-98.
    [23]Masuqul Haque Md, Lee H, Kim D. Luminescent properties of Eu3+-activated molybdate-based novel red-emitting phosphors for LEDs. Journal of Alloys and Compounds,481(2009):792-796.
    [24]郑久云,韩志刚,罗胜钦.白光LED的应用与驱动[J].现代显示.2009,(8):43-46.
    [25]刘宇彤,王瑞光.LED应用新动向[J].光机电信息.2008,(10):30-34.
    [26]肖军.LED打造绿色照明光源[J].中国汽车市场.2007,(12):59-61.
    [27]王声学,吴广宁,蒋伟等.LED原理及其照明应用[J].灯与照明.2006,30(4):32-34.
    [28]艾朝霞,姬妍.LED照明光源前景展望[J].榆林学院学报.2006,16(4):40-42.
    [29]印琰,杨宝东,朱月华等.白光LED用荧光粉的发展现状[J].中国照明电器.2009,(3):6-10.
    [30]怀素芳,李旭,崔敏敏.新一代照明光源白光LED的发展概况[J].物理通报.2007,(11):53-55.
    [31]张凯,刘河洲,胡文彬.白光LED用荧光粉的研究进展[J].材料导报.2005,19(9):50-53.
    [32]陶玖祥,程启标.白光LED用荧光粉专利分析[J].中国照明电器.2007,(10):12-14.
    [33]许文翠,牛萍娟,付贤松等.无荧光粉转换白光LED的研究和进展[J].光机电信息.2009,26(8):25-29.
    [34]晨光.白光LED发展趋势[J].光源与照明.2004,(1):41-41.
    [35]倪海勇.白光LED用氮化物及氮氧化物荧光粉研究进展[J].材料研究与应用.2008,2(4):486-489.
    [36]吴洪鹏,颜鲁婷,王鹏等.白光LED用铝酸盐体系红色荧光粉的研究进展[J].稀土金属材料与工程.2009,38(11):2065-2068.
    [37]王涛,井艳军,朱月华等.白光LED用钨、钼酸盐红色荧光粉的研究进展[J].中国照明电器.2008,(2):15-20.
    [38]谭东.稀土元素的特性和用途[J].广西化工.1990,(1):2-7.
    [39]苏锵.稀土元素——您身边的大家族[M].北京:清华大学出版社:广州:暨南大学出版社,2000.
    [40]张思远.稀土离子的光谱学——光谱性质和光谱理论[M].北京:科学出版社,2008.
    [41]孙家跃,杜海燕.固体发光材料[M].北京:化学工业出版社,2003.
    [42]Mini Krishna K, Anoop G, Jayaraj M. K. Host Sensitized White Luminescence from ZnGa2O4:Dy3+ Phosphor. Journal of the Electrochemical Society,154(10):J310-J313 (2007).
    [43]Yan B, Su X. Chemical co-precipitation synthesis and photoluminescence of LnPxV1-xO4:Dy3+(Ln=Gd, La) derived from assembling hybrid precursors. Journal of Alloys and Compounds,431(2007):342-347.
    [44]Raju G. S. R, Park J. Y, Jung H. C, et al. Luminescence properties of Dy3+:GdA103 nanopowder phosphors. Current Applied Physics,9(2009):e92-295.
    [45]Zhang Y, Li L, Zhang X, et al. Preparation and photoluminescence of Tb3+ doped SrAl2O4 phosphor by composite combustion method. Journal of Rare Earths, 26(2008):656-659.
    [46]Vengala Rao B, Rambabu U, Buddhudu S. Analysis of green luminescent Tb3+: Ca4Gd0(B03) 3 powder phosphor. Physica B,391(2007):339-343.
    [47]叶旭,陈冬梅,李娴等.稀土发光材料的研究进展[J].材料导报.2009,23(1):322-324.
    [48]刘跃.稀土荧光粉生产及应用进展[J].产业聚焦.2009,(6):28-30.
    [49]黄以万,肖兵.稀土发光材料的研究与应用展望.矿产保护与利用.2008,(16):51-54.
    [50]中国材料发光网.稀土发光材料发展历程.稀土信息.2007,(11):19-22.
    [51]余宪恩.实用发光材料[M].北京:中国轻工业出版社,2008.
    [52]李晓微,金为群.稀土发光材料的研究与进展[J].中国材料科技与设备.2007,4(2):20-22.
    [53]Raju G. S. R, Jung H. C, Park J. Y, et al. Synthesis and luminescent properties of Dy3+:GAG nanophosphors, Journal of Alloys and Compounds,481(2009):807-811.
    [54]赵文卿,关荣锋,王杏.稀土荧光粉的制备技术研究与展望.无机盐工业.2008,40(10):8-11.
    [55]刘晓瑭,刘华鼐,石春山.稀土发光材料的合成方法.合成化学.2005,13(3):216-218.
    [56]汪玉芳,刘玲霞,胡宏祥.稀土发光材料的合成与发展.浙江化工.2005,36(9):28-29.
    [57]Raju G. S. R, Park J. Y, Jung H. C, et al. Synthesis and luminescent properties of low concentration Dy3+:GAP nanophosphors. Optical Materials,31(2009):1210-1214.
    [58]Jia G, Song Y, Yang M, et al. Uniform YVO4:Ln3+ (Ln=Eu, Dy, and Sm) nanocrystals: Solvothermal synthesis and luminescence properties. Optical Materials, 31 (2009):1032-1037.
    [59]肖志国,罗惜贤.蓄光型发光材料及其制品[M].北京:化学工业出版社,2005.
    [60]黄新民.材料研究方法[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [61]金伟其,胡威捷.辐射度光度与色度及其测量[M].北京:北京理工出版社,2006.
    [62]李振国,魏青.光辐射测量原理与技术[M].北京:中国建材工业出版社,1998.
    [63]Singh N. S, Ningthoujam R. R, Luwang M. N, et al. Luminescence, lifetime and quantum yield studies of YVO4:Ln3+(Ln3+=Dy3+, Eu3+) nanoparticles:concentration and annealing effects. Chemical Physics Letters,480(2009):237-242.
    [64]Yang X, Yu X, Yang H, et al. The investigation of optical properties by doping halogen in the BaMo04:Pr3+phosphor system. Journal of Alloys and Compounds, 479(2009):307-309.
    [65]Li X, Yang Z, Guan L, et al. Synthesis and luminescent properties of CaMoO4:Tb3+, R+ (Li+, Na+, K+). Journal of Alloys and Compounds,478(2009):684-686.
    [66]Liao J, Qiu B, Lai H. Synthesis and luminescence properties of Tb3+:NaGd (W04) 2 novel green phosphors. Journal of Luminescence,129(2009):668-671.
    [67]Liao J, Qiu B, Wen H, et al. Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor. Materials Research Bulletin,44(2009):1863-1866.
    [68]Ryu H, Bartwal K. S. Exploration and optimization of Dy codoping in polycrystalline CaA1204:Eu. Journal of Alloys and Compounds,476(2009):379-382.
    [69]Chang C, Li W, Huang X, et al. Photoluminescence and afterglow behavior of Eu2+, Dy3+ and Eu3+, Dy3+ in Sr3Al2O6 matrix. Journal of Luminescence,130(2010):347-350.
    [70]Liu B, Kong L, Shi C. White-light long-lasting phosphor Sr2MgSi207:Dy3+. Journal of Luminescence,122-123(2007):121-124.
    [71]袁清习,李红军,庄漪等β'-Gd2(Mo04)3晶体生长中的过冷现象研究[J].人工晶体学报.2002,31(2):117-120.
    [72]Kaminskii A. A, Butashin A. V, Eichler H.-J, et al. Orthorhombic ferroelectric and ferroelastic Gd2(Mo04)3 crystal - a new many-purposed nonlinear and optical material:efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation [J]. Optical Materials,1997,7(3):59-73.
    [73]Kang Y. C, Lim M. A, Park H. D, et al. Ba2+ co-doped Zn2SiO4:Mn phosphor particles prepared by spray pyrolysis process. Journal of Electrochemical Society, 2003,150(1):H7-H11.
    [74]Wu X, Huang Y, Shi L, et al. Spectral characteristics of vanadate Ca9Dy(VO4)7 for application of white-light-emitting diodes. Chemical Physics,116(2009):49-452.
    [75]Wang J, Xu Y, Hojamberdiev M, et al. Optical properties of porous YVO4:Ln (Ln=Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method. Journal of Alloys and Compounds,479(2009):72-776.
    [76]Xue Y, Xiao F, Zhang Q, et al. Synthesis and luminescent properties of poly crystalline Gd2 (MoO4) 3:Dy3+ for white light-emitting diodes. Journal of Rare Earth, 27(2009):53.
    [77]Neeraj S, Ki jima N, Cheetham A. K. Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x,(MoO4)x:Eu3+ (M=Gd, Y, Bi) [J]. Chemical Physics Letters,2004, 387(1-3):2-6.
    [78]Hu Y, Zhuang W, Ye H, et al. A novel red phosphor for white light emitting diodes. Journal of Alloys and Compounds,2005,390(1-2):226-229.
    [79]Zhao X, Wang X, Chen B, et al. Luminescent properties of Eu3+doped α-Gd2 (MoO4) 3 phosphor for white light emitting diodes. Optical Materials,29(2007):1680-1684.
    [80]Chen L, Liu Y, Li Y, Preparation and characterization of ZrO2:Eu3+ phosphors. Journal of Alloys and Compounds,381(2004):266-271.
    [81]Yu M, Lin J, Wang Z, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chemical Materials,2002,14(5):2224.
    [82]Van Uitert L. G. Characterization of energy transfer interactions between rare earth ions. Journal of the Electrochemical Society,114(1967):1048-1053.
    [83]Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence. Journal of Chemical Physics 43,1978(1965).
    [84]Choi S, Moon Y, Kim K, et al. Luminescent properties of a novel red-emitting phosphor:Eu3+-activated Ca3Sr3(V04)4. Journal of Luminescence,129(2009):988-990.
    [85]Meng Q, Chen B, Zhao X, et al. Study on UV properties of Y203:Ln3+ (Ln= Eu3+or Tb3+) luminescence nanomaterials. Journal of Nanoscience and Nanotechnology,8(2008):1443-1448.
    [86]Anitha M, Ramakrishnan P, Chatterjee A, et al. Spectral properties and emission efficiencies of GdVO4 phosphors. Applied Physics A:Materials Science& Processing,74 (2002):153-162.
    [87]Chen B. J, Jang K. W, Lee H. S, et al. SiO2 effect on spectral and colorimetric properties of europium doped SrO2-MgO-xSiO20.8≤x≤1.6) phosphor for white LEDs. Journal of Physics D:Applied Physics,42(2009):105401.
    [88]Maia A. S, Stefani R, Kodaira C. A, et al. Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol-gel method. Optical Material,31(2008):440-444.
    [89]Liu S, Zhao G, Ying H, et al. Eu/Dy ions co-doped white light luminescence zinc-aluminoborosilicate glasses for white LED. Optical Materials,31(2008):47-50.
    [90]Liu S, Zhao G, Lin X, et al. White luminescence of Tm-Dy ions co-doped aluminoborosilicate glasses under UV light excitation. Journal of Solid State Chemistry,181(2008):2725-2730.
    [91]Li X, Yang Z, Guan L, et al. A new yellowish green luminescent material SrMo04: Tb3+. Materials Letters,63(2009):1096-1098.
    [92]Li X, Yang Z, Guan L, et al. Synthesis and luminescent properties of CaMo04:Tb3+, R+ (Li+, Na+,K+). Journal of Alloys and Compounds,478(2009):684-686.
    [93]Liao J, Qiu B, Lai H. Synthesis and luminescence properties of Tb3+:NaGd(W04)2 novel green phosphors. Journal of Luminescence,129(2009):668-671.
    [94]Liao J, Qiu B, Wen H, et al. Hydrothemal synthesis and photoluminescence of SrW04: Tb3+novel green phosphor. Materials Research Bulletin,44(2009):1863-1866.
    [95]Raju G. S. R, Buddhudu S. Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor. Materials Letters,62 (2008):1259-1262.
    [96]Omkaram I, Raju G. S. R, Buddhudu S. Emission analysis of Tb3+:MgAl204 powder phosphor. Journal of Physics and Chemistry of Solids,69(2008):2066-2069.
    [97]Vengala Rao B, Rambabu U, Buddhudu S. Analysis of green luminescencent Tb3+: Ca4Gd0(B03)3 powder phosphor. Physica B,391(2007):339-343.
    [98]Ren Z, Tao C, Yang H, et al. A novel green emitting phosphor SrAl2B207:Tb3+. Materials Letters,61(2007):1654-1657.
    [99]Zhong J, Liang H, Han B, et al. NaGd(P03)4:Tb3+-A new promising green phosphor for PDPs application. Chemical Physics Letters,453(2008):192-196.
    [100]Buddhudu S, Kam C. H, Ng S. L, et al. Green color luminescence in Tb3+:(La, Ln)P04 (Ln=Gd or Y) photonic materials. Materials Science and Engineering, B72 (2000):27-30.
    [101]Liu B, Shi C, Qi Z. White-light long-lasting phosphorescence from Tb3+-activated Y2O2S phosphor. Journal of Physics and Chemistry of Solids,67(2006):1674-1677.
    [102]Abreu da Silva A, Aurelio Cebim M, Rosaly Davolos M. Excitation mechanisms and effects of dopant concentration in Gd2O2S:Tb3+ phosphor. Journal of Luminescence,128(2008):1165-1168.
    [103]Zhou L, Choy W. C. H, Shi J, et al. A novel green emitting phosphor Ca1.5Y1.5A13.5Si1.5O12:Tb3+. Materials Chemistry and Physics,100(2006):372-374.
    [104]Zhou L, Choy W. C. H., Shi J, et al. Synthesis and luminescent properties of GdSrAl3O7:Tb3+ phosphor under VUV/UV excitation. Journal of Alloys and Compounds,463(2008):302-305.
    [105]Li P, Pang L, Wang Z, et al. Luminescent characteristics of LiBaBO3:Tb3+ green phosphor for white LED. Journal of Alloys and Compounds,478(2009):813-815.
    [106]Llanos J, Castillo R, Alvarez W. Preparation, characterization and luminescence of a new green-emitting phosphor:Gd2TeO6 doped with Tb3+. Materials Letters,62(2008):3597-3599.
    [107]Zhu H, Yang D, Yang H, et al. Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor. Journal of Nanoparticle Research,10(2008):307-312.
    [108]Meng Q, Chen B, Xu W, et al. Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline. Journal of Applied Physics,102(2007)093505.
    [109]Chang Y, Lin H, Li Y, et al. Synthesis and luminescent properties of Tb3+-activated yttrium indium germinate phosphor. Journal of Solid State Chemistry,180(2007):3076-3081.
    [110]Liu C, Che G, Xu Z, et al. Luminescence properties of a Tb3+ activated long-afterglow phosphor. Journal of Alloys and Compounds,474(2009):250-253.
    [111]Yang H, Shi J, Liang H, et al. A novel green emitting phosphor Ca2Ge04:Tb3+. Materials Research Bulletin,41(2006):867-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700