土壤杆菌31749合成热凝胶的氮调控机理及高产策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一株能大量合成胞外多糖热凝胶的土壤杆菌31749 (Agrobacterium sp. ATCC 31749)为研究对象,在初步了解土壤杆菌31749胞内碳源及氮源代谢的基础上,运用代谢工程和微生物生理学的理论与方法,就氮代谢双组分系统NtrB-NtrC调控土壤杆菌31749在氮源限制条件下合成胞外多糖的机理展开研究。主要研究结果如下:
     (1)采用RT-qPCR和2-DE技术研究了土壤杆菌31749氮源代谢调控系统和菌体总蛋白对氮源限制环境的应答变化。结果表明,氮源限制条件可以显著提高氮源代谢基因glnA、gltB、nifA及其相关调控基因ntrC、ntrB、ntrX、ntrY的相对转录水平,并将碳代谢流分配关键基因exoC的相对转录水平提高了14倍。蛋白质二维电泳分析发现,土壤杆菌31749在应答环境氮源含量变化时,14个蛋白质表达量显著提高,6个蛋白质表达量下调。这20个蛋白质中有4个被成功鉴定,分别为分子伴侣GroEL、未知蛋白Atu1730、ABC转运蛋白和烯酰ACP还原酶。ABC转运蛋白表达水平的提高满足菌体大量转移糖类物质的需求,烯酰ACP还原酶表达量的下调使菌体细胞壁合成受阻,而用于细胞壁合成的UDPG被主要用于热凝胶的合成。
     (2)利用同源重组原理构建土壤杆菌31749的ntrC突变株ΔntrC,分析ΔntrC对氮源的应答和利用情况。结果表明:ΔntrC对培养基中NH_4Cl和硝酸钾的利用速度显著减慢,但能正常利用谷氨酸和谷氨酰胺。无论ΔntrC利用这4种氮源中的任何一种,热凝胶合成量均小于2.0 g/L。在以NH_4Cl为氮源的分批发酵过程中,ΔntrC的热凝胶合成时间相对野生菌延迟15 h,最终发酵液热凝胶含量为4.8 g/L,显著的低于野生菌热凝胶产量(25.7 g/L)。另外,ΔntrC在菌体形态变化速度上显著不同于野生菌,其形态在对数生长期几乎全是杆状。通过分析ΔntrC和野生菌在生长期的总蛋白表达差异,发现43个蛋白质表达量发生显著变化,22个表达上调,21个表达下调。43个蛋白质中有4个表达量变化显著的被成功鉴定,分别为钴胺素生物合成蛋白、肽基脯氨酰顺反异构酶、核苷二磷酸激酶和N-乙酰-γ-谷氨酰磷酸脱氢酶。上述结果也证实最初假设,即NtrC参与调控热凝胶的合成。
     (3)利用同源重组原理进一步构建土壤杆菌31749的ntrB突变株ΔntrB,并分析ΔntrB对环境氮源应答和利用情况。结果表明:ΔntrB对NH_4Cl的利用速度显著减慢,但能正常利用硝酸钾、谷氨酸和谷氨酰胺。以NH_4Cl为氮源的分批发酵过程中,ΔntrB氮源消耗时间延长5 h,但生物量对氮源得率(Y_(X/N))相比野生菌基本不变,仍维持在1.875 g/g的水平;而突变株ΔntrB合成热凝胶的能力显著削弱,热凝胶产量仅为10.9 g/L。ΔntrB的菌体形态变化速度也较野生菌加快,但是变化速度没有ΔntrC快。通过比较ΔntrC和ΔntrB特性发现,NtrB并不是唯一能对NtrC进行磷酸化的蛋白,可能存在其他的此类蛋白X,但是X蛋白对NtrC的磷酸化能力比NtrB低。
     (4)ΔntrC和ΔntrB都开启一种新聚合物的合成。ΔntrC利用谷氨酸为氮源时所产新聚合物产量最高,达到6.5 g/L;ΔntrB以KNO_3为氮源时新聚合物产量只有2.6 g/L。ΔntrC和ΔntrB解除了氮源对新胞外聚合物合成的限制作用,在氮源充足条件下,二者都能合成新的胞外聚合物。新聚合物具有极强的吸水性,但不溶于水,也不溶解于NaOH、HCl和无水乙醇。红外光谱扫描结果发现,新聚合物的吸收峰与热凝胶标样的吸收峰大部分一致。样品在1000-1100 cm~(-1)和3480 cm~(-1)分别有很强的糖苷键和羟基的特征吸收;但是新聚合物不同于热凝胶是在890 cm~(-1)处没有明显的β–构型的特征吸收峰。单糖组成分析发现,新聚合物由葡萄糖、甘露糖、半乳糖和其余一种未知的单糖组成。
     (5)通过添加高能化合物为土壤杆菌31749合成热凝胶提供能量以提高胞外多糖产量。首先确定了土壤杆菌31749染色体基因组上存在多聚磷酸激酶和外切聚磷酸酶,其中多聚磷酸激酶编码基因ppk序列与Agrobacterium tumefaciens. C58的同源基因有95%的一致性,而外切聚磷酸激酶编码基因ppx与Rhizobium sp. NGR234染色体上此基因有86%的一致性。利用3种具有不同高能磷酸键的低聚磷酸盐Na_4P_2O_7、Na_5P_3O_(10)和(NaPO_3)_6取代培养基中的KH_2PO_4-K_2HPO_4,将它们作为高能磷酸键供体和磷元素营养添加到热凝胶发酵体系中。结果表明:在培养基中分别添加0.024 mol/L的Na_5P_3O_(10)和0.048 mol/L的(NaPO_3)_6,对应的热凝胶产量较对照分别提高了23%和134%,而副产物乙酸较对照分别降低87.5%和77.7%,表明低聚磷酸盐的添加促进了细胞代谢过程的能量供给,在缓减副产物积累的同时又强化了热凝胶的合成。当除去上述发酵体系中的CaCO_3,添加上述3种低聚磷酸盐时,生物量显著降低,几乎不合成热凝胶,发酵液pH最低降到2.1。当同时以CaCO_3和KH_2PO_4-K_2HPO_4作为缓冲物质,分别添加0.024 mol/L的Na_5P_3O_(10)和0.048 mol/L的(NaPO_3)_6发酵时,热凝胶产量变化不显著。但是,当发酵液不存在CaCO_3,只有KH_2PO_4-K_2HPO_4作为缓冲物质时,添加0.024 mol/L和0.048 mol/L的(NaPO_3)_6将使热凝胶分别达到18.4 g/L和16.9 g/L,较对照分别提高60.4%和49.4%。
This dissertation investigated the regulatory mechanism of nitrogen metabolic two-component system NtrB-NtrC on curdlan synthesis and the response of the strain to nitrogen-limited condition based on the knowledge of intracellular carbon and nitrogen metabolism in Agrobacterium sp. ATCC 31749, and by using the theory and methods of metabolic engineering and microbial physiology. The main results are described as follows:
     (1) The response of Agrobacterium sp. ATCC 31749 to nitrogen limitation from gene transcription and protein expression was analysed by using RT-qPCR and 2-DE methods. Initial results showed that the relative expression of ntrC, ntrB, ntrX, ntrY, glnA, gltB and nifA which were related with nitrogen metabolism and regulation increased significantly. More importantly, the relative expression level of exoC related with carbon flux distribution increased 14-fold in nitrogen-limited condition. In the 2-DE analysis of the cellular total proteins under nitrogen limitation, about 14 proteins expression levels were elevated while 6 of them were decreased. Among them, 4 proteins were successfully identified namely, GroEL, Atu1730, ABC transporter and enoyl-(acyl carrier protein) reductase. The elevated expression of ABC transporter could transport more glucose for curdlan synthesis and decreased expression of enoyl- reductase would channel the flux of UDPG to curdlan production in Agrobacterium sp. ATCC 31749.
     (2) A ntrC mutant of Agrobacterium sp. ATCC 31749 was constructed and its utiliazation and response of the strain to nitrogen were analysed. Results showed that the consumption rate ofΔntrC on NH_4Cl and KNO_3 decreased, but the mutant could use glutamate and glutamine normally. However, the curdlan synthesis ability was impaired significantly and was lower than 2.0 g/L whatever types of the four nitrogen sources were used. There was a 15 h lag in growth and curdlan production ofΔntrC in batch fermentation with NH_4Cl as nitrogen source. Curdlan production in final medium was 4.8 g/L and was remarkably lower than the production of wild type strain (25.7 g/L). In addition, the cell morphological change rate was also different from that of wild type strain and it was almost in rod type in exponential phase. The nitrogen repression on new biopolymer was released and the mutant could synthesize the new biopolymer at 15 h with sufficient nitrogen in flask fermentation. Comparing to the total protein expression changes at growth phase ofΔntrC and wild type strain, the expression of 43 proteins changed significantly, in which 22 proteins increased and 21 decreased. Four proteins of cobalamin biosynthesis protein, N-acetyl-gamma-glutamyl-phosphate reductase, peptidyl prolyl cis-trans isomerase and nucleoside diphosphate kinase were successfully identified. These results further proved the hypothesis that NtrC was involved in regulating curdlan biosynthesis under nitrogen-limited condition in Agrobacterium sp. ATCC 31749.
     (3) A ntrB mutant of Agrobacterium sp. ATCC 31749 was also constructed. Results showed that the consumption rate ofΔntrB on NH_4Cl was slower than that of wild type strain, and the mutant could use KNO_3, glutamate and glutamine normally. There was a 5 h lag in growth phase of theΔntrB mutant in batch fermentation with NH_4Cl as nitrogen source, but the yield of biomass to nitrogen (Y_(X/N)) was identical with that of wild type strain as 1.875. Curdlan synthesis ability ofΔntrB was impaired significantly and only 10.9 g/L was obtained in batch fermentation. The cell morphological change rate was also different from that of wild type strain, but was slower thanΔntrC. The nitrogen repression on the new biopolymer was also released and the mutant could synthesize new biopolymer at nitrogen sufficient condition. By comparing the characteristic ofΔntrC andΔntrB, NtrB is not the unique protein for phosphorylating NtrC, and there might has other proteins, such as protein X of which function was similar to NtrB, but the activation ability of the X protein was lower than NtrB.
     (4) The two mutants ofΔntrC andΔntrB could synthesize a new biopolymer. The biopolymer has strong water absorption capacity, but could not be dissolved in NaOH, HCl, water and ethyl alcohol. The new biopolymer production ofΔntrC was 6.5 g/L with glutamate as nitrogen source andΔntrB could only produce 2.6 g/L when using KNO_3 as nitrogen source. The infrared spectra analysis showed that structure of the new biopolymer was similar to curdlan sample. It has strong glucosidic bond absorption peak at 1000-1100 cm~(-1) and hydroxide radical absorption peak at 3480 cm~(-1). But, the difference between the new biopolymer and curdlan was that the new biopolymer does not exhibiteβ-configuration absorption peak at 890 cm~(-1). Monosaccharide composition analysis showed that the new biopolymer is composed of glucose, mannose and galactose and other one unknown monosaccharide.
     (5) Addition of low-polyphosphates with high energy bond for supplying energy was tested to improve curdlan production. In the preliminary experiment two genes encoding the polyphosphate metabolizing enzymes, polyphosphate kinase and exopolyphosphatase were amplified and showed 95% and 86% identical with those in Agrobacterium tumefaciens. C58 and Rhizobium sp. NGR234 by sequence analysis. Three low-polyphosphates (Na_4P_2O_7, Na_5P_3O_(10) and (NaPO_3)_6) with high energy phosphate bond were employed to substitute for KH_2PO_4-K_2HPO_4 in medium. The curdlan yield was enhanced by 23% and 134% when 0.024 mol/L of Na_5P_3O_(10) and 0.048 mol/L of (NaPO_3)_6 were added in the medium, respectively. The amount of acetic acid in final fermentation medium decreased 87.5% and 77.7% separately. When CaCO_3 was removed from the culture and the three low-polyphosphates were added, the pH and biomass yield dropped remarkably with little or no curdlan production. The culture with 0.024 mol/L of Na_5P_3O_(10) and 0.048 mol/L of (NaPO_3)_6 was mixed with KH_2PO_4-K_2HPO_4 and CaCO_3 in the medium showed no effect on curdlan production. However, curdlan yield was improved by 49-60% when CaCO_3 was removed from the medium and KH_2PO_4-K_2HPO_4 were dosed as buffer, and curdlan production reached to 18.4 g/L and 16.9 g/L when 0.024 mol/L and 0.048 mol/L (NaPO_3)_6 were added.
引文
[1] Gerngross T, Slater S, Gross R A, et al. Biopolymers and biotechnology [J]. Science, 2003, 299: 822-825.
    [2] Sutherland I W. Novel and established applications of microbial polysaccharides [J]. Trends Biotechnol, 1998, 16(1): 41-46.
    [3] McIntosh M, Stonel B A, Stanisich V A. Curdlan and other bacterial (1, 3)-β-glucans [J]. Appl Microbiol Biotechnol, 2005, 68: 163-173.
    [4] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates [J]. Microbiol Rev, 1990, 54: 450-472.
    [5] Sang Y L. Bacterial polyhydroxyalkanoates [J]. Biotechnol Bioeng, 1996, 49: 1-14.
    [6] Page W J, Knosp O. Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD [J]. Appl Environ Microbiol, 1989, 55: 1334-1339.
    [7] Hanggi U J. Pilot scale production of PHB with Alcaligenes latus. In Novel biodegradable microbial polymers [M]. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990: 65-70.
    [8] Hartmann A, Burris R H. Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum [J]. J Bacteriol, 1987, 169: 944-948.
    [9] Lee S Y, Chang H N. Production of poly (hydroxyalkanoic acid) [J]. Adv Biochem Eng Biotechnol, 1995, 52: 27-58.
    [10] Sun J, Peng X, Jan V I, et al. The ntrB and ntrC genes are involved in the regulation of Poly-3-Hydroxybutyrate biosynthesis by ammonia in Azospirillum brasilense Sp7 [J]. Appl Environ Microbiol, 2000, 66: 113-117.
    [11] Arada T, Masada M, Fujimori K, et al. Production of a firm, resilient gel-forming polysaccharide by a mutant (10C3K) of Alcaligenes faecalis var. myxogenes [J]. Agric Biol Chem, 1966, 30(2): 196-198.
    [12] Ogawa K, Tsurugi J, Watanabe T, et al. The dependence of the conformation of a (1-3)-D-glucan on chain-length in alkaline solution [J]. Carbohydr Res, 1973, 29:397-403.
    [13] Saito H. Conformation, dynamics and gelation mechanism of gel-state (1-3)-β-D-Glucans revealed by C-13 NMR [M]. [In] Solution properties of Polysaccharides. American Chemical Society, 1981: 125-147.
    [14] Futatsuyama H, Yui T, Ogawa K. Viscometry of curdlan, a linear(1-3)-β-D-glucan, in DMSO or alkaline solutions [J]. Biosci Biotechnol Biochem, 1999, 63: 1481-1483.
    [15] Yotsuzuka F. Handbook of dietary fiber [M]. New York, Dekker. 2001: 737-757.
    [16] Sutherland I W, Elwood D C. Microbial exopolysaccharide-industrial polymers of current and future potentia1 [M]. In: Bull AT (ed), Microbial Technology: Current States and Future Prospects, Cambridge University Press, London, 1979: 422-427.
    [17] Shimizu H, Shimizu H. Polysaccharide thickener-containing dietary fiber composition [P]. WIPO, WO2008041375, 2008.
    [18] Ono N, Miura T. Capsule [P]. Japan patent, JP8169817, 1996.
    [19] Shimotoyodome A, Meguro S, Hase T, et al. Sulfated polysaccharides, but not cellulose, increase colonic mucus in rats with loperamide-induced cons tipatin [J]. Dig Dis Sci, 2001, 46(7): 1482-1489.
    [20] Jagodzinski P P, Wiaderkiewicz R, Kurzawski G, et al. Mechanism of the inhibitory effect of curdlan sulfate on HIV-I infection in vitro [J]. Virology, 1994, 202: 735-745.
    [21] Wang X, Zhang L N, Li Y Q, et al. Correlation of structure to antitum or activities of five derivatives of aβ-glucan from Poriacocos sclerotium [J]. Carbohydr Res, 2004, 339: 2567-2574
    [22] Zhang L, Zhang M, Zhou Q, et al. Solution properties of antitumor sulfated derivative of alpha-(1-3)-D-glucan from Ganoderma lucidum [J]. Biosci Biotechnol Biochem. 2000, 64(10): 2172-2178.
    [23] Mikio K, Yoshiro O, Hirotomo O, et al. Water solubleβ-(1,3)-glucan derivative and antiviral agent containing the derivative [P]. Japan Patent, 07228601, 1995.
    [24] Evans S G, Morrison D, Kaneko Y, et al. The effect of curdlan sulfate on development in vitro of Plasmodium falciparum [J]. Trans R Soc Trop Med Hyg,1998, 92: 87-89.
    [25] Kim M K, Lee I Y, Lee J H., et al. Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium species [J]. Ind Microbiol Biotechnol, 2000, 25: 180-183.
    [26] Lawford H G, Phillips K R, Lawford G R. Two stage continuous process for the production of thermogelable curdlan-type exopolysaccharide [J]. Biotechnol Lett, 1982, 4: 689-694.
    [27] Lee J H, Lee I Y. Optimization of uracil addition for curdlan (β-1-3-glucan) production by Agrobacterium sp [J]. Biotechnol Lett, 2001, 23: 1131-1134
    [28] West T P. Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC 31749 [J]. J Basic Microbiol, 2006, 46: 153-157.
    [29] Lee J H, Lee I Y, Kim M K, et al. Optimal pH control of batch process for production of curdlan by Agrobacterium species [J]. J Ind Microbiol Biotechnol, 1999, 23: 143-148.
    [30] Wu J, Zhan X, Liu H, et al. Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation [J]. Chin J Biotech, 2008, 24(6): 1035-1039.
    [31] Kim M K, Lee I Y, Ko J H, et al. Higher intracellular levels of uridine monophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species [J]. Biotechnol Bioeng, 1999, 62: 317-323.
    [32] Lee I Y, Kim M K, Lee J H, et al. Influence of agitation speed on production of curdlan by Agrobacterium species [J]. Bioproc Eng, 1999, 20: 283-287.
    [33] Lawford H G, Rousseau J D. Production ofβ-1,3-glucan exopolysaccharide in low shear systems: the requirement for high oxygen tension [J]. Appl Biochem Biotechnol, 1992, 34/35: 597-612. [ 34 ]Orts W J, Rouseau J D, Lawford H G. Improved microbial production of curdlan-type polysaccharide. In: Stivala SS, Crescenzi V, Dea ICM Eds, Industrial polysaccharide: the impact of biotechnology and advanced methodologies [M]. New York, Gordon and Breach, 1987: 459-469.
    [35] Lawford H, Keenan J, Phillips K, et al. Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide product ion by Alcaligenes faecalis [J]. Biotechnol Lett, 1986, 8: 145-150.
    [36] Lawford H G, Roussau J D. Bioreactor design considerations in the production of high quality microbial exopolysaccharides [J]. Appl Biochem Biotechnol, 1991, 28: 667-684.
    [37] Harada T. Succinoglucan 10C3: a new acidic polysaccharide of Alcaligenes faecalis var. myxogenes [J]. Arch Biochem Biophys, 1965, 112: 65-69.
    [38] Harada T, Fujimori K, Hirose S, et al. Growth andβ-glucan production by a mutant of Alcaligenes faecalis var. myxogenes 10C3K in defined medium [J]. Agric Biol Chem, 1966, 30: 764-769.
    [39] Kim M K, Ryu K E, Choi W A, et al. Enhanced production ofβ-(1-3)-D-glucan by a mutant strain of Agrobacterium species [J]. Biochem Eng, 2003, 16: 163-168.
    [40] Zheng Z Y, Lee J W, Zhan X B, et al. Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis [J]. Biotechnol Bioproc Eng, 2007, 12: 359-365.
    [41] Prival M J, Brenchley J E, Magasanik B. Glutamine synthetase and the regulation of hist idase formation in Klebsiella aerogenes [J]. J Biol Chem, 1973, 248(12): 4334-4344.
    [42] Prival M J, Magasanik B, Brenchley J E. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes [J]. J Biol Chem, 1971, 246(20): 6288-6296.
    [43] Merrick M J, Edwards R A. Nitrogen control in bacteria [J]. Microbiol Mol Biol R, 1995, 59(4): 604-622.
    [44] Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction [J]. Annu Rev Biochem, 2000, 69(1): 183-215.
    [45] Wozniak D J, Ohman D E. Pseudomonas aeruginosa AlgB, a two-component reponse regulator of NtrC family, is required for algD transcription [J]. J Bacteriol, 1991, 173: 1406-1413.
    [46] Dodsworth J A, Leigh J A. Nitrogen regulation in bacteria and archaea [J]. AnnuRev Biochem, 2007, 61: 349-377.
    [47] Keener J, Kustu S. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NtrB and NtrC of enteric bacteria: roles of the conserved amino-terminal domain of NtrC [J]. Proc Natl Acad Sci USA, 1988, 85(14): 4976-4980.
    [48] Ninfa A J, Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli [J]. Proc Natl Acad Sci USA, 1986, 83(16): 5909-5913.
    [49] Fischer H M. Genetic regulation of nitrogen fixation in rhizobia [J]. Microbiol Mol Biol R, 1994, 58(3): 352-386.
    [50] Hill S, Kennedy C, Kavanagh E, et al. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. peumoniae [J]. Nature, 1981, 290: 424-426.
    [51] Merrick M, Hill S, Kavanagh E, et al. Repressor properties of the nifL gene product in Klebsiella pneumoniae [J]. Mol Gen Genet, 1982, 185(1): 75-81.
    [52] He L H, Soupene E. NtrC is required for control of Klebsiella pneumoniae NifL activity [J]. J Bacteriol, 1997, 179(23): 7446-7455.
    [53] Ana BH, Richard L, Ray D, et al. NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida [J]. J Bacteriol, 2009, 191(19):6123-6135.
    [54] Robet A B. A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae [J]. J Bacteriol, 2010, 192(19): 4801-4811.
    [55] Wozniak D J, Ohman D E. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT [J]. J Bacteriol, 1994, 176(19): 6007-6014.
    [56] Pier G B, Coleman F, Franklin M, et al. Role of alginate O- acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis [J]. Infect Immun, 2001, 69(3): 1895-1901.
    [57] Andrew J, Leech A S. The NtrC family regulator algB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algDPromoter [J]. J Bacteriol, 2008, 190: 581-589.
    [58] Kim H S, Lee M A, Chun S J, et al. Role of NtrC in biofilm formation via controlling expression of the gene encoding an ADP-glycero-manno-heptose-6- epimerase in the pathogenic bacterium, Vibrio vulnificus [J]. Mol Microbiol, 2007, 63(2): 559-574.
    [59] Kim H K, Park S J, Lee K H. Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus [J]. Mol Microbiol, 2009, 74(2): 436-453.
    [60] Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: A common cause of persistent infections [J]. Science, 1999, 284(5418): 1318-1322.
    [61] Huq A, Small E B, West P A, et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods [J]. Appl Environ Microbiol, 1983, 45(1): 275-283.
    [62] Hood M A, Winter P A. Attachment of Vibrio cholerae under various environmental conditions and to selected substrates [J]. FEMS Microbiol Ecol, 1997, 22(3): 215-223.
    [63] Choi J I, Lee S Y. Process analysis and economic evaluation for Poly-(3- hydroxybutyrate) production by fermentation [J]. Bioproc Biosyst Eng, 1997, 17(6): 335-342.
    [64] Lee S Y. Bacterial polyhydroxyalkanoates [J]. Biotechnol Bioeng, 1996, 49(1): 1-14.
    [65] Choi J I, Lee S Y, Kim H. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly-(3-hydroxybutyrate) in Escherichia coli [J]. Appl Environ Microbiol, 1998, 64(12): 4897-4903.
    [66] Prieto M A, Buhler B, Jung K, et al. PhaF, a polyhydroxyalkanoate-granule- associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes [J]. J Bacteriol, 1999, 181(3): 858-868.
    [67] Slater S, Houmiel K L, Taylor N B, et al. Multiple beta-ketothiolases mediate poly-(beta)-hydroxyalkanoate copolymer synthesis in Ralstonia eutropha [J]. JBacteriol, 1998, 180(8): 1979-1987.
    [68] Hasan F, Shah A A, Hameed A, et al. Industrial applications of microbial lipases [J]. Enzyme Microb Tech, 2006, 39(2): 235-251.
    [69] Gerritse G, Hommes R W, Quax W J, et al. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain [J]. Appl Environ Microbiol, 1998, 64(7): 2644-2651.
    [70] Krzeslak J, Gerritse G, Ronald V M, et al. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system [J]. Appl Environ Microbiol, 2008, 74(5): 1402-1411.
    [71] Pioszak A A, Ninfa A J. Genetic and biochemical analysis of phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein [J]. J Bacteriol, 2003, 185(4): 1299-1315.
    [72] Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms [J]. Annu Rev Microbiol, 1995, 49(1): 711-745.
    [73] Ana B, Herva′s, Ine′s Canosa, et al. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability [J]. J Bacteriol, 2008, 190 (1): 416-420.
    [74] Thomas P W. Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC31749 [J]. J Basic Microbiol, 2006, 46: 153-157.
    [75] Ralf K, Davide Z, Karin S. The electron transport system of Alcaligenes eutrophus H16 [J]. Arch Microbiol, 1991, 155: 436-443.
    [76] Noguchi T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis [J]. Biosci Biotechnol Biochem, 1998, 62(8): 1594-1596.
    [77] Murata K, Uchida T, Kato J, et al. Polyphosphate kinase: distribution, some properties and its application as an ATP regeneration system [J]. Agric Biol Chem, 1988, 52(6): 1471-1477.
    [78] Kulaev I, Vagabov V. New aspects of inorganic polyphosphate metabolism and function [J]. J Biosci Bioeng, 1999, 88(2): 111-129.
    [79] Liu Z Y, Zhang J B, Chen X, et al. Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose Beads [J]. Chem Bio Chem, 2002, 3(4): 348-355.
    [80] Nocek B, Kochinyan S, Michael P, et al. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria [J]. Proc Natl Acad Sci USA, 2008, 105(46): 17730-17735.
    [81] Iwamoto S, Motomura K, Shinoda Y, et al. Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate [J]. Appl Environ Microbiolol, 2007, 73(17): 5676-5678.
    [82] Kim K S, Narayana N R, Cresson D, et al. Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp [J]. Proc Natl Acad Sci USA, 2002, 99(11): 7675-7680.
    [83] Thomas P W, Nikolaus A, Florian M F. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis [J]. Plant Biol, 2007, 7(51): 1-11.
    [84] Wood D W, Setubal J C, Kaul R, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58 [J]. Science, 2001, 294(5550): 2317-2323.
    [85] Corbella M E, Puyet A. Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa [J]. Appl Environ Microbiol, 2003, 69(4): 2269- 2275.
    [86] Vandecasteele S J, Peetermans W E, Merckx R, et al. Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections [J]. J Infect Dis, 2003, 188(5): 730-737.
    [87] Devers M, Soulas G, Fabrice M L. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil [J]. J Microbiol Methods, 2004, 56(1): 3-15.
    [88] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J]. Methods, 2001, 25(4): 402-408.
    [89] O’Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. J Biochem, 1975, 250: 4007-4021.
    [90] Desroche N, Beltramo C, Guzzo J. Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acidbacterium Oenococcus oeni [J]. J Microbiol Methods, 2005, 60: 325-333.
    [91] Shaw M M, Riederer B M. Sample preparation for two-dimensional gel electrophoresis [J]. Proteomics, 2003, 3: 1408–1417.
    [92] Candiano G, Bruschi M, Musante L, et al. Blue silver: A very sensitive colloidal CoomassieG-250 staining for proteome analysis [J]. Electrophoresis, 2004, 25: 1327-1333.
    [93] Wang Y, Cheung Y H, Yang Z, et al. Proteomic approach to study the cytotoxicity of dioscin (saponin) [J]. Proteomics, 2006, 6(8): 2422-2432.
    [94] Harwood J E, Huysen D J. Automated analysis of ammonia in water [J]. Water Res, 1970, 4: 695-704.
    [95] Raetz C R H. Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles [M]. Cellular and Molecular Biology, Washington DC, 1996: 104-122.
    [96] Brautaset T, Petersen S B, Valla S. In vitro determined kinetic properties of mutant phosphoglucomutases and their effects on sugar catabolism in Escherichia coli [J]. Metab Eng, 2000, 2: 104-114.
    [97] Stasinopoulos S J, Fisher P R, Stone B A, et al. Detection of two loci involved in (1->3)-{beta}-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene [J]. Glycobiology, 1999, 9: 31-41.
    [98]Bartels F W, Baumgarth B A, Nselmetti D, et al. Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti - a combined molecular biology and force spectroscopy investigation [J]. J Struct Biol, 2003, 143: 145-152.
    [99]Karnezis T, Fisher H C, Neumann G M, et al. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1->3)-{beta}-D-glucan (Curdlan) [J]. J Bacteriol, 2002, 184: 4114-4123.
    [100]Harye-Hartl M K, Weber F, Hartl F U. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence ofATP hydrolysis [J]. EMBO J, 1996, 15: 6111-6121.
    [101]Wang H B, Zhang Z Y, Bao R, et al. Structure and transportation mechanism of ABC transport protein [J]. Chem Life, 2007, 27: 208-210.
    [102]Denise A R, Catherine V, Michele S, et al. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, inhA, in complex with NAD+ and a C16 fatty acyl substrate [J]. J Biol Chem, 1999, 274(22): 15582-15589.
    [103]Atkinson M R, Blauwkamp T A, Ninfa A J. Context-dependent functions of the PII and GlnK signal transduction proteins in Escherichia coli [J]. J Bacteriol, 2002, 184: 5364-5375.
    [104]Ilona D, Sara A, Ray D. The upstream region of the nodD3 gene of Sinorhizobium meliloti carries enhancer sequences for the transcriptional activator NtrC [J]. Fems Microbiol Lett, 1999, 179:491-499.
    [105]Kumar R, Shimizu K. Metabolic regulation of Escherichia coli and its glhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture [J]. Microb Cell Fact, 2010, 9: 1-17.
    [106]Leo E, Aldo A, Michael H, et al. Inactivation of gltB abolishes expression of the assimilatory nitrate reductase gene (nasB) in Pseudomonas putida KT2442 [J]. J Bacteriol, 2000, 182: 3368-3376.
    [107]Antonio D, Uttaro, Gerard A, et al. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens [J]. J Bacteriol, 1990, 172: 1640-1646.
    [108]Monika J, Anna S. Regulation of pssA and pssB gene expression in Rhizobium leguminosarum bv. trifolii in response to environmental factors [J]. Antonie van Leeuwenhoek, 2004, 85: 217-227.
    [109]Mey K and David J W. Pathways for conformational change in nitrogen regulatory protein C from discrete path sampling [J]. J Phys Chem, 2008, 112:2456-2465.
    [110]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31: 426-428.
    [111]Jolanta K, Ma?gorzata C, Zbigniew K, et al. Application of spectroscopic methods for structural analysis of chitin and chitosan [J]. Mar Drugs, 2010, 8: 1567-1636.
    [112]武翠玲,孟延发.要用真菌马勃多糖中单糖组成GC-MS分析[J].长治医学院学报, 2009, 23(4): 254-256.
    [113]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual [M]. New York: Cold Spring Harbor Laboratory Press, 1989.
    [114]Quandt J, Hynes M F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria [J]. Gene, 1993, 127: 15-21.
    [115]Ma L S, Lin J S, Lai E M. An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens [J]. J Bacteriol, 2009, 191(13): 4316-4329.
    [116]Chen H M, Lin M, Ping S Z, et al. Construction ntrC portion mutant and character analysis of A. faecalis A1501 [J]. Chinese Sci Bull, 2000, 45: 377-381.
    [117]Evelyne R, Anne L, Martin J W, et al. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon [J]. Biochem J, 1998, 335: 159-166.
    [118]Cherney L T, Cherney M M, Garen C R, et al. Crystal structure of N-acetyl- gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+) [J]. Mol Biol, 2007, 367(5): 1357-69.
    [119]Gothel S F, Marahiel M A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts [J]. Cell Mol Life Sci, 1999, 55(3): 423-436.
    [120]Lascu L, Giartosio A, Ransac S, et al. Quaternary structure of nucleoside diphosphate kinases [J]. J Bioenerg Biomembr, 2000, 32(3): 227-236.
    [121]Song Y, Peisach D, Pioszak A A, et al. Crystal structure of the C-terminal domian of the two-component syatem transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli [J]. Biochem, 2004, 43: 6670-6678.
    [122]Gunter K, Verena W. Functional dissection of the transmitter module of the histidine kinase NtrB in Escheriehia coli [J]. Proc Natl Acad Sci USA, 1999, 96: 604-609.
    [123]Atkinson M R, Ninfa A J. Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulatorl II (NRII or NtrB) [J]. J Bacteriol,1993, 175(21): 7016-7023.
    [124]Olga E P, Karin S. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development [J]. Plos Pathog, 2009, 5(11):1-16.
    [125]Scroggins L H. Spectrophotometric microchemical phosphorus determination: A quantitative oxygen flask procedure applicable to problem organophosphorus compounds [J]. Microchem J, 1968, 13(3): 385-391.
    [126]Cristian V, Cecilia M, Alberto P, et al. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study [J]. BMC Microbiol, 2010, 10: 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700