具有相转移催化功能磁性纳米粒子结构优化及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液-液两相催化反应因其环境友好性已得到迅速的发展。然而,解决两相反应体系底物接触以及催化剂回收等难题仍具有很大的挑战性。围绕这些问题,相继出现了许多新方法和新技术,如温控相转移催化剂、乳液相转移催化剂体系以及固载型催化剂等。为此本课题组也曾提出以水凝胶为模板负载相转移催化剂,制备类似胶束结构的、适用性更广的复合微反应器。研究结果表明,此类微反应器在两相催化反应中具有良好的催化效果,且对极性产物具有一定的萃取功能。与此相关的研究为两相催化反应开辟了新途径。然而,前期研究发现:较大的微反应器因不利于传质而影响催化反应效率。作为本课题组前期工作的继续,本研究拟制备适于过氧化氢催化氧化深度脱硫两相反应的易回收纳米尺寸微反应器,并对其催化反应性能进行系统研究,期望为有效提高微反应器催化反应效率开辟新途径。
     基于以上的研究目的与意义,本论文的工作主要从以下两个方面展开:
     一、磁性纳米粒子/水凝胶/相转移催化剂微反应器的构筑及性能研究
     利用反相乳液体系制备磁性纳米二氧化硅(Magnetic Silica Nanoparticles, MSN),以有机硅氧烷对其修饰,使MSN表面富含双键,通过过硫酸钾(KPS)引发丙烯酰胺(AM)和N,N’-亚甲基双丙烯酰胺(BA)交联聚合,在MSN表面包裹一层水凝胶PAM。以磁性纳米水凝胶Fe3O4/SiO2/PAM (MHN)为模板,利用浸渍法将硅氧烷季铵盐3-三甲氧基硅基丙基十八烷基N.N-二甲基氯化铵(18QAS)通过网络互穿以及氢键作用负载于MHN上,最后通过18QAS与双核过氧钨酸钾(W2)之间的离子交换作用制备得到磁性纳米微反应器MHN/18QAS-W2。利用X射线衍射仪、红外光谱仪、热重分析仪、透射电子显微镜、能谱仪、振动样品磁强计等多种表征仪器对微反应器各阶段的结构和组成进行了表征。以过氧化氢氧化十氢萘中的二苯并噻吩(DBT)为模型反应,对制备得到的微反应器MHN/18QAS-W2的催化氧化行为进行系统研究,探讨影响此微反应器催化效果的关键性因素。
     实验结果表明:
     所制备的MHN尺寸为纳米级,具有核-壳结构和超顺磁性。成功构筑的磁性微反应器MHN/18QAS-W2具有较好的催化脱硫性能和产物萃取功能,影响其催化效率的主要因素是DBT的初始浓度,且此微反应器具有超顺磁性,反应完成后可通过外磁场迅速分离。由于MHN与18QAS-W2之间弱的相互作用,导致重复使用的微反应器MHN/18QAS-W2稳定性较差。
     二、磁性纳米粒子/相转移催化剂微反应器的制备及性能研究
     1)磁性纳米粒子/磷钨酸十八烷基季铵盐相转移催化剂
     为了增强相转移催化剂与载体之间的相互作用力,以提高其稳定性,实施了以18QAS水解产物与二氧化硅表面Si-OH之间的缩合作用,将硅氧烷季铵盐以共价键形式固载于磁性纳米二氧化硅表面的策略。经18QAS与磷钨酸(PTA)之间的离子交换作用,获得两相反应微反应器MSN/18QAS-PTA。利用透射电镜、能谱仪、X射线光电子能谱仪、红外光谱仪、振动样品磁强计、视频接触角测定仪对微反应器MSN/12QAS-PTA的结构、组成以及特殊性能进行表征。以过氧化氢氧化十氢萘中的二苯并噻吩为模型反应,探讨微反应器MSN/18QAS-PTA应用于两相反应的可行性,系统研究了各种因素对微反应器催化效果的影响规律。
     实验结果表明:
     微反应器MSN/18QAS-PTA为明显的核-壳结构,具有双亲性与超顺磁性。此微反应器在温和条件下可催化过氧化氢氧化DBT生成其对应的砜,催化性能优越,在最佳优化条件下,体系硫含量可从487~2800ppm降低到0.8ppm。纳米颗粒表面合适的催化剂固载量以及过氧化氢的使用量是决定MSN/18QAS-PTA颗粒催化性能高低的主要因素。此双亲性催化剂和产物可同时在外磁场作用下从体系中分离出来。与上一章使用磁性纳米水凝胶为模板制备的微反应器MHN/18QAS-PTA相比,MSN/18QAS-PTA在回收再利用方面具有明显的优势,其催化性能具有很好的稳定性,重复使用四次仍保持良好的催化效果。
     2)磁性纳米粒子/磷钨酸十二烷基季铵盐相转移催化剂
     为了探讨相转移催化剂本身烷基链长短对微反应器性能的影响,合成烷基链更短的3-三乙氧基硅基丙基N,N-二甲基十二烷基氯化铵(12-QAS),通过水解缩合反应将其固载于MSN表面,并以其作为季铵盐与PTA发生离子交换作用,制备得到相应的两相反应微反应器MSN/12QAS-PTA。利用核磁共振、红外光谱等手段对12QAS进行表征,利用透射电镜、红外光谱、热重、视频接触角、X射线光电子能谱、振动样品磁强计对复合微反应器的各阶段进行结构、组成及特殊性质表征。探讨微反应器MSN/12QAS-PTA应用于过氧化氢氧化十氢萘中的二苯并噻吩的各种影响因素。
     实验结果表明:
     MSN/12QAS-PTA为核-壳结构,具有超顺磁性且表面亲/疏水性可调。此催化剂的设计思路可行,它在催化氧化脱硫中有着良好表现,它集催化与萃取于一体,可将500~3000ppm浓度范围内DBT氧化脱除到5ppm以下。MSN/12QAS-PTA表面的催化剂固载量以及过氧化氢的使用量是决定其催化性能高低的主要因素。此催化剂具有稳定的催化性能,循环使用五次后,催化效率仍然很高。这一研究为制备具有不同亲/疏水性两相催化微反应器建立一种新方法,对拓展该方法的应用具有积极意义。
     综上所述:以磁性纳米水凝胶或磁性纳米二氧化硅为模板,在其表面负载杂多酸季铵盐,构筑应用于两相反应的微反应器是切实可行的。根据实验结果得知所制备的微反应器确实具有预想的各种性质与功能,三种微反应器不仅具有高的比表面积,良好的催化性能和一定的极性产物萃取功能,而且都具有超顺磁性,分离过程简单易行。复合微反应器各种功能的体现主要源于对其组成与结构的巧妙设计。在结构型两相催化微反应器的构筑与性能研究过程中,本论文不仅着力于提高相转移催化反应传质效率,而且关注催化剂和反应物在空间上的有效分布,以达到提高催化反应效率的目的。由该研究所得到的启示,对于新型纳米催化材料的制备具有重要意义,尤其是对于设计应用于物种分布极为复杂的液-液两相催化反应的固载型催化材料更具参考价值。
Liquid-liquid biphase catalytic reaction systems have been developed rapidly. In order to solve the problems related to mass transfer and catalyst recovery in biphase reaction system, many researchers conducted a thorough and meticulous research, such as the development and utilization of thermoregulated phase-transfer catalysts, phase transfer catalyst emulsion system and the immobilized catalyst. Recently, we had reported a novel methodology for creating the broader applicability of catalyst with hydrogel core and amphiphilic phase transfer catalyst shell structure similar to W/O emulsion droplet. The results indicated that the prepared catalysts not only were valuable for deep oxidation desulfurization but also can extract the polar product from system. And the related researches open up new ways for two phase catalysis. However, it was found that the size of composite microreactor is too large to influence the mass transfer. As the continuous part of previous work, we anticipated to explore the preparation of small-size and easy-separated biphase catalytic microreactor for H2O2catalyzed oxidative desulfurization. We constructed three new biphase catalytic microreactors and examined their catalytic properties and expected to open new way for effectively improvement of catalyst performance.
     Based on the purpose above, two aspects are concluded in the thesis as follow:
     1. The preparation and performance study of magnetic nanoparticle/hydrogel/phase transfer catalyst microreactor
     The magnetic silica nanoparticles (MSN) were prepared via the emulsion system. The obtained MSN surface can be modified with silane coupling agent, led to the formation of terminal C=C bonds on the surface of each MSN core. Finally, in the presence of MPS-modified magnetic silica polymerization of acrylamide (AM, the monomer) and N,N-methylene bis-acrylamide (BA, the cross-linker) was initiated by using potassium persulfate (KPS) as an initiator, resulting in the formation of the magnetic hydrogel nanoparticles MSN/PAM (MHN). Then MHN was impregnated in ethanol solution containing3-(trimethoxysilyl)propyl-N,N-dimethyloctadecyl ammonium chloride (18QAS), followed by ion-exchange between18QAS loaded on the surface of MHN and K2{W(=O)(O2)2(H2O)}2(μ-O)(W2), microreactor MHN/18QAS-W2were obtained. The morphology and components of the composite material were characterized by TEM, EDX, XPS, FT-IR, TGA-DSC and VSM, respectively. Empolyed the oxidation of dibenzothiophene with hydrogen peroxide as the model reaction, the catalytic performances of the microreactor MHN/18QAS-W2and the effects of several factors on desulfurization reactivity were systematically investigated, so that some key factors on the catalytic performances were obtained.
     The results showed that the microreactor has core-shell structure with nanoscale dimensions. MHN/18QAS-W2not only has high catalytic activity in the oxidation of dibenzothiophene but also can extract the polar product from system. The DBT initial concentration is the key factor related to the catalytic performance. MHN/18QAS-W2can be quickly separated by the external magnetic field due to its superparamagnetic property. However, because of the weak interaction between MHN and18QAS-W2, the reused microreactor MHN/18QAS-W2was less stable.
     2. The preparation and performance study of magnetic nanoparticle phase transfer catalyst microreactor
     a)MSN/18QAS-PTA
     In order to enhance the interaction forces between the phase transfer catalyst and the carrier to prevent catalyst leak, we directly immobilized the phase transfer catalyst on the surface of MSN by the covalently bound. Magnetic silica/18QAS nanospheres were prepared by the condensation between Si-OH groups on surface of MSN and derived from hydrolyzed18QAS in solution. MSN/18QAS-PTA was constructed by ion-exchange between18QAS loaded on the surface of magnetic silica/18QAS and PTA. TEM, EDX, XPS, FT-IR, TGA-DSC, video contact angle analyzer and VSM were used to characterize the structure, composition and special performances of the microreactor MSN/18QAS-PTA. We took the oxidative desulfurization of fuel oil with hydrogen peroxide as an example to verify the feasibility of using the resulting composite microreactor to aqueous/organic biphasic catalysis. The effects of several factors on desulfurization reactivity were systematically investigated.
     The results showed that the composite nanospheres have core/shell structure with the properties of amphiphilicity and superparamagnetism. The composite nanospheres have high catalytic activity in the oxidation of dibenzothiophene to corresponding sulfones by hydrogen peroxide under mild reaction conditions. The sulfur level could be lowered from487ppm to less than0.8ppm under optimal conditions. The suitable amount of catalysts immobilized on the nanoparticles and hydrogen peroxide used as reactant are necessary for the high efficiency of desulfurization. Additionally, the amphiphilic catalyst and the oxidized product could be simultaneously separated from medium by external magnetism. Compared with the use of magnetic nano-hydrogels (MHN) as a template to construct microreactor in the previous chapter, MSN/18QAS-PTA has a distinct advantage in the recovery and reuse. The recovered composite material could be recycled for four times with almost constant activity,
     b) MSN/12QAS-PTA
     In order to explore the influence of alkyl chain length in the phase transfer catalyst on the microreactor effects, we synthetize3-triethoxysilylpropyl-N,N-dimethyl-dodecylammonium chloride (12QAS) with shorter alkyl chain and immobilized12QAS on the surface of the MSN via hydrolysis and condensation reactions. Then after ion-exchange between12QAS and PTA, the biphase reaction microreactor MSN/12QAS-PTA was prepared.1H NMR,13C NMR and FT-IR were used to character12QAS, then TEM, EDX, XPS, FT-IR, TGA-DSC, video contact angle analyzer and VSM were used to characterize the structure, composition and special performances of the microreactor MSN/12QAS-PTA. The effects of several factors on desulfurization reactivity were systematically investigated.
     The results showed that the composite nanospheres have core/shell structure with the properties of superparamagnetism and the surface hydrophilic/hydrophobic adjustability. This conception of catalyst design is feasible. The microreactor MSN/12QAS-PTA has a good performance in the catalytic oxidation. The DBT level could be lowered from500-3000ppm to less than5ppm under optimal conditions. The amount of phase transfer catalyst loaded on the surface of MSN/12QAS-PTA and the usage amount of hydrogen peroxide is the critical factors to determine MSN/12QAS-PTA catalytic performance. Additionally, the microreactor can extract the oxidized product and exhibit a stable catalytic performance. Its catalytic efficiency is still high after recycling for five times.
     In summary, it is feasible to employ MHN or MSN as the template to construct immobilized phase transfer catalyst (the complexes of heteropoly acid quaternary ammonium salt) microreactor. According to the experimental results, the microspheres reactor does have the expected nature and function. Three microreactors mentioned above not only have high specific surface area, good catalytic activity and a certain degree of the product extraction, but also have superparamagnetic property which makes separation process simple. The performances mentioned above are attributed to the specific structure and components of the prepared nanoparticles.
     Based on the preparation and performance study of biphase catalytic microreactor, this paper not only focused on the improvement of the phase transfer catalyst reaction mass transfer efficiency, but also on the design of effective distribution of the catalyst and reactants in space, in order to achieve the purpose of improving catalytic reaction efficiency. The construction rote of such microreactors may be significant to design multifunctional catalytic materials used in the water/organic diphase systems.
引文
[1]A. Bosmann, G. Francio, E. Janssen, M. Solinas, W. Leitner, P. Wasserscheid. Activation, Tuning, and Immobilization of Homogeneous Catalysts in an Ionic Liquid/Compressed CO2 Continuous-Flow System[J]. Angew. Chem.,2001, 113:2769-2771.
    [2]F. Figueras, J. Palomeque, S. Loridant. Influence of the Coordination on the Catalytic Properties of Supported W Catalysts[J]. J. Catal.,2004,226:25-31.
    [3]李明丰,夏国富,褚阳,胡云剑.催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J].石油炼制与化工,2003,34:1-4.
    [4]W. Keim, Multiphase Catalysis and Its Potential in Catalytic Processes:The Story of Biphasic Homogeneous Catalysis [J]. Green Chem.,2003,5:105-111.
    [5]X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA[J]. J. Phys. Chem. B,1997,101:6525-6531.
    [6]X. S. Zhao, G. Q. Lu. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study[J]. J. Phys. Chem. B,1998, 102:1556-1561.
    [7]X. S. Zhao, G. Q. Lu, X. Hu. A Novel Method for Tailoring the Pore-Opening Size of MCM-41 Materials[J]. Chem. Commun,1999,1391-1392.
    [8]J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, P. A. Midgley. High-Performance Nanocatalysts for Single-Step Hydrogenations[J]. Acc. Chem. Res.,2003,36:20-30.
    [9]B. F. G. Johnson, S. A. Raynor, D. S. Shephard. Superior Performance of a Chiral Catalyst Confined within Mesoporous Silica[J]. Chem. Commun.,1999, 1167-1168.
    [10]P. McMorn, G. J. Hutchings. Heterogeneous Enantioselective Catalysts:Strategies for the Immobilisation of Homogeneous Catalysts[J]. Chem. Soc. Rev.,2004, 33:108-122.
    [11]A. Vinu, V. Murugesan, O. Tangermann. M. Hartmann. Adsorption of Cytochrome c on Mesoporous Molecular Sieves:Influence of pH, Pore Diameter, and Aluminum Incorporation[J]. Chem. Mater.,2004,16:3056-3065.
    [12]X. S. Zhao, X. Y. Bao, W. P. Guo, F. Y. Lee. Immobilizing Catalysts on Porous Materials[J]. Materials Today,2006,9:32-39.
    [13]M. J. Sabatier, A. Corma, A. Domenech, V. Fornes, H. Garcia. Chiral Salen Manganese Complex Encapsulated within Zeolite Y:A Heterogeneous Enantioselective Catalyst for the Epoxidation of Alkenes[J]. Chem. Commun., 1997,1285-1286.
    [14]J. Jamis, J. R. Anderson, R. S. Dickson, E. M. Campi, W. R. Jackson. Modified Silica-Heterogenised Catalysts for Use in Aqueous Enantioselective Hydrogenations[J]. J. Organomet. Chem.,2001,627:37-43.
    [15]Y. Du, Y. Wu, A. H. Liu, L. N. He. Quaternary Ammonium Bromide Functionalized Polyethylene Glycol:A Highly Efficient and Recyclable Catalyst for Selective Synthesis of 5-Aryl-2-oxazolidinones from Carbon Dioxide and Aziridines Under Solvent-Free Conditions[J]. J. Org. Chem.,2008, 73:4709-4712.
    [16]R. Nakao, H. Rhee, Y. Uozumi. Hydrogenation and Dehalogenation under Aqueous Conditions with an Amphiphilic-Polymer-Supported Nanopalladium Catalyst[J]. Org. Lett.,2005,7:163-165.
    [17]M. D. Stanescu, S. Gavrilas, R. Ludwig, D.Haltrich, V.1. Lozinsky. Preparation of Immobilized Trametes Pubescens Laccase on a Cryogel-Type Polymeric Carrier and Application of the Biocatalyst to Apple Juice Phenolic Compounds Oxidation[J]. Eur. Food Res. Technol.,2012,234:655-662.
    [18]D. Q. Xu, S. P. Luo, Y. F. Wang, A. B. Xia, H. D. Yue, L. P. Wang, Z. Y. Xu. Organocatalysts Wrapped around by Poly(ethylene glycol)s (PEGs):A Unique Host-Guest System for Asymmetric Michael Addition Reactions[J]. Chem. Commun.,2007,4393-4395.
    [19]Y. G. Zhang, L. Zhao, S. S. Lee, J. Y. Ying. Enantioselective Catalysis over Chiral Imidazolidin-4-one Immobilized on Siliceous and Polymer-Coated Mesocellular Foams[J]. Adv. Synth. Catal.,2006,348:2027-2032.
    [20]K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool, E. F. Vansant. A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas[J]. Chem. Mater.,2002,14:2317-2324.
    [21]W. Holderich, M. Hesse, F. Numann. Zeolites:Catalysts for Organic Syntheses[J]. Angew. Chem., Int. Ed.,1988,27:226-246.
    [22]S. M. Csicsery, Shape-Selective Catalysis in Zeolites[J]. Zeolites,1984, 4:202-213.
    [23]宋若钧.草酸酯合成中载体孔结构对钯催化剂活性和选择性的影响[J].天然气化学,1992,3:21-26.
    [24]R. Y. Zhang. W. Ding, B. Tu, D. Y. Zhao. Mesoporous Silica:An Efficient Nanoreactor for Liquid-Liquid Biphase Reactions[J]. Chem. Mater.,2007, 19:4379-4381.
    [25]沈平生,李大东,闵恩泽.二氧化钛载体强度和孔结构的关系[J].催化学报,1984.5:320-325.
    [26]F. Fajula, D. Brunel. Unique Surface and Catalytic Properties of Mesoporous Aluminosilicates[J]. Micropor. Mesopor. Mater.,2001,48:119-125.
    [27]I. K. Mbaraka, B. H. Shanks. Design of Multifunctionalized Mesoporous Silicas for Esterification of Fatty Acid[J]. Journal of Catalysis,2005,229:365-373.
    [28]N. Igarashia, S. Kidanib, R. Ahemaitoc, K. Hashimotoa, T. Tatsumi. Direct organic functionalization of Ti-MCM-41:Synthesis condition, organic content, and catalytic activity[J]. Micropor. Mesopor. Mater.,2005,81:97-105.
    [29]D. H. Lee, K. B. Yoon. Polymerization of Ethylene by Using Zirconocene Catalyst Anchored on Silica with Trisiloxane and Pentamethylene Spacers[J]. Macromol. Rapid Commun.,1997,18:427-431.
    [30]R. Neumann, H. Miller. Alkene Oxidation in Water Using Hydrophobic Silica Particles Derivatized with Polyoxometalates as Catalysts[J]. J. Chem. Soc. Chem. Commun.,1995,22:2277-2278.
    [31]A. Kinting, H. Krause, M. Capka. Silica-Supported Chiral Rhodium Complexes for Asymmetric Hydrogenation[J]. J. Mol. Catal.,1985,33:215-223.
    [32]S. H. Lau, V. Caps, K. W. Yeungb, K. Y. Wong, S. C. Tsang. A Novel MCM-41-Supported Manganese(III) Complex with Nitrogen Donor Ligand for Cyclohexene Oxidation[J]. Micropor. Mesopor. Mater.,1999,32:279-285.
    [33]T. Kovalchuk, H. Sfihi, V. Zaitsev, J. Fraissard. Recyclable Solid Catalysts for Epoxidation of Alkenes:Amino- and Oniumsilica-Immobilized [HPO4{W2O2(μ-O2)2(O2)2}]2- Anion[J]. Journal of Catalysis,2007,249:1-14.
    [34]J. P. Idoux, R. Wysocki, S. Young, J. Turcot, C. Ohlman, R. Leonard. Polymer-Supported "Multi-Site" Phase Transfer Catalysts[J]. Synth. Commun., 1983,13:139-144.
    [35]M. Benaglia, M. Cinquini, F. Cozzi, G. Tocco. Synthesis of a Poly(ethylene glycol)-Supported Tetrakis Ammonium Salt:A Recyclable Phase-Transfer Catalyst of Improved Catalytic Efficiency [J]. Tetra. Lett.,2002,43:3391-3393.
    [36]M. L. Wang, Z. F. Lee. Synthesis of Novel Multisite Phase-Transfer Catalysts and Their Applications to the Catalyzed Reaction of Bisphenol A and Allyl Bromide[J]. Ind. Eng. Chem. Res.,2006,45:4918-4926.
    [37]M. L. Wang, Y. H. Tseng. Synthesis of Thioether Using Dimethyloctyl(3-sulfopropyl) Ammonium Betaine and Di-active Site Quaternary Ammonium Salt as New Phase-Transfer Catalysts[J]. Kinet. Catal. Lett.,2004, 82:
    [38]M. L. Wang, Z. F. Lee, F. S. Wang. Synthesis of Novel Multi-Site Phase-Transfer Catalyst and Its Application in the Reaction of 4,4'-bis(chloromethyl)-1,1'-biphenyl with 1-butanol[J]. J. Mol. Catal. A:Chem., 2005,229:259-269.
    [39]P. Srivastava, R. Srivastava. Catalytic Investigations of Calix[4]arene Scaffold Based Phase Transfer Catalyst[J]. Tetra. Lett.,2007,48:4489-4493.
    [40]A. Siva, E. Murugan. Synthesis and Characterization of Novel Multi-Site Phase Transfer Catalyst and Its Catalytic Efficiency for Dichlorocarbene Addition to Citral[J].J. Mol. Catal. A,2005,241:101-110.
    [41]S. Kanemasa, K. Ito. Double Catalytic Activation with Chiral Lewis Acid and Amine Catalysts[J]. J. Org. Chem.,2004,2004:4741-4753.
    [42]T. Okino, Y. Hoashi, Y. Takemoto. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts[J]. J. Am. Chem. Soc.,2003,125:12672-12673.
    [43]R. K. Zeidan, M. E. Davis. The Effect of Acid-Base Pairing on Catalysis:An Efficient Acid-Base Functionalized Catalyst for Aldol Condensation[J]. Journal of Catalysis,2007,247:379-382.
    [44]S. Huh, H. T. Chen, J. W. Wiench, M. Pruski, V. S. Y. Lin. Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres[J]. Angew. Chem. Int. Ed.,2005,44:1826-1830.
    [45]S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara. Physics of Magnetic Fluids[J]. J. Magn. Magn. Mater.,1987, 65:245-251.
    [46]A. H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. SchVth. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst[J]. Angew. Chem.,2004,116:4403-4406.
    [47]S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett. Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals[J]. Angew. Chem.,2004,116:5763-5767.
    [48]A. K. Gupta, M. Gupta. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications[J]. Biomaterials,2005,26:3995-4021.
    [49]S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog. Magnetic Nanoparticle Design for Medical Applications[J]. Solid State Chem. Commun..2006,34:237-247.
    [50]Z. Li, L. Wei, M. Y. Gao, H. Lei. One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles[J]. Adv. Mater.,2005,17:1001-1005.
    [51]T. Hyeon, Chemical Synthesis of Magnetic Nanoparticles[J]. Chem. Commun., 2003,927-934.
    [52]D. W. Elliott, W. X. Zhang. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment[J]. Environ. Sci. Technol.,2001,35:4922^926.
    [53]M. Takafuji, S. Ide, H. Ihara, Z. Xu. Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal Ions[J]. Chem. Mater.,2004,16:1977-1983.
    [54]S. Neveu, A. Bee, M. Robineau, D. Talbot. Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid [J]. J. Colloid Interface Sci.,2002,255:293-298.
    [55]F. Grasset, N. Labhsetwar, D. Li. D. C. Park. N. Saito, H. Haneda. O. Cador. T. Roisnel, S. Mornet, E. Duguet, J. Portier. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles[J]. Langmuir,2002,18:8209-8216.
    [56]S. Sun, H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. J. Am. Chem. Soc.,2002,124:8204-8205.
    [57]S. J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon. Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres[J]. J. Am. Chem. Soc.,2000, 122:8581-8582.
    [58]V. F. Puntes, K. M. Krishan, A. P. Alivisatos. Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt[J]. Science,2001,291:2115-2117.
    [59]Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang. Synthesis of Superparamagnetic MgFe2O4 Nanoparticles by Coprecipitation[J]. J. Magn. Magn. Mater,1999,194:1-7.
    [60]J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon. Ultra-large-scale Syntheses of Monodisperse Nanocrystals[J]. Nat. Mater.,2004,3:891-895.
    [61]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices[J]. Science, 2000,287:1989-1992.
    [62]E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Am. Chem. Soc.,2002,106:7177-7185.
    [63]J. Lee, T. Isobe, M. Senna. Magnetic Properties of Ultrafine Magnetite Particles and Their Slurries Prepared via in-situ Precipitation[J]. Colloids Surf. A,1996, 109:121-127.
    [64]T. Ishikawa, T. Takeda, K. Kandori. Effects of Amines on the Formation of (3-ferric Oxide Hydroxide[J]. J. Mater. Sci.,1992,27:4531-4535.
    [65]K. Kandori, Y. Kawashima, T. Ishikawa. Effects of Citrate iIons on the Formation of Monodispersed Cubic Hematite Particles[J]. J. Colloid Interface Sci.,1992, 152:284-288.
    [66]A. Bee, R. Massart, S. Neveu. Synthesis of Very Fine Maghemite Particles[J]. J. Magn. Magn. Mater.,1995,149:6-9.
    [67]A. L. Willis, N. J. Turro, S. O'Brien. Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals[J]. Chem. Mater.,2005,17:5970-5975.
    [68]B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J]. Chem. Rev.,2004, 104:3893-3946.
    [69]S. Sun. H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G Li. Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles[J]. J. Am. Chem. Soc., 2004,126:273-279.
    [70]F. X. Redl, C. T. Black, G C. Papaefthymiou, R. L. Sandstrom, M. Yin, H. Zeng, C. B.Murray, S. P. O'Brien. Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale[J]. J. Am. Chem. Soc.,2004, 126:14583-14599.
    [71]J. Rockenberger, E. C. Scher, A. P. Alivisatos. A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides[J]. J. Am. Chem. Soc.,1999,121:11595-11596.
    [72]D. Farrell, S. A.Majetich, J. P.Wilcoxon. Preparation and Characterization of Monodisperse Fe Nanoparticles[J]. J. Phys. Chem. B,2003,107:11022-11030.
    [73]N. R. Jana, Y. Chen, X. Peng. Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach[J]. Chem. Mater., 2004,16:3931-3935.
    [74]A. C. S. Samia, K. Hyzer, J. A. Schlueter, C. J. Qin, J. S. Jiang, S. D. Bader, X. M. Lin. Ligand Effect on the Growth and the Digestion of Co Nanocrystals[J]. J. Am. Chem. Soc.,2005,127:4126-4127.
    [75]Y. Li, M. Afzaal, P. O'Brien. The Synthesis of Amine-Capped Magnetic (Fe, Mn, Co, Ni) Oxide Nanocrystals and Their Surface Modification for Aqueous Dispersibility[J]. J. Mater. Chem.,2006,16:2175-2180.
    [76]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process[J]. J. Am. Chem. Soc.,2001,123:12798-12801.
    [77]K. Butter, A. P. Philipse, G. J. Vroege. Synthesis and Properties of Iron Ferrofluids[J]. J. Magn. Magn. Mater.,2002,252:1-3.
    [78]D. Langevin, Micelles and Microemulsions[J]. Annu. Rev. Phys. Chem.,1992, 43:341-369.
    [79]B. K. Paul. S. P. Moulik. Uses and Applications of Microemulsions[J]. Curr. Sci., 2001,80:990-1001.
    [80]E. E. Carpenter. C. T. Seip, C. J. O'Connor. Magnetism of Nanophase Metal and Metal Alloy Particles Formed in Ordered Phases[J]. J. Appl. Phys.,1999, 85:5184-5186.
    [81]C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites[J]. J. Phys. Chem. B,2000,104:1141-1145.
    [82]K. Woo, H. J. Lee, J. P. Ahn, Y. S. Park. Sol-Gel Mediated Synthesis of Fe2O3 Nanorods[J]. Adv. Mater.,2003,15:1761-1764.
    [83]N. Moumen, M. P. Pileni. Control of the Size of Cobalt Ferrite Magnetic Fluid[J]. J. Phys. Chem. B,1996,100:1867-1873.
    [84]X. Wang, J. Zhuang, Q. Peng, Y. Li. A General Strategy for Nanocrystal Synthesis[J]. Nature,2005,437:121-124.
    [85]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem.,2005,117:2842-2845.
    [86]L. E. Euliss, S. G. Grancharov, S. O'Brien, T. J. Deming, G. D. Stucky, C. B. Murray, G. A. Held. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media[J]. Nano Lett.,2003,3:1489-1493.
    [87]X. Liu, Y. Guan, Z. Ma, H. Liu. Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization[J]. Langmuir,2004,20:10278-10282.
    [88]R. Hong, N. O. Fischer, T. Emrick, V. M. Rotello. Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications[J]. Chem. Mater.,2005,17:4617-4621.
    [89]Y. Kobayashi, M. Horie, M. Konno, B. Rodriguez-Gonzalez, L. M. Liz-Marzan. Preparation and Properties of Silica-Coated Cobalt Nanoparticles[J]. J. Phys. Chem. B.2003.107:7420-7425.
    [90]A. H. Lu, W. Li, N. Matoussevitch, B. Spliethoff, F. Schuth. Highly Stable Carbon-Protected Cobalt Nanoparticles and Graphite Shells[J]. Chem. Commun., 2005,98-100.
    [91]D. K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed. Protective Coating of Superparamagnetic Iron Oxide Nanoparticles[J]. Chem. Mater.,2003. 15:1617-1627.
    [92]L. Shen, P. E. Laibinis, T. A. Hatton. Bilayer Surfactant Stabilized Magnetic Fluids:Synthesis and Interactions at Interfaces [J]. Langmuir,1999,15:447-453.
    [93]M. H. Sousa, F. A. Tourinho. New Electric Double-Layered Magnetic Fluids Based on Copper, Nickel, and Zinc Ferrite Nanostructures[J]. J. Phys. Chem. B, 2001.105:1168-1175.
    [94]M. Wan, J. Li. Synthesis and Eectrical-Magnetic Properties of Polyaniline Composites[J]. J. Polymer. Sci.,1998.36:2799-2805.
    [95]M. D. Butterworth, S. A. Bell, S. P. Armes, A. W. Simpson. Synthesis and Characterization of Polypyrrole-Magnetite-Silica Particles[J]. J. Colloid Interface Sci.,1996,183:91-99.
    [96]P. Tartaj, M. P. Morales, T. GonzXlez-Carreno, S. Veintemillas-Verdaguer, C. J. Serna. Advances in Magnetic Nanoparticles for Biotechnology Applications[J]. J. Magn. Magn. Mater.,2005,290-291:28-34.
    [97]G. Barratt, Colloidal Drug Carriers:Achievements and Perspectives[J]. Cell. Mol. Life Sci.,2003,60:21-37.
    [98]P. A. Dresco, V. S. Zaitsev, R. J. Gambino, B. Chu. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles[J]. Langmuir,1999, 15:1945-1951.
    [99]J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan. Magnetic and Conducting Fe3O4-Cross-Linked Polyaniline Nanoparticles with Core-Shell Structure[J]. Polymer,2002,43:2179-2184.
    [100]X. Xu, G. Friedman, K. Humfeld, S. Majetich, S. Asher. Superparamagnetic Photonic Crystals[J]. Adv. Mater.,2001,13:1681-1684.
    [101]C. R. Vestal, Z. J. Zhang. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticles[J]. J.Am. Chem. Soc.,2002,124:14312-14313.
    [102]Y. Wang, X. Teng, J. S. Wang, H. Yang. Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Core-Shell Nanoparticles[J]. Nano Lett.,2003,3:789-793.
    [103]D. Ma, J. Guan, F. Normandin, S. Denommee, G. Enright, T. Veres, B. Simard. Multifunctional Nano-Architecture for Biomedical Applications [J]. Chem. Mater., 2006,18:1920-1927.
    [104]T. Tago. T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, K. Wakabayashi. Novel Synthesis of Silica-Coated Ferrite Nanoparticles Prepared Using Water-in-Oil Microemulsion[J]. J. Am. Ceram. Soc.,2002,85:2188-2194.
    [105]Y. Lu, Y. Yin, B. T. Mayers, Y. Xia. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach[J]. Nano Lett..2002,2:183-186.
    [106]C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen. A General Method To Coat Colloidal Particles with Silica[J]. Langmuir,2003,19:6693-6700.
    [107]A. P. Philipse, M. P. B. van Bruggen, C. Pathmamanoharan. Magnetic Silica Dispersions:Preparation and Stability of Surface-modified Silica Particles with a Magnetic Core[J]. Langmuir,1994,10:92-99.
    [108]A. Ulman, Formation and Structure of Self-assembled Monolayers[J]. Chem. Rev.,1996,96:1533-1554.
    [109]W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure[J]. J. Am. Chem. Soc.,2005,127:8916-8917.
    [110]D. K. Yi, S. S. Lee, G. C. Papaefthymiou, J. Y. Ying. Nanoparticle Architectures Templated by SiO2/Fe2O3 Nanocomposites[J]. Chem. Mater.,2006,18:614-619.
    [111]P. Tartaj, C. J. Serna. Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites [J]. J. Am. Chem. Soc.,2003,125:15754-15755.
    [112]C. R. Vestal, Z. J. Zhang. Synthesis and Magnetic Characterization of Mn and Co Spinel Ferrite-Silica Nanoparticles with Tunable Magnetic Core[J]. Nano Lett., 2003,3:1739-1743.
    [113]S. I. Nikitenko, Y. Koltypin, O. Palchik, I. Felner, X. N. Xu, A. Gedanken. Synthesis of Highly Magnetic, Air-Stable Iron-Iron Carbide Nanocrystalline Particles by Using Power Ultrasound [J]. Angew. Chem. Int. Ed.,2001, 40:4447-4449.
    [114]J. Geng, D. A. Jefferson, B. F. G. Johnson. Direct Conversion of Iron Stearate into Magnetic Fe and Fe3C Nanocrystals Encapsulated in Polyhedral Graphite Cages[J]. Chem. Commun.,2004,2442-2443.
    [115]V. SalgueiriUo-Maceira, M. A. Correa-Duarte, M. Farle, A. LWpez-Quintela, K. Sieradzki, R. Diaz. Bifunctional Gold-Coated Magnetic Silica Spheres[J]. Chem. Mater..2006,18:2701-2706.
    [116]Y. H. Deng, W. L. Yang, C. C. Wang, S. K. Fu. A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure[J]. Adv. Mater.,2003,15:1729-1732.
    [117]B. L. Frankamp, N. O. Fischer, R. Hong, S. Srivastava, V. M. Rotello. Surface Modification Using Cubic Silsesquioxane Ligands. Facile Synthesis of Water-Soluble Metal Oxide Nanoparticles[J]. Chem. Mater.,2006,18:956-959.
    [118]A. G. Hu, G. T. Yee, W. B. Lin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones[J]. J. Am. Chem. Soc, 2005, 127 12486-12487.
    [119]J. Park, J. Cheon. Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions[J]. J. Am. Chem. Soc, 2001, 123:5743-5746.
    [120]C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu. Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles[J]. J. Am. Chem. Soc, 2004, 126:9938-9939.
    [121]L. X. Chen, T. Li, M. C. Thurnauer, R. Csencsits, T. Rajh. Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations [J]. J. Phys. Chem. B, 2002, 106:8539-8546.
    [122]T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg. Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System[J]. J. Magn. Magn. Mater., 2005, 293:483-496.
    [123]C. C. Berry, A. S. G. Curtis. Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine[J]. J. Phys. D Appl. Phys.. 2003, 36:198-206.
    [124]S. Mornet, S. Vasseur, F. Grasset, E. Duguet Magnetic Nanoparticle Design for Medical Diagnosis and Therapy[J]. J. Mater. Chem., 2004, 14:2161-2175.
    [125]C. Song, X. Ma. New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization[J]. Appl. Catal. B, 2003, 41:207-238.
    [126]C. O. Ania, J. B. Parra, A. Arenillas. On the Mechanism of Reactive Adsorption of Dibenzothiophene on Organic Waste Derived Carbons[J]. A. Surf. Sci., 2007, 253:5899-5903.
    [127]R. T. Yang, A. J. Hernandez-Maldonado, F. H. Yang. Desulfurization of Transportation Fuels with Zeolites under Ambient Conditions[J]. Science, 2003, 301:79-81.
    [128]M. Kobayashi. T. Onaka, Y. Ishi. Desulfuriztion of Alkylated Forms of Both Dibenzothiophenea and Benzothiophene by a Single Bacterial Strain. FEMS[J]. Microbiol. Lett., 2000, 187:123-126.
    [129]H. Mei, B. W. Mei, T. F. Yen. A New Method for Obtaining Ultra-Low Sulfur Diesel Fuel via Ultrasound Assisted Oxidative Desulfurization[J]. Fuel, 2003, 82:405-414.
    [130]S. Yasuhiro, H. Takayuki. Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-Liquid Extraction[J]. Energ. Fuel,2004,18:37-40.
    [131]H. Y. Lu, J. B. Gao, Z. X. Jiang. Oxidative Desulfurization of Dibenzothiophene with Molecular Oxygen Using Emulsion Catalysis[J]. Chem. Commun.,2007, 150-152.
    [132]B. Karimi, M. Ghoreishi-Nezhad, J. H. Clark. Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica Based Tungstate Interphase Catalyst[J]. Org. Lett.,2005,7:625-628.
    [133]C. Komintarachat, W. Trakarnpruk. Oxidative Desulfurization Using Polyoxometalates[J]. Ind. Eng. Chem. Res.,2006,45:1853-1856.
    [134]W. Trakarnpruk, K. Rujiraworawut. Oxidative Desulfurization of Gas Oil by Polyoxometalates Catalysts[J]. Fuel Process. Technol.,2009,90:411-414.
    [135]S. P. Tu, T. F. Yen. The Feasibility Studies for Radical induced Decomposition and Demetallization of Metalloporphyrins by Ultra-Sonication[J]. Energ. Fuel, 2000,14:1168-1175.
    [136]C. Jin, G. Li, X. S. Wang. A Titanium Containing Micro/Mesoporous Composite and its Catalytic Performance in Oxidative Desulfurization[J]. Micropor. Mesopor. Mater.,2008,111:236-242.
    [137]C. M. Starks, Phase-transfer Catalysis. I. Heterogeneous Reactions involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts[J]. J. Am. Chem. Soc.,1971,93:195-199.
    [138]赵地顺,任红威,马四国,刘翠微.催化裂化汽油的相转移催化氧化脱硫反应研究[J].化学学报,2006,64:2086-2090.
    [139]F. M. Collins, A. R. Lucy, C. Sharp. Oxidative Desulphurization of Oils via Hydrogen Peroxide and Heteropolyanion Catalysis[J]. J. Mol. Catal. A,1997, 117:397-403.
    [140]T. Mure, F. Craig, R. Zbigniew. Oxidation Reactivities of Dibenzothiophenes in Polyoxometalate/H2O2 and Formic Acid/H2O2 Systems[J]. Appl. Catal. A,2001, 219:267-280.
    [141]周二鹏.赵地顺.刘会茹,王建龙.李发堂.相转移催化氧化脱除噻吩的应用研究[J].化学工程,2008,136:34-36.
    [142]J. Holger, S. D. Glatzer, L. K. Dorauswamy. Triphase Catalysis:A New Rotating Disk Contactor for Measuring Mass Transfer Coefficients[J]. Chem. Eng. Sci., 1998,53:2431-2449.
    [143]S. L. Regen, Triphase Catalysis[J]. Angew. Chem. Int. Ed.,1979,18:421-429.
    [144]S. Jana, S. K. Ghosh, S. Nath, S. Pande, S. Praharaj, S. Panigrahi, S. Basu, T. Endo, T. Pal. Synthesis of Silver Nanoshell-Coated Cationic Polystyrene Beads: A Solid Phase Catalyst for the Reduction of 4-nitrophenol[J]. Appl. Catal. A, 2006,313:41-48.
    [145]K. B. Chung, M. Tomoi. Synthesis and Phase-Transfer Catalytic Activity of Crown Ethers Bound to Microporous Polystyrene Resins by Oxyethylene Spacers[J]. J. Poly. Sci. Part A:Polymer Chemistry,1992,30:1089-1097.
    [146]Z. T. Wang, L. W. Xu, Z. G Mu, C. G. Xia, H. Q. Wang. Efficient Darzens Condensation Reactions of Aromatic Aldehydes Catalyzed by Polystyrene-Supported Phase-Transfer Catalyst[J]. J. Mol. Catal. A,2004, 218:157-160.
    [147]D. Y. Kim, S. C. Huh Poly(ethylene glycol) Supported Chiral Quaternary Ammonium Salts as Phase-Transfer Catalysts for Catalytic Enantioselective Synthesis of α-Amino Acids[J]. Korean Chem. Soc.,2004,25:347-348.
    [148]R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, G. Tocco. A Poly(ethylene glycol)-Supported Quaternary Ammonium Salt:An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst[J]. Org. Lett.,2000,2:1737-1739.
    [149]L. Li, J. L. Shi, J. N. Yan, H. G. Chen, X. G. Zhao. SBA-15 Supported Quaternary Ammonium Salt:an Efficient, Heterogeneous Phase-Transfer Catalyst[J]. J. Mol. Catal. A,2004,209:227-230.
    [150]S. D. Naik, L. K. Doraiswamy Phase Transfer Catalysis:Chemistry and Engineering[J]. AIChE Journal,1998,44:612-646.
    [151]Y. M. A. Yamada, M. Ichinohe, H. Takahash. Development of a New Triphase Catalyst and Its Application to the Epoxidation of Allylic Alcohols[J]. Org. Lett., 2001,3:1837-1840.
    [152]Y. M. A. Yamada, H. Tabata, M. Ichinohe. Oxidation of Allylic Alcohols, Amines, and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate and Non-Cross-Linked Amphiphilic Copolymer[J]. Tetrahedron.2004,60:4087-4096.
    [153]H. Li, P. Zhang, L. Zhang, T. Zhou, D. D. Hu. Composite Microspheres with PAM Microgel Core and Polymerisable Surfactant/Polyoxometalate Complexes Shell[J]. J. Mater. Chem.,2009,19:4575-4586.
    [154]M. Schwuger, K. Stickdom. Microemulsions in Technical Processes[J]. Chem. Rev.,1995,95:849-864.
    [155]F. M. Menger, A. R. Elrington. Organic Reactivity in Microemulsion Systems[J]. J. Am. Chem. Soc.,1991,113:9621-9624.
    [156]R. J. Bonilla, B. R. James, P. G. Jessop. Colloid-Catalysed Arene Hydrogenation in Aqueous/Supercritical Fluid Biphasic Media[J]. Chem. Commun.,2000, 941-942.
    [157]C. Li, J. B. Gao, Z. X. Jiang, S. G. Wang. Selective Oxidations on Recoverable Catalysts Assembled in Emulsions[J]. Topics in Catalysis,2005,35:169-175.
    [158]X. L. Zheng, J. Y. Jiang, X. Z. Liu, Z. L. Jin. Thermoregulated Phase Transfer Ligands and Catalysis. Ⅲ. Aqueous/Organic Two-Phase Hydroformylation of Higher Olefins by Thermoregulated Phase-Transfer Catalysis[J]. Catal. Today, 1998,44:175-182.
    [159]J. Zhu, A. Robertson, S. C. Tsang. Aqueous Emulsion Containing Fluorous Cobalt Species in Supercritical CO2 for Catalytic Air Oxidation of Toluene [J]. Chem. Commun.,2002,2044-2045.
    [160]K. Manabe, Y. Mori, T. Wakabayashi. Organic Synthesis Inside Particles in Water: Lewis Acid Surfactant-Combined Catalysts for Organic Reactions in Water Using Colloidal Dispersions as Reaction Media[J]. J. Am. Chem. Soc.,2000, 122:7202-7207.
    [161]A. Lambert, P. Plucinshi, I. V. Kozhevnikov. Polyoxometalate-Catalysed Epoxidation of 1-octene with Hydrogen Peroxide in Microemulsions Coupled with Ultrafiltration[J]. Chem. Commun.,2003,714-715.
    [162]R. Neumann, A. M. Khenkin. Peroxometalate Catalyzed Oxidations with Hydrogen Peroxide in Biphasic Reaction Media:Reactions in Inverse Emulsions[J]. J. Org. Chem.,1994,59:7577-7579.
    [163]J. B. Gao, S. G. Wang, Z. X. Jiang, H. Y. Lu, Y. X. Yang, F. Jing, C. Li. Deep Desulfurization from Fuel Oil via Selective Oxidation Using an Amphiphilic Peroxotungsten Catalyst Assembled in Emulsion Droplets[J]. J. Mol. Catal. A, 2006,258:261-266.
    [164]Y. T. Shah, A. B. Pandit, V. S. Moholkar. Cavitation Reaction Engineering [M]. New York:Kluwer/Plenum,1999.
    [165]T. F. Yen, R. D. Gilbert, J. H. Fendler. Membrane Mimetic Chemistry and Its Applications [M]. New York:Plenum Press,1994.
    [166]W. S. Zhu, H. M. Li, X. Jiang, Y. S. Yan, J. D. Lu, L. N. He, J. X. Xia. Commercially Available Molybdic Compound-Catalyzed Ultra-Deep Desulfurization of Fuels in Ionic Liquids[J]. Green Chem.,2008,10:641-646.
    [167]A. Bosmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid. Deep Desulfurization of Diesel Fuel by Extraction with Ionic Liquids[J]. Chem. Commun.,2001,2494-2495.
    [168]S. G. Zhang, Z. C. Zhang. Novel Properties of Ionic Liquids in Selective Sulfur Removal from Fuels at Room Temperatu[J]. Green Chem.,2002,4:376-379.
    [169]C. P. Huang, B. H. Chen, J. Zhang. Desulfurization of Gasoline by Extraction with New Ionic Liquids[J]. Energ. Fuel,2004,18:1862-1864.
    [170]S. G. Zhang, Q. L. Zhang, Z. C. Zhang. Extractive Desulfurization and Denitrogenation of Fuels Using Ionic Liquids[J]. Ind. Eng. Chem. Res.,2004, 43:614-622.
    [171]J. Planeta, P. Karasek, M. Roth. Distribution of Sulfur-Containing Aromatics between [hmim][Tf2N] and Supercritical CO2:a Case Study for Deep Desulfurization of Oil Refinery Streams by Extraction with Ionic Liquids[J]. Green Chem.,2006,8:70-77.
    [172]Y. Nie, C. X. Li, A. J. Sun, H. Meng, Z. H. Wang. Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids[J]. Energ. Fuel, 2006,20:2083-2087.
    [173]J. L. Wang, D. S. Zhao, E. P. Zhou, Z. J. Dong. Desulfurization of Gasoline by Extraction with N-alkyl-pyridinium-based Ionic Liquids[J]. Fuel Chem. Technol., 2007,35:293-296.
    [174]J. Esser. P. Wasserscheid, A. Jess. Deep Desulfurization of Oil Refinery Streams by Extraction with Ionic Liquids[J]. Green Chem.,2004,6:316-322.
    [175]L. Lu. S. F. Cheng, J. B. Gao, G. H. Gao, M. Y. He. Deep Oxidative Desulfurization of Fuels Catalyzed by Ionic Liquid in the Presence of H2O2[J]. Energ. Fuel.2007.21:383-384.
    [176]W. H. Lo. H. Y. Yang. G. T. Wei. One-Pot Desulfurization of Light Oils by Chemical Oxidation and Solvent Extraction with Room Temperature Ionic Liquids[J]. Green Chem.,2003,5:639-642.
    [177]B. N. Heimlich, T. J. Wallace. Kinetics and Mechanism of the Oxidation of Dibenzothiophene in Hydrocarbon Solution:Oxidation by Aqueous Hydrogen Peroxide-Acetic Acid Mixtures[J]. Tetrahedron,1966,22:3571-3579.
    [178]J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids incorporating the Imidazolium Cation[J]. Green Chem.,2001,3:156-164.
    [179]赵地顺,周二鹏,王建龙,尹继丰.离子液体脱除汽油中含硫化合物的研究[J].化学工程,2010,38:1-4.
    [180]D. S. Zhao, R. Liu, J. L. Wang. Photochemical Oxidation-Ionic Liquid Extraction Coupling Technique in Deep Desulphurization of Light Oil[J]. Energ. Fuel,2008, 22:1100-1103.
    [181]D. W. Kim, D. Y. Chi Polymer-Supported Ionic Liquids:Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions including Fluorinations[J]. Angew. Chem. Int. Ed.,2004,43:483-485.
    [182]D. W. Kim, J. H. Jeong, S. T. Lim. Facile Nucleophilic Luorination by Synergistic Effect between Polymer-Supported Ionic Liquid Catalyst and Tert-alcohol Reaction Media System[J]. Tetrahedron,2008,64:4209-4214.
    [183]H. Hisahiro, S. Yoshitaka, I. Kohei Immobilization of Pd(OAc)2 in Ionic Liquid on Silica:Application to Sustainable Mizoroki-Heck Reaction[J]. Org. Lett.,2004, 6:2325-2328.
    [184]F. Shi, Q. H. Zhang, D. M. Li. Silica-Gel-Confined Ionic Liquids:A New Attempt for the Development of Supported Nanoliquid Catalysis[J]. Chem. Eur. J.,2005,11:5279-5288.
    [185]C. DeCastro, E. Sauvage, M. H. Valkenberg. Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene[J]. J. Catal., 2000,196:86-94.
    [186]B. Gadenne, P. Hesemann, J. J. E. Moreau. Supported Ionic Liquids:Ordered Mesoporous Silicas Containing Covalently Linked Ionic Species[J]. Chem. Commun.,2004,1768-1769.
    [187]M. Ruta, I. Yuranov, P. J. Dyson. Structured Ffiber Supports for Ionic Liquid-Phase Catalysis Used in Gas-Phase Continuous Hydrogenation[J]. J. Catal.,2007,247:269-276.
    [188]Y. Yang, C. X. Deng, Y. Z. Yuan. Characterization and Hydroformylation Performance of Mesoporous MCM-41-Supported Water-soluble Rh Complex Dissolved in Ionic Liquids[J]. J. Catal.,2005,232:108-116.
    [189]L. P. Alice, W. F. Hoelderich, L. G. Martin. Dodecylbenzene Transformations: Dealkylation and Disproportionation over Immobilized Ionic Liquid Catalysts [J]. Appl. Catal. A,2009,363:100-108.
    [190]L. L. Lou, K. Yu, F. Ding. An Effective Approach for the Immobilization of Chiral Mn(Ⅲ) Sal en Complexes through a Supported Ionic Liquid Phase[J]. Tetra. Lett.,2006,47:6513-6516.
    [191]A. Bordoloi, S. Sahoo, F. Lefebvre. Heteropoly Acid-Based Supported Ionic Liquid-Phase Catalyst for the Selective Oxidation of Alcohols[J]. J. Catal.,2008, 259:232-239.
    [192]J. Sun, W. G. Cheng, W. Fan. Reusable and Efficient Polymer-Supported Task-Specific Ionic Liquid Catalyst for Cycloaddition of Epoxide with CO2[J]. Catal.Today,2009,148:361-367.
    [193]J. Baudoux, K. Perrigaud, P. J. Madec. Development of New SILP Catalysts using Chitosan as Support[J]. Green Chem.,2007,9:1346-1351.
    [194]A. Wolfson, I. F. J. Vankelecom, P. A. Jacobs. Co-Immobilization of Transition-Metal Complexes and Ionic Liquids in a Polymeric Support for Liquid-Phase Hydrogenations[J]. Tetra. Lett.,2003,44:1195-1198.
    [195]Y. Zhang, Y. W. Zhao, C. G. Xia. Basic Ionic Liquids Supported on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanocrystallites:An Efficient Magnetic and Recyclable Heterogeneous Catalyst for Aqueous Knoevenagel Condensation[J]. J. Mol. Catal. A,2009,306:107-112.
    [196]张学兰,S. N. A. Abdullah, A. Taieb介孔载体嫁接的离子液体催化二氧化碳合成碳酸丙烯酯[J].石油化工.2009,38:1264-1269.
    [197]M. H. Valkenberg, C. deCastro, W. F. Holderich. Friedel-Crafts Acylation of Aromatics Catalysed by Supported Ionic Liquids[J]. Appl. Catal. A,2001, 215:185-190.
    [198]M. H. Valkenberg, C. deCastro, W. F. Holderich Immobilisation of Ionic Liquids on Solid Supports[J]. Green Chem.,2002,4:88-93.
    [199]D. J. Cole-Hamilton. R. P. Tooze. Catalyst Separation, Recovery and Recycling[M].北京:科学出版社,2008.
    [200]P. Virtanen, J. P. Mikkola, T. Salmi. Kinetics of Citral Hydrogenation by Supported Ionic Liquid Catalysts (SILCA) for Fine Chemicals[J]. Chem. Eng. Sci.,2007,62:3660-3671.
    [201]S. Sahooa, P. Kumarb, F. Lefebvrec, S. B. Halligudi. Oxidative Kinetic Resolution of Alcohols Using Chiral Mn-Salen Complex Immobilized onto Ionic Liquid Modified Silica[J]. Appl. Catal. A,2009,354:17-25.
    [202]S. Sahooa, P. Kumarb, F. Lefebvrec, S. B. Halligudi. A Chiral Mn(Ⅲ) Salen Complex Immobilized onto Ionic Liquid Modified Mesoporous Silica for Oxidative Kinetic Resolution of Secondary Alcohols[J]. Tetra. Lett.,2008, 49:4865-4868.
    [203]M. I. Burguetea, E. Garcia-Verdugob, I. Garcia-Villarc, F. Gelata, P. Licencec, S. V. Luisa, V. Sans. Pd Catalysts Immobilized on to Gel-Supported Ionic Liquid-Like Phases(g-SILLPs):A Remarkable Effect of the Nature of the Support[J]. J. Catal.,2010,269:150-160.
    [204]H. Hagiwara, Y. Sugawara, T. Hoshi, T. Suzuki Sustainable Mizoroki-Heck Reaction in Water:Remarkably High Activity of Pd(OAc)2 Immobilized on Reversed Phase Silica Gel with the Aid of an Ionic Liquid[J]. Chem. Commun., 2005.2942-2944.
    [205]X. M. Wang, H. Wan, Mi. J. Han. L. Gao, G. F. Guan. Removal of Thiophene and Its Derivatives from Model Gasoline Using Polymer-Supported Metal Chlorides Ionic Liquid Moieties[J]. Ind. Eng. Chem. Res.,2012,51:3418-3424.
    [206]Z. M. Zhang, L. B. Wu, J. Dong, B. G. Li, S. P. Zhu. Preparation and SO2 Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles[J]. Ind. Eng. Chem. Res.,2009,48:2142-2148.
    [207]K. Jun, N. Yoshinao, U. Sayaka. [γ-1,2-H2SiV2W10O40] Immobilized on Surface-Modified S1O2 as a Heterogeneous Catalyst for Liquid Phase Oxidation with H2O2[J]. Chem. Eur. J.,2006.12:4176-4184.
    [208]石先莹,马文娟,韩晓燕,张文,吕爱凤,魏俊发.固载离子液体刷/过氧磷钨酸盐催化剂催化H2O2选择性氧化硫醚[J].高等学校化学学报,2011,32:2321-2326.
    [209]R. F. Chen, X. Z. Liu, Z. L. Jin. Thermoregulated Phase-transfer Ligands and Catalysis. Part Ⅵ. Two-phase Hydroformylation of Styrene Catalyzed by the Thermoregulated Phase-transfer Catalyst OPGPP/Rh[J]. J. Organomet. Chem., 1998,571:201-204.
    [210]C. Li, Z. X. Jiang, J. B. Gao, Y. X. Yang, S. J. Wang, F. P. Tian, F. X. Sun, X. P. Sun, P. L. Ying, C. R. Han. Ultra-Deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion[J]. Chem. Eur. J.,2004, 10:2277-2280.
    [211]H. Y. Lii, J. B. Gao, Z. X. Jiang, F. Jing, Y. X. Yang, G. Wang, C. Li. Ultra-Deep Desulfurization of Diesel by Selective Oxidation with [C18H37N(CH3)3]4[H2NaPW10036] Catalyst Assembled in Emulsion Droplets[J]. Journal of Catalysis,2006,239:369-375.
    [212]H. Vasile, F. Francois, B. Jacques. Mild Oxidation with H2O2 over Ti-Containing Molecular Sieves-A Very Efficient Method for Removing Aromatic Sulfur Compounds from Fuels[J]. J. Catal.,2001,198:179-186.
    [213]L. C. Caero, E. Hernandex, P. Francisco. Oxidative Desulfurization of Synthetic Diesel Using Supported Catalysts Part I. Study of the Operation Conditions with a Vanadium Oxide Based Catalyst[J]. Catal. Today,2005,107-108:564-569.
    [214]T. M. Rahman, T. Fukuyama, N. Kamata. Low Pressure Pd-catalyzed in Ionic Liquid Using a Multiphase Micro flow System[J]. Chem. Commun.,2006, 21:2236-2238.
    [215]J. van den Broeke, F. Winter, B. J. Deelman. A Highly Fluorous Room Temperature Ionic Liquid Exhibiting Fluorous Biphasic Behavior and its Use in Catalyst Recycling[J]. Org. Lett.,2002,4:3851-3854.
    [216]S. C. Tsang, C. H. Yu, X. Gao, K. Tam. Silica-Encapsulated Nanomagnetic Particle as a New Recoverable Biocatalyst Carrier[J]. J. Phys. Chem. B,2006, 110:16914-16922.
    [217]X. B. Ding, Z. H. Sun, G. X. Wan, Y. Y. Jiang. Preparation of Thermosensitive Magnetic Particles by Dispersion Polymerization[J]. Reactive and Functional Polymers.1998,38:11-15.
    [218]E. B. Denkbas, E. Kilicay, C. Birlikseven. E. Oztiirk. Magnetic Chitosan Microspheres:Preparation and Characterization[J]. Reactive and Functional Polymers,2002,50:225-232.
    [219]L. C. SantaMaria, M. A. S. Costa, F. A. M. Santos, S. H. Wang. M. R. Silva. Preparation and Characterization of Polymer Metal Composite Microspheres[J]. Materials Letters.2006,60:270-273.
    [220]G. Fonnum, C. Johansson, A. Molteberg, S. M(?)rup, E. Aksnes. Characterisation of Dynabeads by Magnetization Measurements and Mossbauer Spectroscopy[J]. J. Magn. Magn. Mater.,2005,293:41-47.
    [221]M. S. Lee, G. D. Lee, S. S. Hong. Photocatalytic Decomposition of p-nitrophenol over Nanosized TiO2/SiO2 Particles Prepared Using the Microemulsion Method[J]. J. Ind. Eng. Chem.,2003,9:556-562.
    [222]N. Sahiner, Colloidal Nanocomposite Hydrogel Particles[J]. Colloid and Polymer Science,2007,285:413-421.
    [223]B. Liu, X. L Yang, H. F. Ji. Synthesis of Hollow Fluorescent Polymeric Microspheres with Movable Magnetic Cores[J]. Polymer International,2010, 59:961-966.
    [224]R. Matsuno, K. Yamamoto, H. Otsuka, A. Takahara. Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization[J]. Chem. Mater.,2003,15:3-5.
    [225]R. A. Frimpong, J. Z. Hilt. Poly(n-isopropylacrylamide)-Based Hydrogel Coatings on Magnetite Nanoparticles via Atom Transfer Radical Polymerization[J].Nanotechnology.2008,19:175101-175107.
    [226]C. Perruchot, M. A. Khan, A. Kamitsi, S. P. Armes. Synthesis of Weil-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP[J]. Langmuir,2001, 17:4479-4481.
    [227]T. von Werne, T. E. Patten. Atom Transfer Radical Polymerization from Nanoparticles:A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living" Radical Polymerizations from Surfaces[J]. J. Am. Chem. Soc.,2001,123:7497-7505.
    [228]Q. Y. Zhou, S. X. Wang, X. W. Fan, R. Advincula. Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles [J]. Langmuir,2002.18:3324-3331.
    [229]H. Mori, D. C. Seng, M. F. Zhang, A. H. E. Muller. Hybrid Nanoparticles with Hyperbranched Polymer Shells via Self-Condensing Atom Transfer Radical Polymerization from Silica Surfaces[J]. Langmuir,2002,18:3682-3693.
    [230]N. J. Campbell, A. C. Dengel, C. J. Edwards. Studies on Transition Metal Peroxo Complexes. Part 8. The Nature of Peroxomolybdates and Peroxotungstates in Aqueous Solutiont[J]. J. Chem. Soc. Dalton. Trans.,1989,1203-1208.
    [231]G. F. Zhang, F. L. Yu, R. Wang. Research Advances in Oxidative Desulfurization Technologies for the Production of Low Sulfur Fuel Oils[J]. Petroleum & Coal, 2009,51:196-207.
    [232]K. Iwasaki, T. Itoh, T. Yamamura. Production Conditions of Acicular Magnetic Metal Nanoparticles for Magnetic Recording[J]. Materials Transactions,2005, 46:1368-1377.
    [233]L. M. Minsk. C. Kotlarchik, G. N. Meyer, W. O. Kenyon. Imidization during Polymerization of Acrylamide[J]. J. Poly. Sci. Part A:Polymer Chemistry,1974, 12:133-140.
    [234]J. D. Kim, I. Honma. Highly Proton Conducting Hybrid Materials Synthesized from 12-phosphotungstic and Hexadecyltrimethylammonium Salt[J]. Solid State Ionics,2005,176:547-552.
    [235]H. Wang, Q. W. Chen, L. X. Sun, H. P. Qi, X. Yang, S. Zhou, J. Xiong. Magnetic-Field-Induced Formation of One-Dimensional Magnetite Nanochains[J]. Langmuir,2009,25:7135-7139.
    [236]J. X. Yang, D. D. Hu, Y. Fang, C. L. Bai, H. Y. Wang. Novel Method for Preparation of Structural Microspheres Poly(N-isopropylacrylamide-co-acrylic acid)/SiO2[J]. Chem. Mater.,2006,18:4902-4907.
    [237]G. L. Li, D. L. Zeng. L. Wang, B. Y. Zong, K.G Neoh, E. T. Kang. Hairy Hybrid Nanoparticles of Magnetic Core, Fluorescent Silica Shell, and Functional Polymer Brushes[J]. Macromolecules,2009,42:8561-8565.
    [238]J. F. Zhu, Y. J. Zhu. Microwave-Assisted One-Step Synthesis of Polyacrylamide-Metal (M= Ag, Pt, Cu) Nanocomposites in Ethylene Glycol[J]. J. Phys. Chem. B,2006,110:8593-8597.
    [239]M. V. Barmatova, I. D. Ivanchikova, O. A. Kholdeeva, A. N. Shmakov, V. I. Zaikovskii. M. S. Melgunov. Magnetially Separable Titanium-Silicate Mesoporous Materials with Core-Shell Morphology:Synthesis Characterization and Catalytic Properties[J]. J. Mater. Chem.,2009,19:7332-7339.
    [240]L. Z. Gao, J. Zhuang, L. Nie, X. Y. Yan. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles [J]. Nature nanotech.,2007,2:577-583.
    [241]J. M. Campos-Martin, M. C. Capel-Sanchez, J. L. G. Fierro. Highly Efficient Deep Desulfurization of Fuels by Chemical Oxidation[J]. Green Chem.,2004, 6:557-562.
    [242]Regulatory Announcement:Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements:US EPA, December 2000.
    [243]F. F. Li, L. J. Song, L. H. Duan, X. Q. Li, Z. L. Sun. A Frequency Response Study of Thiophene Adsorption in Zeolite Catalysts[J]. Appl. Surf. Sci.,2007, 253:8802-8809.
    [244]K. Yazu, Y. Yamamoto, T. Furuya, K. Miki, K. Ukegawa. Oxidation of Dibenzothiophenes in An Organic Biphasic System and Its Application to Oxidative Desulfurization of Light Oil[J]. Energ. Fuel,2001,15:1535-1536.
    [245]A. Srivastav, V. C. Srivastava. Adsorptive Desulfurization by Activated Alumina[J]. J. Hazard. Mater.,2009,170:1133-1140.
    [246]X. Ma, L. Sun, C. Song. A New Approach to Deep Desulfurization of Gasoline, Diesel and Jet Fuel by Selective Adsorption for Ultra-Clean Fuels and for Fuel Cell Applications[J]. Catal. Today,2002,77:107-116.
    [247]B. Wang, J. P. Zhu, H. Z. Ma. Desulfurization from Thiophene by SO42-/ZrO2 Catalytic Oxidation at Room Temperature and Atmospheric Pressure[J]. J. Hazard. Mater..2009,164:256-264.
    [248]A. Nisar, J. Zhuang, X. Wang. Construction of Amphiphilic Polyoxometalate Meostructures as a Highly Efficient Desulfurization Catalyst[J]. Adv. Mater., 2011,23:1130-1135.
    [249]D. J. Monticello, Biodesulfurization and the Upgrading of Petroleum Distillates[J]. Curr. Opin. Biotechnol.,2000,11:540-546.
    [250]B. H. Kim, H. Y. Kim, T. S. Kim, D. H. Park. Selectivity of Desulfurization Activity of Desulfovibrio Desulfuricans M6 on Different Petroleum Products[J]. Fuel Process. Technol.,1995,43:87-94.
    [251]S. F. Song, S. K. Shen, X. A. Cui, D. D. Yao, D. D. Hu. Microhydrogel Surface-Supported Quaternary Ammonium Peroxotungstophosphate as Reusable Catalytic Materials for Oxidation of DBT[J]. React. Funct. Polym.,2011, 71:512-519.
    [252]Y. S. Li, P. B. Wright, R. Puritt, T. Tran. Vibrational Spectroscopic Dtudies of Vinyltriethoxysilane Sol-Gel and Its Coating[J]. Spectrochimica Acta Part A, 2004.60:2759-2766.
    [253]C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot. Vibrational Investigations of Polyoxometalates.2. Evidence for Anion-Anion Interactions in Molybdenum(VI) and Tungsten(VI) Compounds Related to the Keggin Structure[J]. Inorg. Chem.,1983,22:207-216.
    [254]X. B. Zhao, X. Y. Liu, C. X. Ding. Acid-Induced Bioactive Titania Surface[J]. J. Biomed, Mater. Res.,2005,75A:888-894.
    [255]K. V. P. M. Shafi, A. Ulman, A. Dyal, X. Yan, N. L. Yang, C. Estournes, L. Fournes, A.Wattiaux, H. White, M. Rafailovich. Magnetic Enhancement of y-Fe2O3 Nanoparticles by Sonochemical Coating[J]. Chem. Mater.,2002, 14:1778-1787.
    [256]K. Tadanaga, N. Katata, T. Minami. Super-Water-Repellent Al2O3 Coating Films with High Transparency [J]. J. Am. Ceram. Soc.,1997,80:1040-1042.
    [257]R. Noyori, M. Aokib, K. Satoc. Green Oxidation with Aqueous Hydrogen Peroxide[J]. Chem. Commun.,2003,1977-1986.
    [258]D. Huang, Y. J. Wang, L. M. Yang, G. S. Luo. Chemical Oxidation of Dibenzothiophene with a Directly Combined Amphiphilic Catalyst for Deep Desulfurization[J]. Ind. Eng. Chem. Res.,2006,45:1880-1885.
    [259]Y. F. Sha, C. H. Deng, B. Z. Liu. Development of C18-Functionalized Magnetic Silica Nanoparticles as Sample Preparation Technique for the Determination of Ergosterol in Cigarettes by Microwave-Assisted Derivatization and Gas Chromatography/Mass Spectrometry[J]. J. Chromatogr. A,2008, 1198-1199:27-33.
    [260]F. Schuth, K. S. W. Sing, J. Weitkamp. Surface Hydrophobicity or Hydrophilicity of Porous Solids [M]. Handbook of Porous Solids.2008.
    [261]张昌辉,谢瑜,徐旋,赵霞.一种有机硅季铵盐抗菌剂的合成和性能[J].日用化学工业,2008,38:99-102.
    [262]F. Frga, S. Burgo, E. R. Nunez. Nunez. Curing Kinetic of the Epoxy System Badge n= 0/1,2 DCH by Fourier Transform Infrared Spectroscopy (FTIR)[J]. J. Appl. Polym. Sci.,2001.82:3366-3372.
    [263]J. Oh, H. Imai, H. Hirashima. Direct Deposition of Silica Films Using Silicon Alkoxide Solution[J]. J. Non-Cryst. Solids,1998,241:91-97.
    [264]Y. Liu. Y. J. Guan, P. L. Ying, C. Li. FT-IR Spectroscopic Study of the Oxidation of Chlorobenzene over Mn-Based Catalyst[J]. Langmuir,2002,18:6229-6232.
    [265]S. Otsuki, T. Nonaka, N. Takashima. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J]. Energ. Fuel,2000, 14:1232-1239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700