SBS改性沥青的乳化对其应用性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用先SBS化学改性后乳化的方法制备SBS改性乳化沥青,通过针入度、软化点、5℃延度、针入度指数、弹性恢复、贮存稳定性等物理性能的测定,结合荧光显微镜、差示扫描量热、红外光谱等分析手段,以基质沥青、乳化剂结构类型以及改性剂类型等参数的变化为基础,研究乳化对SBS改性沥青的高温性能、低温性能、温度敏感性、弹性恢复能力、热贮存稳定性、微观形态以及微观结构的影响。
     通过工艺条件的优化得到较好的SBS化学改性沥青制备工艺条件和配方为:剪切温度为175℃,剪切时间为1h,剪切速率为3000rpm,剪切后样品在163℃下发育1h,改性剂和稳定剂的加入量分别是3%和0.265%。在以上工艺条件下,SBS在中海油、辽河、加德士及齐鲁等沥青中的分散状态不同,在加德士沥青中分散的最为均匀,最适宜乳化。改性沥青适宜的乳化条件为:改性沥青加热到160~170℃,乳化剂水溶液加热至55℃。
     乳化过程使改性沥青的物理性能减弱,但并未改变其微观结构。在较好的工艺条件和配方下,使用同种乳化剂乳化四种改性沥青(相同改性剂、不同基质沥青)得到相应的改性乳化沥青。与改性沥青相比,对应改性乳化沥青蒸发残留物的软化点、5℃延度、弹性恢复能力和贮存稳定性均有一定程度的下降,这主要未发生化学反应的SBS颗粒聚集的结果,因为荧光显微镜照片上可明显观测到黄绿色颗粒,部分粒径尺寸远大于改性沥青中SBS颗粒的粒径尺寸;DSC测试结果显示总吸热量均稍微上升(辽河改性沥青除外),说明热稳定性略有下降,这和常规性能减弱是相一致的;但FT-IR结果表明乳化过程中沥青和SBS分子之间的交联结构并没有发生化学变化,即改性沥青的微观结构未发生变化。
     不同结构类型乳化剂对改性沥青性能的影响存在很大差异。在较好的工艺条件和配方下,使用三种结构类型乳化剂分别乳化同种改性沥青后得到相应的改性乳化沥青。分析结果表明,使用的酰胺型和咪唑啉型乳化剂(MA-1M和RAI-44)分子在沥青分子间起融合作用,不仅一定程度上提高了改性沥青的物理性能,而且乳化过程中没有改变改性沥青的微观结构;而使用的季铵盐型乳化剂(JFQ-2)在沥青分之间起阻碍作用,不仅使改性沥青的物理性能大幅度降低,甚至一定程度上破坏了SBS和沥青分子之间的交联状态,使改性沥青发生微观结构的改变。
     乳化过程中,SBS改性剂的S/B嵌段比和分子构型对改性沥青的物理性能、热性能影响不同,但对微观结构无明显影响。在较好的工艺条件和配方下,使用同种乳化剂乳化四种改性沥青(相同基质沥青、不同改性剂)得到相应的改性乳化沥青。通过相关性能分析发现,对于不同S/B嵌段比的三种线型SBS改性剂,S/B嵌段比为30/70的SBS改性的沥青乳化前后均表现出较好的物理性能及热稳定性,主要是因为SBS在沥青中得到充分溶胀伸展,两相分散最均匀,形成三维网状结构最致密。对于S/B嵌段比均为30/70而分子构型不同的SBS改性剂,线性SBS改性的沥青乳化前后表现出较好的高温贮存稳定性和相容性,但是星型SBS改性的沥青表现出更好的高温性能、感温性能和弹性恢复能力,这主要是由于线型SBS在沥青中分散的更均匀,而星型SBS的立体结构复杂,分子结构支链较多,分散在沥青中后不易从三维网络中挣脱出来。不论哪种类型SBS改性的沥青,乳化过程中改性沥青的微观结构均没有发生变化,改性剂和沥青分子之间均不是完全交联,交联比率在12%~27%之间,部分交联不会对沥青的性能产生不利影响。
     改性方式不同,改性沥青的性能差异很大。化学改性沥青可大大提高沥青的性能,而物理改性沥青仅能有限的提高沥青的各种指标性能。并且化学改性乳化沥青的颗粒较均匀,而物理改性乳化沥青的颗粒大小很不均匀,粒径范围较宽,颗粒之间相互聚集的趋势更明显。
In this work, the styrene-butadiene-styrene (SBS) modified asphalt emulsions wereprepared as SBS was pre-blended chemically with the asphalt prior to emulsification. On thebasis of base asphalt, emulsifier type and modifier type, the influences of emulsification onthe high-, low-temperature performance and temperature sensitivity, elastic recovery ability,thermal stability, micromorphology and microstructure of SBS modified asphalts were studied,by means of physical tests such as penetration, softening point, ductility at5℃, penetrationindex, elastic recovery, as well as fluorescence microscopy, differential scanning calorimetry(DSC) and fourier transform infrared (FT-IR) spectroscopy.
     By optimization of the technological conditions, the preferable process conditions andformula of SBS chemically modified asphalts were found. The sample was sheared for60minat a shearing rate of3000rpm and then it was put into the oven for complete swelling whenthe modifier and stabilizer contents are3%and0.265%respectively. In that case, thedispersion of SBS particles in Zhonghaiyou, Liaohe, Caltex and Qilu asphalts is quitedifferent, and most uniform dispersion can be observed in Caltex asphalt, which is morepreferable for emulsification. Under the favorable emulsification conditions, the modifiedasphalts were heated to160~170℃and the emulsifier solutions were heated to55℃.
     The physical properties of modified asphalts became inferior during emulsification, butthe microstructure is unchanged. The modified asphalt emulsions were prepared as fourmodified asphalts (prepared by the same modifier and different asphalts) emulsified by thesame emulsifier under the preferable process conditions. Compared to modified asphalt, itdisplays a decline in softening point, ductility at5℃, elastic recovery ability and storagestability for its corresponding emulsion residue. Changes for above mentioned properties arisefrom the aggregation of SBS particles that do not react with asphalt. Evidence about yellowgreen particles which mean size is far more than that of SBS particles in modified asphaltscan be verified on fluorescence microscope images. The DSC results indicate the totalabsorbed heat of modified asphalts increases slightly during emulsification, suggesting aslight decrease in thermal stability. However, FT-IR results suggest the cross-linking structurebetween asphalt and SBS molecules remains unchanged during emulsification, namely the microstructure of modified asphalt is invariable.
     Different emulsifiers have distinct effect on the modified asphalt. The modified asphaltemulsions were prepared as the same modified asphalt emulsified by three emulsifiers underthe preferable process conditions. It is found that amide and imidazoline emulsifiers (MA-1Mand RAI-44) played an agglomerative roll between asphalt molecules, which makes themodified asphalt physical properties improved substantially and the microstructure ofmodified asphalt remains unchanged. On the other hand, the emulsifier that mainly containsquaternary ammonium salts (JFQ-2) exerts an inhibiting action between the asphalt molecules,which results in a great decline in the physical properties of modified asphalt and even causesthe cross-linking state between SBS and asphalt molecules broken so that the microstructureof modified asphalt changes.
     The S/B block ratio and molecular structure of SBS have different effect on the physicalproperties and thermal behavior but no substantial influence on the microstructure of modifiedasphalts during emulsification. The modified asphalt emulsions were prepared as fourmodified asphalts (prepared by the same asphalt and different modifiers) emulsified by thesame emulsifier under the favorable process conditions. The conclusions can be drawnaccording to a series of relative tests. For three linear SBS modifiers with different S/B blockratio, the modified asphalt before and after emulsification displays the optimum physicalproperties and thermal stability when the S/B block ratio is30/70. It results from the SBS isfully swollen in asphalt so that the dispersion of SBS phase in asphalt phase is uniform andthe compact three-dimensional network is formed. On the other hand, for the SBS modifierswith the same S/B block ratio (30/70) and different molecular structure, the asphalt modifiedby the linear SBS before and after emulsification shows more preferable storage stability athigh temperature and compatibility than that modified by star SBS due to more uniformdispersion of linear SBS in asphalt. However, the latter represents better high temperatureproperty, temperature sensitivity and elastic recovery ability, which attribute to thecomplicated three-dimensional and branch structure in star SBS so that the SBS phase isdifficult to apart from asphalt phase after uniformly dispersed. Furthermore, themicrostructure of asphalt modified by the four various modifiers during emulsificationremains unchanged. And the cross-linking reaction is not complete between modifiers and asphalt molecules, revealing the cross-linking percentage between asphalt and modifiermolecules is from12%to27%, which have no harmful impact on the asphalt properties.
     The modified asphalts properties are extremely different if the modification method isdistinct. The properties of modified asphalt can be improved greatly by chemical modificationand less by physical modification. What’s more, the emulsion particles for the former areuniform, whereas the emulsion particles for the latter are substantially nonuniform with abroad range of particles and the particles tend to aggregate.
引文
[1] Airey G. D.. Styrene butadiene styrene polymer modification of road bitumens[J]. Journalof Materials Science,2004,39:951-959.
    [2] Boutevin B., Pietrasanta Y., Robin J.. Bitumen-polymer blends for coatings applied toroads and public constructions[J]. Progress in Organic Coatings,1989,17(3):221-249.
    [3] Morrison G. R., Lee J. K., Hesp S. A. M.. Chlorinated polyolefins for asphalt bindermodification[J]. Journal of Applied Polymer Science,1994,54(2):231-240.
    [4] Lu X., Isacsson U.. Modification of road bitumens with thermoplastic polymers[J].Polymer Testing,2001,20(1):77-86.
    [5] Isacsson, U., Lu, X.. Testing and appraisal of polymer modified road bitumens—State ofthe art[J]. Materials and Structures,1995,28:139-159.
    [6] Sengoz Burak, Isikyakar Giray. Evaluation of the properties and microstructure of SBSand EVA polymer modified bitumen[J]. Construction and Building Materials,2008,22:1897-1905.
    [7] Kok B. V., Colak H.. Laboratory comparison of the crumb-rubber and SBS modifiedbitumen and hot mix bitumen[J]. Construction and Building Materials,2011,25:3204-3212.
    [8]李志军,张秋民,程国香. SBS改性沥青化学交联过程的微观结构和性能研究[J].当代化工,2007,36(4):339-346.
    [9]肖晶晶,郑南翔,宋哲玉.乳化剂对改性乳化沥青性能影响及机理研究[J].郑州大学学报(工学版),2008,29(3):5-9.
    [10]夏朝彬,马波.国内外乳化沥青的发展及应用概况[J].石油与天然气化工,2000,29(2):88-91.
    [11]王仁辉,冯敏哿,程国香.石油沥青产品的开发与应用[J].石油沥青,2002,16(2):1-5.
    [12]谢筱薇,傅和青,黄洪等.季铵盐型阳离子沥青乳化剂的合成方法[J].粘接,2005,26(2):39-40,43.
    [13]马宏义,汪心想,谢宜燕.阳离子沥青乳化剂的合成[J].河南化工,2004,9:6-7,51.
    [14]宋晓燕,杜月宗,赵可等.阳离子沥青乳化剂的合成方法[J].石油沥青,2004,18(1):22-25.
    [15](德)J.法尔勃.日用制品中的表面活性剂[M].张铸勇,赵何为,杨中文译.北京:中国石化出版社,1994:124-127.
    [16]刘素芳,何建云.阳离子沥青乳化剂简述[J].石油沥青,2004,18(6):10-14.
    [17]陈玉成,林榕光.AY-1型阳离子沥青乳化剂的研制[J].贵州大学学报(自然科学版),2002,19(4):346-349.
    [18]李稳宏,王维周,贺建勋.SM型阳离子咪唑啉沥青乳化剂的合成研究[J].石油化工,1995,24(5):328-330.
    [19] Doughty, Joseph B.. Lignin amines as asphalt emulsifiers[P]. US:3871893,1975-3-18.
    [20] Falkehag, Sten I.. Process for producing cationic lignin amines[P]. US:3718639,1973-2-27.
    [21]王松贤,夏少青.季铵盐型阳离子沥青乳化剂的合成及影响因素研究[J].石油沥青,2006,20(1):21-25.
    [22]李艳华,司秀丽,张大志等.RHJ型阳离子沥青乳化剂的研究[J].沈阳工业大学学报,1996,18(增刊):24-27.
    [23]施来顺,张仁哲.Gemini表面活性剂的研究进展[P].石油沥青,2007,21(1):59-64.
    [24] Schilling; Peter. Cationic slurry seal emulsifiers[P]. US:4976784,1990-12-11.
    [25] Schilling; Peter. Cationic bituminous emulsions and emulsion aggregate slurries[P]. US:4597799,1986-7-1.
    [26] Schilling; Peter. High viscosity cationic slow-set and medium-set emulsions[P]. US:6077888,2000-6-20.
    [27] CUSTER R. S.. Polyphenoic surfactant compositions as universal bitumen/wateremulsifiers[P]. US:6103000,2000-8-15.
    [28] Schilling P.. Anionic bituminous emulsions[P]. US:5668197,1997-9-16.
    [29]柴文广.预混法阴离子沥青乳化新技术的应用[J].郑州轻工业学院学报(自然科学版),2000,15(3):10-12.
    [30]张伟民,白涛.改性阴离子乳化沥青的应用[J].黑龙江交通科技,2003,3:39-41.
    [31]陈庆云,苏琦,覃榕山等.论YJ-1中裂阴离子沥青乳化剂的研制成功[J].广西交通科技,1994,19(2):28-30,32.
    [32]孔宪明,刘国祥.乳化沥青及其系列试验法的比较[J].石油沥青,2006,20(2):28-33.
    [33] Isobe, Kazuo, Tamaki, et al. Nonionic emulsifier for asphalt[P]. US:6114418.2000-9-5.
    [34] Martin J. Schick. Nonionic Surfactants. In: Surfactant Science Series[M]. New York:Marcel Dekker INC,1987.
    [35] Isobe; Kazuo. Nonionic emulsifier for asphalt[P]. US:6114418,2000-9-5.
    [36]王长安,吴育良,郭敏怡等.乳化沥青及其乳化剂的发展与应用[J].广州化学,2006,31(1):54-60.
    [37]李学刚,宋丽,张光先.阴、阳离子混合表面活性剂的表面活性—表面张力、润滑能力和乳化能力[J].日用化学工业,1997,3:12-19.
    [38] Rosen M. J., Xi Yuan Hua. Synergism in binary mixtures of surfactants: I. Theoreticalanalysis[J]. Journal of Colloid and Interface Science,1982,90(1):1984-1990.
    [39] Yu Zhijian, Zhao Guoxi. Micellar compositions in mixed surfactant solutions[J]. Journalof Colloid and Interface Science,1993,156(2):325-328.
    [40]陈振东.表面活性剂的协同效应[J].表面活性剂工业,1990,4:21-25.
    [41]常致成.聚合物添加剂、阴阳离子复合表面活性剂在路用沥青中的应用[J].辽宁化工,1995,5:30-32,19.
    [42] Fawcett A. H., McNally T. M.. Dynamic Mechanical and Thermal Study of VariousRubber-Bitumen Blends[J]. Journal of Applied Polymer Science,2000,76:586-601.
    [43] Lu Xiaohu,Isacsson Ulf. Artificial Aging of Polymer Modified Bitumens[J]. Journal ofApplied Polymer Science,2000,76:1811-1824.
    [44]杨京伟,许瑞清,鲍浪. SBS改性道路沥青.北京化工大学学报,1997,24(4):38-44.
    [45] Terrel R. L., Walter J. L.. Modified Asphalt Pavement Materials: The EuropeanExperience[A]. Association of Asphalt Paving Technologists Proc[C],1986,55:482-518.
    [46] King G., King H., Pavlovich R. D.. Additives in asphalt[J]. Journal of the Association ofAsphalt Paving Technologists,1999,68:32-69.
    [47] Japan Modified Asphalt Association. History of polymer modified asphalt (PMA) forroad pavement. http://www.jmaa.jp/en/about_jmaa/history.html.
    [48] Bituminous compositions containing amorphous polypropylene and ethylene-vinylacetate copolymer. USP:3309329.1967.
    [49] Asphalt-ethylene/vinyl acetate copolymer compositions. USP:3442841.1969.
    [50] Modification of asphalt with ethylene-vinyl acetate copolymer to improve properties.USP:3869417.1975.
    [51] Epps J. A., Galloway, B. M. Proceedings of First Asphalt-Rubber User-ProducerWorkshop[C].1980.
    [52] Carlson Douglas D., Zhu Han. Asphalt-rubber an anchor to crumb rubber markets[A].Third Joint UNCTAD/IRSG Workshop on Rubber and the Environmen[C].1999.
    [53] Bahia H. U., Perdomo D., Turner P.. Applicability of Superpave binder testing protocolsto modified binders. Transportation Research Record,1997,1586:16-23.
    [54] X.Lu, Fundamental studies on SBS polymer modified road bitumen. TRITA-LPFR96-17,1996.
    [55] Maldonado P., Mas J., Phung T. K., Process for preparing bitumen-polymer compositions.USP:4145322,1979.
    [56] Newman J. K.. Flexural beam fatigue properties of airfield asphalt mixtures containingstyrene-butadiene based polymer modifiers. Proceedings of the Sixth International RilemSymposium on Performance Testing and Evaluation of Bituminous Materials, Zurich,Switzerland,2003:357-363.
    [57] Yetkin Yildrim. Polymer modified asphalt binders[J]. Construction and BuildingMaterials.2007,21(1):66-72.
    [58] Becker Y., Méndez M. P., Rodríguez Y.. Polymer modified asphalt[J]. VisionTechnologica,2001:9(1):39-50.
    [59] Kim M. G., Button J. W., Park D. W.. Coatings to Improve low-quality local aggregatesfor hot mix asphalt pavements[R]. Texas: Transportation Institute, Texas A&M University,College Station, TX,1999.
    [60] King G., King H., Pavlovich R. D.. Additives in asphalt[J]. Journal of the Association ofAsphalt Paving Technologists,1999,68:32-69.
    [61] Zhang Feng, Yu Jianying. The research for high-performance SBR compound modifiedasphalt[J]. Construction and Building Materials,2010,24(3):410-418.
    [62] Takallou H. B., Hicks R. G., Esch D. C.. Effect of Mix Ingredients On The Performanceof Rubber-Modified Asphalt Mixtures[A]. Transportation Research Record[C].1986:68-80.
    [63] Coplantz J. S., Yapp M. T., Finn F. N.. Review of Relationships between ModifiedAsphalt Properties and Pavement Performance. SHRP-A-631, Strategic Highways ResearchProgram, National Research Council: Washington, DC,1993.
    [64] Roberts F. L., Kandhal P. S., Brown E. R., et al. Hot Mix Asphalt Materials, MixtureDesign and Construction[M],1st ed.. Lanham, MD: NAPA Education Foundation,1991:68-382.
    [65] Airey G. D., Rahman M. M., Collop A. C.. Absorption of bitumen into crumb rubberusing the basket drainage method[J]. The International Journal of Pavement Engineering.2003,4,105-119.
    [66] Cheng G., Shen B., Zhang J.. A Study on the Performance and Storage Stability of CrumbRubber-Modified Asphalts[J]. Petroleum Science and Technology,2011,29(2):192-200.
    [67] Nejad F. M., Aghajani P., Modarres A., et al. Investigating the properties of crumb rubbermodified bitumen using classic and SHRP testing methods[J]. Construction and BuildingMaterials.2012,26(4):481-489.
    [68] Babcock G. B., Statz R. J., Larson D. S.. Study of asphalt binders using lap shearbonds[A]. Annual Conference of Canadian Technical Asphalt Association[C].1998:1-15.
    [69] Airey G. D.. Rheological evaluation of ethylene vinyl acetate polymer modifiedbitumens[J]. Construction and Building Materials,2002,16(8):473-487.
    [70] Luo Wen-qian, Chen Jiu-cun. Preparation and properties of bitumen modified by EVAgraft copolymer[J]. Construction and Building Materials,2011,25(4):1830-1835.
    [71] Krut’ko N. P., Opanasenko O. N., Luksha O. V., et al. Thermal Oxidation Resistance ofBitumen Modified with Styrene–Butadiene–Styrene and Ethylene–Vinyl AcetateCopolymers[J]. Russian Journal of Applied Chemistry,2009,82,(7):1301-1304.
    [72] Fernandes M. R. S.. Rheological evaluation of polymer-modified asphalt binders[J].Materials Research,2008,11(3):381-386.
    [73] John R, David W. The Shell bitumen handbook[M].5th ed. London: Thomas TelfordServices Ltd.,2003:65-77.
    [74] Yetkin Y. Polymer modified asphalt binders[J]. Construction and Building Materials,2007,21(1):66-72.
    [75] BruléB, Brion Y, Tanguy A. Paving Asphalt Polymer Blends: Relationships betweenComposition, Structure and Properties[J]. Journal of the Association of Asphalt PavingTechnologists,1988,57:41-64.
    [76] Gordon DA. Rheological properties of styrene butadiene styrene polymer modified roadbitumens[J]. Fuel,2003,82(14):1709-1719.
    [77]张金升,张银燕,夏小裕等.沥青材料[M].北京:化学工业出版社,2009:231.
    [78] Hernández G., Medina Eva M., Sánchez R., et al. Thermomechanical and RheologicalAsphalt Modification Using Styrene-Butadiene Triblock Copolymers with DifferentMicrostructure[J]. Energy&Fuels,2006,20(6),2623-2626
    [79] Lu, X,; Isacsson, U.; Ekblad, J. Phase Separation of SBS Polymer Modified Bitumens[J].Journal of Materals in Civil Engneering,1999,11(1),51-57.
    [80] Masson J-F., Collins P., Robertson G., J., et al. Thermodynamics, Phase Diagrams, andStability of Bitumen-Polymer Blends[J]. Energy&Fuels,2003,17,714-724.
    [81] wuyanbin.液体SBS胶乳改性剂的研制[EB].http://blog.tranbbs.com/user/wuyanbin/20061122112033.html
    [82] Cai H. M., Wang T., Zhang J. Y., Zhang Y. Z.. Preparation of an SBS Latex-ModifiedBitumen Emulsion and Performance Assessment[J]. Petroleum Science and Technology,2010,28:987-996.
    [83]刘金龙. SBS改性乳化沥青稀浆封层技术在公路养护工程中的应用研究[D].沈阳:东北大学,2003.
    [84] Polacco Giovanni, Muscente Antonio, Biondi Dario, et al. Effect of composition on theproperties of SEBS modified asphalts[J]. European Polymer Journal,2006,42(5):1113-1121.
    [85] Niazi Y., Jalili M.. Effect of Portland cement and lime additives on properties of coldin-place recycled mixtures with asphalt emulsion[J]. Construction and Building Materials,2009,23(3):1338-1343.
    [86] Lee, Dah-yinn. Modification of Asphalt and Asphalt Paving Mixtures by SulfurAdditives[J]. Industrial&Engineering Chemistry Product Research and Development,1975,14(3):171-177.
    [87] Atakan Aksoy, Kurtulu amlioglu, Aüreyya Tayfur,et al.Effects of various additives onthe moisture damage sensitivity of asphalt mixtures[J]. Construction and Building Materials,2005,19(1):11-18.
    [88] Hao, P., Liu, H., Y.. A Laboratory Study of the Effectiveness of Various Additives onMoisture Susceptibility of Asphalt Mixtures[J]. Journal of Testing and Evaluation,2006,34(4):1-8.
    [89] DeRuiter D. J., Fairley D. P.. Method of producing bituminous/polymer emulsion andproduct[P]. US:4722953,1988.
    [90] Gelles, Richard. Water-based emulsions and dispersions of bitumen modified with afunctionalized block copolymer[P]. US:5212220,1993.
    [91] Sylvester Laurence M. Aqueous asphalt emulsions containing liquefied or devulcanizedrecycled rubber[P]. US:6894092,2005.
    [92] Sylvester Laurence M., Stevens Jimmy Lee. Quick-setting cationic aqueous emulsionsusing pre-treated rubber modified asphalt cement[P]. US:7087665,2006.
    [93]虎增福.乳化沥青及稀浆封层技术[M].第一版.北京:人民交通出版社,2001:20-21.
    [94]沈金安,李福晋.改性乳化沥青在高速公路沥青路面维修养护中的应用前景[J].石油沥青,2000,14(1):33-43.
    [95]郑小宏.微表处理技术在我国的应用与研究[J].公路与汽运,2003,2(1):44-45.
    [96]黄硕昌,徐剑,秦永春.微表处技术在我国的研究应用与发展前景[J].石油沥青,18(6):1-5.
    [97]张敬义,高淑美,何宗华.化学改性对SBR胶乳改性乳化沥青性能的影响[J].石油沥青,2007,21(3):24-27.
    [98]朱国强,于炳泽,白文龙等.改性乳化沥青的生产技术及性能研究[J].天津市政工程,2005,2:1-4.
    [99]张丽,赵维.启改性乳化沥青的研究与应用[J].东北公路,1999,22(1):27-30,69.
    [100]何会成,杨奇竹,吴旷怀.乳化SBS改性沥青和SBR改性乳化沥青对比试验[J].石油沥青,2007,21(4):21-24.
    [101]钦兰成,谷财彦.慢裂快凝SBS改性乳化沥青的生产和应用[J].石油沥青,2006,20(2):5-8.
    [102]吴旷怀,杨奇竹,杨海清.新型乳化SBS改性沥青的研制与评价[J].中外公路,2007,27(1):159-162.
    [103]孙大权,吕伟民.反应性SBS改性沥青的研制[J],石油沥青,2002,16(1):30-32.
    [104]吴培熙,张留城.聚合物共混改性[M],北京:中国轻工业出版社,1996.2
    [105]杨奇竹.乳化SBS改性沥青及其微表处技术研究[D].广州:广州大学,2007.
    [106]郭淑华.聚合物改性沥青的相容性及稳定性[J].石油沥青,2000,14(2):6-7.
    [107]吉永海.SBS改性沥青的相容性和稳定性机理[J].石油学报,2002,18(3):23-29
    [108]张德勤.石油沥青的生产与应用[M].北京:中国石化出版社,2001:305-306,332-333.
    [109] Timothy R. Clyne, Mihai O. Marasteanu, Arindam Basu. Evaluation of Asphalt BindersUsed for Emulsions[R]. Minnesota Local Road Research Board,2003:1-62.
    [110] Takamura, K. Comparison of Emulsion Residues Recovered by Forced Airflow andRTFO Drying[A]. AEMA/ARRA/ISSA joint annual meeting,2000:1-17.
    [111] JTJ052-2000,沥青及沥青混合料试验[S].
    [112] SH/T0099.4-1992,乳化沥青蒸发残留物测定法[S].
    [113]常玉艳,裘建军,姚德宏.两种乳化沥青蒸发残留物含量测定法的比较[J].石油沥青,2004,18(6):49-52
    [114] Pfeiffer J. H.; Van Doormal P. M.. The Rheological Properties of Asphaltic Bitumens.Journal of the Institute of Petroleum,1936,22:414-440.
    [115] John R., David W.. The Shell bitumen handbook,5th ed. London: Thomas TelfordServices Ltd.,2003.
    [116] Topal A., Yilmaz M., Kok B. V., et al. Evaluation of rheological and image properties ofstyrene-butadiene-styrene and ethylene-vinyl acetate polymer modified bitumens[J]. Journalof Applied Polymer Science,2011,122(5):3122-3132.
    [117] JTJ039-98,公路改性沥青施工技术规范[S].
    [118] Herrington P. R., Wu Y. Q., Forbes M. C.. Rheological modification of bitumen withmaleic anhydride and dicarboxylic acids[J]. Fuel,1999,78:101-110.
    [119] Giavarini C., Mastrofini D., Scarsella M. Macrostructure and Rheological Properties ofChemically Modified Residues and Bitumens[J]. Energy&Fuels,2000,14:495-502.
    [120] Nejad F. M., Aghajani P., Modarres A.. Investigating the properties of crumb rubbermodified bitumen using classic and SHRP testing methods[J]. Construction and BuildingMaterials,2012,26(1):481-489
    [121]黄卫东,孙立军. SBS改性沥青软化点的衰变[J].中国公路学报,2002,15(2):1-3.
    [122]陈华鑫. SBS改性沥青路用性能与机理研究[D].西安:长安大学,2006.
    [123]肖鹏. SBS物理和化学改性沥青及混合料性能评价对比研究[D].南京:河海大学,2005.
    [124]黄玮,丛玉凤,廖克俭,等.辽河减渣为基质沥青的SBS改性沥青储存稳定性[J].抚顺石油学院学报,2003,23(2):27-30.
    [125]李平,张争奇. SBS改性沥青存储稳定性能测试方法研究[J].河北工业大学学报,2006,35(3):100-103.
    [126] Fu Haiying, Xie Leidong, Dou Daying, et al. Storage stability and compatibility ofasphalt binder modified by SBS graft copolymer[J]. Construction and Building Materials,2007,21(7):1528-1533.
    [127] Larsen D. O., Alessandrini J. L., Bosch A., et al. Micro-structural and rheologicalcharacteristics of SBS-asphalt blends during their manufacturing[J]. Construction andBuilding Materials,2009,23(18):2769-2774.
    [128] Xiang Li, Cheng Jian, Que Guohe. Microstructure and performance of crumb rubbermodified asphalt[J]. Construction and Building Materials,2009,23(12):3586-3590.
    [129]武汉大学化学系.仪器分析[M].北京:高等教育出版社,2001:151-152.
    [130] Cortizo M.S., Larsen D.O., Bianchetto H., et al. Effect of the thermal degradation ofSBS copolymers during the ageing of modified asphalts[J]. Polymer Degradation and Stability,2004,86(2):275-282.
    [131]杨荣臻,肖鹏.基于红外光谱法的SBS改性沥青共混机理分析[J].华东公路,2006(3):78-81.
    [132]水横福,沈本贤,高晋生.1H-NMR和IR对道路沥青老化过程的研究[J].华东理工大学学报,1998,24(4):405-410.
    [133] Qinqin Zhang, Weiyu Fan, Tiezhu Wang, et al. Influence of emulsification on theproperties of styrene-butadiene-styrene chemically modified bitumens[J]. Construction andBuilding Materials,2012,29:97-101.
    [134] GB/T19466.3-2004/ISO11357-3:1999,塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定[S].
    [135]梁乃兴,廉向东.聚合物改性沥青差示扫描量热法(DSC)分析研究[J].西安公路交通大学学报,2000,20(3):29-30,44.
    [136] GB/T19466.2-2004/ISO11357-2:1999,塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定[S].
    [137] Ca avate J., Pagés P., Saurina J., et al. Determination of small interactions in polymercomposites by means of FT-IR and DSC[J]. Polymer Bulletin,2000,44:293-300.
    [138] GB/T19466.4-2004/ISO11357-4:1999,塑料差示扫描量热法(DSC)第4部分:比热容的测定.
    [139]原健安.用DSC分析聚合物对改性沥青性质的影响[J].石油沥青,1997,11(2):23-26.
    [140]郭艳,蒋遥明,李超,等.用DSC研究改性沥青体系的热储存稳定性[J].高分子材料科学与工程,2003,19(4):144-147.
    [141]何兆益,危接来,吴宏宇,等.废胎胶粉改性沥青性能研究[J].重庆交通大学学报(自然科学版),2009,28(6):1025-1027,1059.
    [142] Saddiqui M.N., Alis M. F.. Studies on the aging behavior of the Arabian asphalts[J].Fuel,1999,78:1005-1015.
    [143] Gabriel Hernàndez, Eva M. Medina, Ricardo Sànchez, et al. Thermomechanical andRheological Asphalt Modification Using Styrene-Butadiene Triblock Copolymers withDifferent Microstructure[J]. Energy&Fuels,2006,20(6):2623-2626.
    [144]王涛,才洪美,田奕,等.剪切工艺条件对SBS改性沥青性质的影响[J].石油炼制与化工,2009,40(1):26-27.
    [145]钦兰成,石财彦.慢裂快凝SBS改性乳化沥青的生产和应用[J].石油沥青,2006,20(2):5-8.
    [146]于翠,王亮,李学峰. SBS改性乳化沥青的制备与性能分析[J].山西建筑,2008,34(1):178-179.
    [147]徐幸,程健.阳离子乳化SBS改性沥青的研制[J].石油沥青,2009,23(2):26-29.
    [148]孙大权,吕伟民.反应性SBS改性沥青的研制[J].石油沥青,2002,16(1):30-32.
    [149]魏威,徐春梅.浅谈SBS改性沥青相容性及老化衰减[J].山西建筑,2009,35(31):172~173.
    [150]陈惠敏.关于沥青针入度指数[J].石油沥青,2003,17(4):1-9.
    [151] Cavaliere M.G., Diani E., Dia M.D.. Dynamic mechanical characterization of binderand asphalt concrete[C]. Proceedings of Euroasphalt and Eurobitume congress,1996.
    [152] Isacsson Ulf, Lu Xiaohu. Testing and appraisal of polymer modified road bitumens:State of the art[J]. Materials and Structure.1995,28:139-59.
    [153] Diego O. Larsen, JoséLuis Alessandrini, Alejandra Bosch, et al. Micro-structural andrheological characteristics of SBS-asphalt blends during their manufacturing[J]. Constructionand Building Materials,2009,23:2769-2774.
    [154]原健安.用DSC分析聚合物对改性沥青性质的影响[J].石油沥青.1997,11(2):23-26,5.
    [155]程国香,沈本贤,李海彬,等.沥青硫化改性生成的硫化物类型及其反应机理[J].华东理工大学学报(自然科学版),2008,34(3):319-323.
    [156]朱寒,吴一弦,郭青磊,等.一种新型丁二烯和苯乙烯嵌段共聚物的结构表征[J].北京化工大学学报,2004,31(6):47-51.
    [157] Vlachovicova Zora, Stastna Jiri, MacLeod Daryl, et al. Shear deformation and materialproperties of polymer-modified asphalt[J]. Petroleum&Coal,2005,47(3):38-48.
    [158]沈振.傅里叶红外光谱分析测定尼龙材料中玻纤含量[J].中国测试技术,2004,30(5):69-70,88.
    [159]严家伋.沥青材料性能学[M].北京:人民交通出版社,1990:23-27。
    [160] Hensse M., Meier H.. Tanslated by Richard Dunmur and Martin Murray. Spectroscopicmethods in organic chemistry[M].2th Edition. Thieme Stuttgart New York,2008:44-67.
    [161] Zhou Xiaodong, Shi Huaqiang, Fu Xun, et al. Synthesis and Interfacial Properties ofImidazoline Surfactants[J]. Journal of Dispersion Science and Technology,2007,28:1086-1092.
    [162] Ca avate, J., Pagés, P., Saurina, J., et al. Determination of small interactions in polymercomposites by means of FT-IR and DSC[J]. Polymer Bulletin,2000,44:293-300.
    [163] Larsen, D. O., Alessandrini, J. L., Bosch, A., et al. Micro-structural and rheologicalcharacteristics of SBS-bitumen blends during their manufacturing[J]. Construction andBuilding Materials,2009,23:2769-2774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700