水基火箭推进系统空间性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水基火箭推进系统(water based rocket propulsion system)是一种基于氢氧质子交换膜燃料电池(PEMFC)、质子交换膜水电解池(SPE)以及空间气氢气氧推力器的空间推进系统。相比起传统的空间推进系统,水基火箭推进系统具有高比冲、高比功率和比能量、无污染以及与空间生保系统结合性好等优点。因此,水基火箭推进系统在未来的空间应用中具有巨大的发展潜力。本文综合应用了理论分析、数值模拟、针对性试验等研究方法,从分系统到总系统,逐步研究了水基火箭推进系统的空间性能。
     为研究PEMFC的空间性能,本文首先通过数值模拟,归纳总结了PEMFC的地面常规性能。然后通过研究不同重力环境对PEMFC内部物理化学过程的影响,分析了空间微重力环境可能引起的PEMFC性能变化。结果表明:在地面环境下,PEMFC可以通过合适的放置方式来对合适方向的重力加以利用,提高性能。而在空间微重力环境下则没有重力可以利用,PEMFC性能一般情况下会有所降低。但是,当控制PEMFC工况,使其内部产生的液态水较少,或者保证其入口气体流速足够大时,能够在很大程度上消除空间微重力环境带来的电池性能差异。
     为研究SPE的空间性能,首先通过比较现有的三种典型SPE的结构形式和工作特点,选出了最适合空间应用的SPE—静态供水质子交换膜电解池(SWF-SPE)。根据SWF-SPE的工作特点,建立了针对SWF-SPE的数学模型。基于该模型的计算结果表明:SWF-SPE相比起其它传统的SPE更容易膜失水,使得其极限电流密度较小,最大产气率相对较低。采用薄的质子交换膜作为电解质膜不仅能够提高SWF-SPE的最大产气率,而且能够提高其电解效率。
     为了评估适用于水基火箭推进系统的气氢气氧推力器的空间性能,本文从点火方式、喷注器方案、热防护方法、燃烧室压强以及设计混合比等方面进行了考察。结果表明:采用合适的技术方案的推力器能使水基火箭推进系统的综合实际比冲超过400 s。
     根据各分系统的空间性能研究结果,本文以当前普通PEMFC的性能参数和文献报道的SWF-SPE性能参数作为水基火箭推进系统的电池和电解池系统能够达到的性能指标,以400 s作为该系统的比冲指标,对其整系统的空间性能进行了综合分析。结果表明:水基火箭推进系统的高比冲和高比功率、比能量能够给其带来明显的质量优势。但是,该系统的储箱质量限制、电解池质量限制以及电解功率限制使得其空间应用有一定的局限性。
     为了定量分析水基火箭推进系统的空间性能,本文用该系统代替DFH-4上的传统推进系统,基于DFH-4的实际运行过程,进行了具体的空间任务分析。计算结果表明:执行变轨任务时,水基火箭推进系统适合采用较大推力,较短单次点火时间,多变轨周期的变轨策略;整个空间任务期间,采用水基火箭推进系统能够带来最大706 kg的质量节省,相当于实际DFH-4有效载荷(410 kg)的1.72倍。但是采用该系统变轨时间超过56天。
     另外,本文搭建了分体式水基火箭推进试验系统,并进行了关键性的分系统试验和整系统分析。其中,催化点火气氢气氧推力器分系统的催化点火试验验证了环境温度下气氢气氧推力器催化点火的可行性,并总结了相关的催化点火规律;PEMFC和SPE分系统初步的放电和电解试验获得了该分系统的放电和电解性能;基于试验数据的整系统分析表明该推进系统各分系统之间以及各分系统和空间任务之间存在相互适应和相互制约的关系,针对不同的空间任务,水基火箭推进系统中三个分系统的规模和性能需要进行合理的优化配置。该试验系统初步实现了水基火箭推进系统的概念,为理论研究提供了依据,也为今后进一步研究打下了基础。
Water based rocket propulsion system is a space propulsion system, which contains a proton exchange membrane fuel cell (PEMFC) subsystem, a solid polymer electrolyzer (SPE) subsystem and a space GH2/GO2 thruster subsystem. Comparing to custom propulsion system, water based propulsion system has the advantages of high specific impulse, high power ratio, no pollution and good compatibility with space life sustain system. So, water based propulsion system is promising in the future space applications. In this paper, theoretic analysis, numerical simulation and experimental studies are introduced, and the space performance of water based propulsion, from its subsystems to the whole system, are gradually studied.
     In order to study the space performance of PEMFC, firstly, the conventional performance of PEMFC on the earth is studied. Then, the effect of different gravity situation on the physical and chemistry process of PEMFC is studied. Furtherly, the effect of the micro gravity environment on the PEMFC performance is studied. It is indicated that, on the earth, the gravity can be suitably utilized to improve the PEMFC performance. In space, as no gravity can be utilized, the PEMFC performance will slightly decline. But, the slight decline of the PEMFC performance can be greatly eliminated through controlling the liquid water generation rate inside the PEMFC or providing enough inlet flow velocity for the PEMFC flow channels.
     In order to study the space performance of SPE, the configuration and characteristic of three typical SPE are compared with each other. Static water feed SPE (SWF-SPE) is considered the most suitable SPE to space application. According to the operating characteristics of SWF-SPE, a simulation model is constructed. Based on this model, several results are concluded: the membrane of SWF-SPE is more possibly to dehydrate, which will lead to smaller current density limitation and lower gas producing rate. Thicker proton exchange membrane is in favor of improving the utmost gas producing rate and the electrolyte efficiency of SWF-SPE.
     In order to evaluate the space performance of the GH2/GO2 thruster adapting to water based propulsion system. The aspects of ignition method, fuel spray method, heat resistant method, designed combustion pressure and designed mixture ratio are discussed. It is indicated that well designed thruster can make the real specific impulse of water based propulsion beyond 400 s.
     According to the conclusion mentioned above, the performance of conventional PEMFC and the reported SWF-SPE are used to evaluate the space performance of the whole water based propulsion system. The specific impulse of the whole system is considered as 400 s. In this case, comprehensive analysis of the whole water based propulsion is introduced. It is indicated water based propulsion system can obtain great mass advantages because of its high specific impulse and high power ratio. But, the limitation of its tank mass, SWF-SPE mass and electrolyte power will lead to some limitation of its space application.
     In order to quantitatively analyze the performance of water based propulsion system, the custom propulsion system of DFH-4 is replaced by water based propulsion system. Based on the actual process of DFH-4, a specific space mission is constructed and analyzed. It is indicated that, during the orbit transfer mission, water based propulsion system prefer to the strategy of higher thruster, shorter single step fire and more transfer steps; During the whole space mission, water based propulsion system can save 706 kg mass for the DFH-4 satellite, which is 1.72 times the payload of DFH-4. But the system will increase the orbit change time to more than 56 days.
     On the addition, a separated water based propulsion experimental system is constructed in this paper. Some important subsystem experiments and whole system analysis are introduced. According to The catalytic ignition of the GH2/GO2 thruster based on the thruster subsystem, the feasibility of the GH2/GO2 thruster catalytic ignition is validated. And the law of GH2/GO2 catalytic ignition is obtained. According to the primary power generation experiment of PEMFC subsystem and the primary electrolytic experiment of SPE subsystem, the power generation and electrolytic performance of these two subsystems are obtained. Based on the experiment results, the whole system analysis is conducted. It is indicated the subsystems of the water based rocket propulsion system and the space missions are restraint with each other and need to be adapt to each other. For different space missions, the configuration of the three subsystems needs to be carefully optimized. The experimental system primarily realized the conception of water based rocket propulsion system. It is the accordance and foundation of further studies.
引文
[1]中国航天工业总公司.世界导弹与航天发动机大全[M].北京:军事科学出版社,1999:189-259.
    [2]张晓光.水电解燃料电池火箭推进系统质量估算与性能计算[D].北京:北京航空航天大学,2008.
    [3]黄倬,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社,2000.5.
    [4]江船,燃料电池[M].国防工业出版社,1983.
    [5]郭公毅,燃料电池[M].能源出版社,1984.
    [6]林维明,燃料电池系统[M].化学工业出版社,1996.
    [7] Colleen S.Spiegel.燃料电池设计与制造[M].马欣,王胜开,陈国顺等译.北京:电子工业出版社,2008.
    [8]熊济时.质子交换膜燃料电池的流场结构优化与新型流场研究[D].武汉:武汉理工大学,2006.
    [9]莫志军,朱新坚.质子交换膜燃料电池建模与动态仿真[J].计算机仿真,2006,23(2): 1006-9348.
    [10] Ryan O’Hayre,车硕源,Whitney Colella, Fritz B. Prinz, et al. Fuel Cell Fundamentals[M].北京:电子工业出版社,2007,10.
    [11] Samuel Hollander, Karen Swider-Lyons, Michael Osborn, et al. Water-Based Propulsion for Space Applications[A]. AIAA Paper 2005-4122, July 2005.
    [12] Fred Mitlitsky, Wim de Groot, LeRoy Butler, et al. Integrated Modular Propulsion and Regenerative Electro-Energy Storage System (IMPRESS) for Small Satellites[A]. 10th Annual American Institute of Aeronautics and Astronautics/Utah State University Conference. September 19, 1996.
    [13]王东,张伟,刘向.质子交换膜燃料电池及其空间应用[J].上海航天,2005,1006-1630.
    [14] Newman, D.P., Water electrolysis reaction control system[A]. 7th Liquid Propulsion Symposium[C]. Chemical Propulsion Information Agency Publ. 72,pp 105-114, 1965.
    [15] Stechman, R.C., Campbell, J.G. Water Electrolysis Satellite Propulsion System[R]. The Marquardt Company, Technical Report AFRPLTR-72-132, January, 1973.
    [16] Wim A. de Groot, Lynn A. Arrington, James F. McElroy, et al. Electrolysis Propulsion for Spacecraft Applications[A]. AIAA 97-2948.
    [17] F. Mitlitsky, A.H. Weisberg, P.H. Carter, M.D. Dittman, et al. Water Rocket– Electrolysis Propulsion and Fuel Cell Power[A]. AIAA 99-4609.
    [18] K. Jensen, D. Heinitz, P. Cater, et al. Warm-Gas Thruster Development Using Gaseous Hydrogen and Oxygen with Catalytic Ignition[A]. AIAA 2000-3163.
    [19] Yasunari Hashimoto, Kyoichiro Toki, Tadashi Ishii, el al. Preliminary Experimental Studies of Water-Energy-Cycle Space Propulsion System[A]. AIAA 2004-3491.
    [20] Yasunari Hashimoto, Koji Tanaka, Kyoichiro Toki, et al. Studies of Water-Energy-Cycle Space Propulsion System—Experimental Study[A]. AIAA 2007-5438.
    [21] Edson A. Ticianelli, Charles R. Derouin, Supramaniam Srinivasan. Lovalization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells[J]. J. Electroanal. Chem, 1988, 275-295.
    [22] E. A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan. Methods to Advance Technology of Proton Exchange Membrane Fuel Cells[J]. ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 1988, 135(9):251-275.
    [23] Hinds, G. Performance and Durability of PEM Fuel Cells: A Review[R]. National Physical Laboratory. 2004,9.
    [24] Haile, Sossina M. Fuel Cell Materials and Components[J]. Acta Materialia. 2003, PP.5981-6000.
    [25] Mehta, Viral, Joyce Smith Copper. Review and Analysis of PEM Fuel Cell Design and Manufacturing[J]. Journal of Power Sources. 2003, Vol.114.
    [26] Antoli, E. Recent Developments in Polymer Electrolyte Fuel Cell Electrodes[J]. Journal of Applied Electrochemistry. 2004, Vol. 34.
    [27]任学佑.质子交换膜燃料电池的进展与前景[J].电池, 2003,12. vol.33(6): 395-397.
    [28] Yao K Z, Karan K, McAuley K B, Oosthuizen P, Peppley B, Xie T. A Review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells[J]. Fuel Cells,2004,4: 3-29.
    [29] Kim Junbom, Lee Seong-Min, Srinivasan Supramaniam. Modeling of proton exchange membrane fuel cell performance with an empirical equation[J]. J. Electrochem. Soc. 1995,142(8): 2670-2674.
    [30] Amphlett J C, Baumert R M, Mann R F, Peppley B A, Roberge P R. Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell[J]. J. Electrochem. Soc, 1995,142(1): 9-15.
    [31] Lee J H, Lalk T R, Appleby A J. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks[J]. Journal of Power Source, 1998,70(2): 258-268.
    [32] Pisani L, Murgia G, Valentini M, D’Aguanno B. A new semi-empirical approach to performance curves of polymer electrolyte fuel cells[J]. Journal of Power Sources, 2002, 108: 192-203.
    [33] J del Real Alegandro, Arce Alicia, Bordons Carlos. Development and experimental validation of a PEM fuel cell dynamic model[J]. Journal of Power Sources, 2007,173(1): 310-324.
    [34] Saengrung Anucha, Abtahi Amir, Zilouchian Ali. Neural network model for a commercial PEM fuel cell system[J]. Journal of Power Sources, 2007,172(2): 749-759.
    [35] Nitsche C, Schroedl S, Weiss W, Pucher E. Rapid (practical) methodology for creation of fuel cell systems models with scalable complexity[J]. Journal of Power Sources, 2005,145(2): 383-391.
    [36] Tirnovan R, Gurgea S, Miraoui A, Cirincione M. Surogat model for proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2008, 175(2): 773-778.
    [37] Springer T E, Zawodzinski A T, Gottesfeld S. Polymer electrolyte fuel cell model[J]. J. Electrochem Soc. 1991, 138(8): 2334-2342.
    [38] Djilali Nedjib, Lu Dongming. Influence of heat transfer on gas and water transport in fuel cells[J]. International Journal of Thermal Sciences, 2002, 41(1): 29-40.
    [39] Nguyen T V, Whitte R E, A water and heat management model for proton-exchange-mambrane fuel cells[J]. J. Electrochem. Soc, 1993, 140(8): 2178-2186.
    [40] Gurau V, Liu H T, Kakac S. Two-dimensional model for proton exchange membrane fuel cells[J]. AIchE Journal, 1998,44(11): 2410-2415.
    [41] Zhukovsky K V. Three-dimensional model of oxygen transport in a porous diffuser of a PEM fuel cell[J]. AIChE Journal, 2004, 49(12): 3029-3036.
    [42] Sandip Mazumder, James Vernon Cole. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells—1. Model Predictions Without Liquid Water Transport[J]. Journal of The Electrochemical Society, 2003, 150(11): A1503-A1509.
    [43] Sandip Mazumder, James Vernon Cole. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells—2. Model Predictions With Liquid Water Transport[J]. Journal of The Electrochemical Society, 2003, 150(11): A1510-A1517.
    [44] Joseph W. Pratt, Jacob Brouwer, G. Scott Samuelsen. Performance of Proton Exchange Membrane Fuel Cell at High-Altitude Conditions[J]. Journal of Propulsion and Power, 2007, Vol.23 No.2:437-444.
    [45] Erin Kimball, Tamara Whitaker, Yannis G.Kevrekidis, et al. Drops, Slugs, and Flooding in Polymer Electrolyte Membrane Fuel Cells[J]. AIChE Journal, 2008, 54(5):1313-1332.
    [46] A. J. Appleby, F. R. Foulkes. Fuel cell handbook[M]. New York, 1989.
    [47]杨东乔.国外电动汽车电池展望[J].厦门科技,1998(4):67-70.
    [48]黄镇江,刘风君.燃料电池及其应用[M].北京:电子工业出版社,2005,8:94-99.
    [49]刘璿,微重力环境下质子交换膜燃料电池内两相流体动力学特性研究[D].北京:北京工业大学,2008.
    [50]衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社,2003.
    [51] Y. Sone. M. Ueno, S. Kuwajima. Fuel Cell Development for Space Application: Fuel Cell System in a Closed Enviroment[J]. Journal of Power Sources. 2004, 137(2):269-276.
    [52] F. Barbir, T. Molter, L. Dalton. Efficiency and Weight Trade-off Analysis of Regenerative Fuel Cell as Energy Srotage for Aerospace Applications[J]. International of Hydrogen Energy, 2005, 30(4):351-357.
    [53] Davenport R J, Schubert F H. Space water electrolysis: space station through advanced missions[J]. J. Power Sources, 1991,36:235-250.
    [54] Han S D, Park K B, Rana R, et al. Developments of water electrolysis technology by solid polymer electrolyte[J]. Indian Journal of Chemistry, 2002,41A:245-253.
    [55]张军,任丽彬,李勇辉等.质子交换膜水电解器技术进展[J].电源技术,2008,32(4):261-265.
    [56] Proton Energy Systems Company. Distributed energy systems, on-site hydrogen generation[EB].2007, 10, 16.
    [57] Hamilton Sundstrand Company. Hamilton Sundstrand’s space systems international enterprise[EB]. 2007,10,16.
    [58] Hydrogenics Company. Hydrogenics corporation, hylzer electrolyzer module[EB]. 2007, 10,16.
    [59] Hashimot A, Hashizaki K, Shimizu K. Development of PEM water electrolysis type hydrogen roduction system for WE-NET[A]. The Proceeding of the 14th World hydrogen Energy Conference[C]. 2002.
    [60] William G. Papale, Robert J. Roy. A Water-Based Propulsion System for Advanced Spacecraft[A]. AIAA paper 2006-7240.
    [61] Donovan, R. M, Sovey, J. S, Hannum, N. P. Space Station Propulsion Analysis Study[A]. AIAA Paper 84-1326, 1984.
    [62] Jones, R. E. Space Station Propulsion System Technology[R]. NASA TM-100108, 1987.
    [63] Richter, P. G.., Price, H. G. Proven, Long-Life Hydrogen/Oxygen Thrust Chambers for Space Station Propulsion[R]. NASA TM-88822, 1986.
    [64] Robinson, P. J., Rosenthal, S. E. A Proven, 25-lbf H2/O2 Thruster for Space Station Auxiliary Propulsion[A]. AIAA Paper 86-1560, 1986.
    [65] Robinson, P. J. Space Station Auxiliary Thrust Chamber Technology[R]. NASA CR-185296, 1990.
    [66] Bjorklund R. A., Appel, M. A. Very Low Thrust and Low Chamber Pressure GO2/GH2 Thruster Technology[A]. 1984 JANNAF Propulsion Meeting, Vol.1:29-38.
    [67] Appel, M. A., Schoenman, L., Berkman, D. K. Oxygen/Hydrogen Thrusters for the Space Station Auxiliary Propulsion Systems[A]. 1984 JANNAF Propulsion Meeting, Vol.1:339-350.
    [68] Wooten, J. R., Lansaw, P. T. High Temperature Oxidation-Resistant Thruster Research[R]. NASA CR-185233, 1990.
    [69] Wooten, J. R., Lansaw, P. T. The Enabling Technology for Long-Life, High Performance On-Orbit and Orbit-Transfer Propulsion Systems: High Temperature, Oxidation Resistant Thrust Chambers[A]. 1989 JANNAF Propulsion Meeting, Vol.1:437-443.
    [70] Appel, M. A., et al. Feasibility Demonstration of a 445N High-Performance Rocket Engine[A].1989 JANNAF Propulsion Meeting, Vol.1:445-455.
    [71] Rosenberg, S. D. and Schoenman, L. A New Generation of High Performance Engines for Spacecraft Propulsion[A]. AIAA Paper 91-2039. June 1991.
    [72] Krohn, D. D. Space Shuttle Vernier Thruster Long-Life Chamber Development[A]. AIAA Paper 90-2744. July 1990.
    [73] Mathieu, A. C., Monteuuis, B., Gounot, V. Geramic Matrix Composite Materials for a Low Thrust Bipropellant Rocket Engine[A]. AIAA Paper 90-2054, July 1990.
    [74] Martin J. Chiaverini, J. Arthur Sauer, Scott M. Munson. Laboratory Characerization of Vortex-Cooled Thrust Chambers for Methane/O2 and H2/O2[A]. AIAA 2005-4130, 2005.
    [75]张晓光,王长辉,刘宇.水基推进系统综述[J].火箭推进,2009,35(1):9-15.
    [76]律翠萍.微重力下直接甲醇燃料电池阳极流道内两相流的实验研究[D].北京:北京工业大学,2006.
    [77]赵建福,郭航,叶芳等. DMFC内部气液两相流动与电性能的短时落塔实验研究[J].空间科学学报,2008,28(1):17-21.
    [78]郭航,赵建福,刘璿等.质子交换膜燃料电池短时微重力性能实验研究[J].工程热物理学报,2009,30(8):1376-1378.
    [79]杨辉. SPE水电解用Nafion/PTFE复合膜和CCM的制备及工艺优化[D].辽宁:辽宁师范大学,2003.
    [80]邵志刚,衣宝廉,韩明.可逆式再生氢氧燃料电池初步研究[J].电化学,1998,4(4):444-448.
    [81]衣宝廉.再生氢氧燃料电池(FRC)跟踪研究(一)、(二)、(三),中科院大连化学物理研究所内部资料,1996.
    [82]邵志刚,衣宝廉.可逆式再生氢氧燃料电池双效氧电极初步研究[A].空间站技术学术交流会论文集[C]. 1997:362.
    [83]宋世栋,张华民,马宵平等.一体化可再生燃料电池[J].化学进展,2006,18(10):1375-1380.
    [84]张竹茜,张欣欣,于帆. PEMFC电极孔隙率的优化研究[J].热科学与技术,2006,5(2):106-111.
    [85]张亚,朱春玲.质子交换膜燃料电池二维全电池两相流综合数值模型[J].化工学报,2008,59(1):173-181.
    [86]詹志刚.质子交换膜燃料电池中水传输机理研究[D].武汉:武汉理工大学,2006.
    [87] Berning T, Lu D M, Djilali N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell[J]. J. Power Sources, 2002,(106):284-294.
    [88]常章用,罗志平,张玉霞等. PEMFC Nafion膜内电渗系数和质子电导率的研究[J].电池工业,2009,14(2):97-100.
    [89]詹志刚,黄永,罗志平等. PEMFC液滴阻断流道传输现象研究[J].武汉理工大学学报,2009,31(1):5-8.
    [90] Vladimir Gurau, Michae J Bluemle, Emory S De Castro. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells 1. Wettability(internal contact angle to water and surface energy of GDL fibers)[J]. J Power Sources, 2006, 106:1156-1162.
    [91] Yan Weimon, Wang Xiaodong, Mei Sensin. Effects of operating temperatures on performance and pressure drops for a 256 cm2 proton exchange membrane fuel cell: An experimental study[J]. Journal of Power Source, 2008, 185: 1040-1048.
    [92]刘坤,李湘华,肖金生. PEM燃料电池阴极催化层表面的液态水和氧气分布[A]. 2005 Fluent中国用户大会论文集[C],2005:232-236.
    [93]王姝姗,管蓉,袁园等.质子交换膜电导率的影响因素[J].电池工业,2009,14(3):206-209.
    [94]黄健,詹跃东,王华. PEMFC输出性能的主要影响因素及其评价方法[J].电源技术,2010,134(4):355-359.
    [95]洪振宇.悬垂液滴研究及表面张力和润湿角测定[J].物理实验,2006,26(7):10-18.
    [96] Zhan zhigang, Xiao Jinsheng, Pan Mu, et al. Characterics of droplet and film water motion in the flow channels of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 160:1-9.
    [97] Chris Miller. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel[D]. Britain:University of Victoria, 2009.
    [98]北京航空航天大学.流体力学基础[M]. 2004.10.
    [99] Chen Shizhong, Wu Yuhou. Gravity effect on water discharged in PEM fuel cell cathode[J]. International Journal of Hydrogen Energy, 2010, 35:2888-2893.
    [100] Chen Shizhong, Wu Yuhou. Experimental Investigation of Gravity Effect on Water Management in PEM Fuel Cell[A]. IEEE Vehicle Power and Propulsion Conference. 2008.
    [101]肖宇,明平文,衣宝廉.质子交换膜燃料电池内扩散层/流道表面处液态水滴的运动特征[J].化工学报,2008,59(8):2089-2094.
    [102]吴玉厚,陈士忠,孙红等.重力对PEM燃料电池性能的影响[J].可再生能源,2007,25(2):66-69.
    [103]余意,涂正凯,詹志刚等.重力倾角对PEMFC电堆性能的影响[J].华中科技大学学报(自然科学版),2010, 38(7):32-35.
    [104] Pyoungho Choi, Dmitri G. Bessarabov, Ravindra Datta. A simple model for solid polymer electrolyte (SPE) water electrolysis[J]. Solid State Ionics. 2004,175:535-539.
    [105] S. Sawada, T. Yamaki, T. Maeno, M. Asano, A. Suzuki. Solid polymer electrolyte Water electrolysis system for hydrogen production based on our newly developed membrane, part 1: Analysis of voltage-current characteristics[J]. PROGRESS IN NUCLEAR ENERGY, 2008,50:443-448.
    [106] Meng Ni, Michael K. H. Leung, Dennis Y. C. Leung. Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer[J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,2008,33:4040-4047.
    [107] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8):2334-2342.
    [108]于景荣,衣宝廉,韩明等. Nafion膜厚度对质子交换膜燃料电池性能地影响[J].电源技术,2001,25(6):384-386.
    [109] S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis[J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,2009,34:5986-8991.
    [110] Kazuo Onda, Takahiro Kyakuno, Kikuo Hattori, et al. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis[J]. Journal of Power Sources,2004,46:64-70.
    [111]朱森元.氢氧发动机及其低温技术[M].北京:国防工业出版社,1995.12.
    [112] Brian D. Reek and Steven J. Schneider. Hydrogen/Oxygen Auxiliary Propulsion Technology[R]. AIAA 91-3440. NASA Technical Memorandum 105249.
    [113] K. Jensen, D. Heinitz, R. Humble, P. Carter, et al. Warm-Gas thruster Development Using Gaseous Hydrogen and Oxygen with Catalytic Ignition[A]. AIAA 2000-3136.
    [114]石少平,陆政林,庄逢辰.层板式喷注器在空间飞行器发动机中地应用综述[J].中国空间科学技术,1994,2(1):33-37.
    [115] D. K.休泽尔等.液体火箭发动机现代工程设计[M].朱宁昌等译.北京:中国宇航出版社,2004.
    [116] Andrew E. Turner, William H. Knuth. The Vortex– Cooled Chamber Wall Engine: A Tamed Tornado[R]. Space Times, 2006, 4:10-12.
    [117] Martin J. Chiaverini, Matthew J. Malecki, J. Arthur Sauer, et al. VORTEX COMBUSTION CHAMBER DEVELOPMENT FOR FUTURE LIQUID ROCKET ENGINE APPLICATIONS[A]. AIAA 2002-4149.
    [118] William H. Knuth, Martin J. Chiaverini, Arthur Sauer, et al. Solid– Fuel Regression Rate Behavior of Vortex Hybrid Rocket Engines[J]. Journal of Propulsion and Power, 2002, 18(3):600-609.
    [119] George A. Boyarko, Chih-Jen Sung, Steven J. Schneider. Catalyzed combustion of hydrogen– oxygen in platinum tubes for micro– propulsion applications[A]. Proceedings of the Combustion institute[C]. 2005 30:2481-2488.
    [120] Veser, G. Experimental and Theoretical Investigation of H2 Oxidation in a High-temperature Catalytic Micro-reactor[J]. Chem. Eng. Sci,2001,56:1265-1273.
    [121] Vican, J., Gajdeczko, B. F., Dryer, F. L., et al. Development of a Micro-reactor as a Thermal Source for MEMS Power Generation[J]. Proc. Combust. Instit., 2002,29:909-916.
    [122] Chao, Y. C., Chen, G. B., Hsu, C. J. Leu, T. S., et al. Operational Characteristics of Catalytic Combustion in a Platinum Microtube[J]. Combust. Sci. and Tech., 2004, 176:1755-1777.
    [123] Christopher A. Mento, Chih-Jen Sung, Alfonso F. lbarreta. Catalyzed Ignition of Using Methane/Hydrogen Fuel in a Microtube for Microthruster Applications[J]. JOURNAL OF PROPULSION AND POWER, 2009, 25(6):1203-1210.
    [124]韩先伟.微波等离子推力器真空试验研究与卫星应用探索[D].西安:西北工业大学,2002.
    [125] B. D. Vickers等.最低重量压力容器的材料和设计[J].译自AIAA 90-2349.国外导弹与航天运载器,1992,12:31-39.
    [126]廖少英.液体火箭推进增压输送系统[M].北京:国防工业出版社,2007,4.
    [127]朱明善,刘颖,林兆庄等.工程热力学[M].北京:清华大学出版社,2002.
    [128]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2006.8.
    [129]陈祥宝主编.聚合物基复合材料手册[M].北京:化学工业出版社,2004.5.
    [130]马世俊.导弹与航天丛书—卫星电源技术[M].北京:中国宇航出版社,2005.10.
    [131]塞勃.离解航天:航天学入门[M].张海云,李俊峰译.北京:清华大学出版社,2007.11.
    [132]潘海林,沈岩,魏延明,陈君. DFH-4卫星电推进系统的应用可行性研究[J].火箭推进,2006,32(5):22-27
    [133]张郁.基于电弧推力器的地球同步轨道卫星系统任务设计与优化分析[D].长沙:国防科学技术大学研究生院,2005.4.
    [134]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998.8:108-109.
    [135] Andreas G. Schwer, Ernst Meserschmid. System and mission Optimization of Geostationary Telecommunication Satellites using Arcjet Propulsion Systems[A]. AIAA 97-2713.
    [136]颜庆津编著.数值分析[M].北京:北京航空航天大学出版社,2010,5:182-187.
    [137]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.6:60-75.
    [138]肖峰编著.人造地球卫星轨道摄动理论[M].长沙:国防科技大学出版社,1999.10:1-6.
    [139] Howard D. Curtis. ORBITAL MECANICS FOR ENGINEERING STUDENTS 1[M]. Elsevier Butterworth-Heinemann Linacre House. 2005.
    [140] Howard D. Curtis. ORBITAL MECANICS FOR ENGINEERING STUDENTS 2[M]. Elsevier Butterworth-Heinemann Linacre House. 2005.
    [141] [程国采编著.航天飞行器最优控制理论与方法[M].北京:国防工业出版社,1999.4.
    [142]周明,孙树栋编著.遗传算法原理及应用[M].北京:国防工业出版社,2002.5:1-32.
    [143]檀立新,鲁文东,周亦龙. DFH-4卫星平台氢镍蓄电池组的研制[C].第二十六届全国化学与物理电源学术年会论文集,2004.9.1:253-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700