深部巷道U型约束混凝土拱架力学性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部软岩巷道支护一直是矿山领域的重要难题之一,本文针对深部软岩、构造破碎带等难支护巷道,提出了U型约束混凝土拱架新型支护技术,在通过室内试验和数值模拟对短柱的轴压力学性能等研究的基础上,采用数值模拟与现场试验相结合的方法对拱架的承载能力、受力特性、变形特征及规律等力学性能以及工程应用中拱架的围岩控制效果进行了研究。本文主要进行了如下工作:
     1.短柱力学性能室内试验研究。通过对U型钢以及U型约束混凝土(UCC)短柱进行轴压静力加载试验,对两种类型短柱的失稳破坏模式、承载能力以及变形破坏规律进行了研究,并采用声发射技术对U型约束混凝土短柱中的核心混凝土在加载过程中的破裂机制进行了分析。
     2.短柱力学性能数值模拟研究。建立了U型约束混凝土轴压短柱的非线性有限元模型并验证了其合理性;在此基础上,考虑短柱的封板厚度、混凝土强度两个参数的变化,回归计算得到UCC29短柱的极限承载力计算公式,并建立相应的经济性评价指标,结合截面应力集中系数的分析,为UCC拱架的应用选型提供定量评价指标。
     3.拱架三维有限元数值模拟研究。通过建立U型约束混凝土拱架的加载试验数值模型,研究分析了3类U型约束混凝土拱架在均布加载作用下的承载能力、受力性能、变形特征与规律等特性。同时,结合赵楼煤矿典型地质条件,对U型约束混凝土拱架在围岩压力下的变形特点和失稳破坏模式进行了数值模拟研究,同时根据数值计算结果,通过对3类拱架的承载性能和经济性进行综合对比分析,对U型约束混凝土拱架进行了优选。
     4.拱架现场试验研究。针对赵楼煤矿二集轨道下山巷道特点,设计了U型约束混凝土拱架支护方案,并进行现场试验研究,通过现场监测,对U型约束混凝土拱架的围岩控制效果进行了分析。
Supporting of deep soft rock roadway is always one of the important problems in the field of mining. Aiming at deep soft rock roadway and roadway with structural fracture zone, new support form—U-type confined concrete arch centering was developed, and axial compressive performance of its basic building block (short column) was researched by lab experiment, numerical simulation, on the basis, the mechanical properties of the arch centering, which were carrying capacity, force characteristic, deformation behavior and law and so on, were researched by numerical simulation and field test, and so was the surrounding rock controlling effect of the arch centering. The main work in the thesis includes:
     1. Lab experiment study on mechanical properties of short column. Axial compression experiment of U-shaped steel short columns and U-type confined concrete (UCC) short columns were carried out, by which the instability and failure mode, carrying capacity and law for deformation and failure of the two short columns were researched. And the fracture mechanism of core concrete was researched by acoustic-emission techniques.
     2. Numerical simulation study on mechanical properties of short column. Nonlinear finite element models of UCC short columns under axial load were bulit, of which the correctness was verified by contrastive analysis. On this basis, ultimate bearing capacity computing formula of UCC29short column was obtained by the regression of computed result, which considered the variation of seal plate thickness and concrete strength. With economical efficiency evaluating indicator and stress concentration factor built, quantitative evaluating indicator for UCC arch centering selection was put forward.
     3. Three dimensional finite element modelling study on the arch centering. Load test numerical model of U-type confined concrete arch centering was bulit, carrying capacity, and the force characteristic, deformation behavior and law of three kinds of UCC arch centering under uniform load were analyzed. Based on the typical geology condition of Zhaolou coal mine, the deformation characteristics and the instability and failure mode of UCC arch centering with surrounding rock pressure were researched by numerical simulation. Based on computed result, selective preference of UCC arch centering was conducted by comprehensive analysis of load-carrying properties and economical efficiency of three kinds of UCC arch centerings.
     4. Field test study on the arch centering. Considering the characteristic of Second dip entry in Zhaolou coal mine, UCC arch centering support plan was designed, and the field test was carried out, and the surrounding rock control effect of UCC arch centering was analyzed by field monitoring.
引文
[1]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石理学与工程学报,2010,29(4):649-663.
    [2]谢和平.深部高应力下的资源开采:现状、基础科学问题与展望[C]//科学前沿与末来(第六集).北京:中国环境科学出版社,2002:179-191.
    [3]HOU C J. Review of roadway control in soft surrounding rock under dynamic pressure[J].Joumal of Coal
    Science & Engineering(China),2003,9(1):1-7.
    [4]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2814.
    [5]何满潮.深部的概念体系和工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [6]Diering D.H. Ultra-deep level mining-future requirements[J]. Journal of the South African Institute of Mining
    and Metallurgy,1997,97(6):249-255.
    [7]Vogel M., Andrast H.P. Alp transit-safety in construction as a challenge, health and safety aspects in very deep tunnel construction[J].Tunneling and Under Ground Space Technology,2000,15(4):481-484.
    [8]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996.
    [9]Cleary M. Effects of depth on rock fracture[A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989: 1153-1163.
    [10]Marcak H. The structure of seismic events sequences obtained from Polish deep mines[A]. In:Rockburst and Seismicity in Mines[C]. Rotterdam:A. A. Balkema,1997:107-109.
    [11]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索锚固理论研究[博士学位论文][D].太原:太原理工大学,2005.
    [12]H. Witthaus, N. Polysos, H. Witthaus. Applied geomechanics for support designin German deep coal mines[A]. In:Proceedings of the 25th International Conference on Ground Control in Mining[C]. West Virginia:Morgantown,2006,199-208.
    [13]邢光中,尹鹤峰,孙广义.锚网支护技术在深部返修巷道中的应用[J].矿山压力与顶板管理,1995,3(4):149-154.
    [14]王宏,尹鹤峰,于竞敏,等.深部返修巷道矿压显现规律及其控制[J].黑龙江矿业学院学报,1996,6(2):1-4.
    [15]Bawden,W. F. and Tod, J. D. Optimization of cable bolt ground support using SMART instrumentation. ISRM News J.,2003,7(3):10-16.
    [16]王德田,肖尚红.深部破碎围岩巷道锚喷支护修复技术[J].矿山压力与顶板管理,2005,(1):68-70.
    [17]孔德森,蒋金泉.深部巷道围岩稳定性预测与锚杆支护优化[J].矿山压力与顶板管理,2002(2):29-32.
    [18]孙晓明,何满潮,冯增强.深部松软破碎煤层巷道锚网索支护技术研究[J].煤炭科学技术,2005,33(3):47-50.
    [19]沈荣喜,刘长友.锚网索联合支护在深井综放沿空巷道中的应用[J].煤炭科学技术,2004,32(10):4-6.
    [20]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [21]郑颖人.地下工程锚喷支护设计指南[M]北京:中国铁道出版社,1988.
    [22]李世平.岩石力学简明教程[M].北京:中国矿院出版社,1986.
    [23]Fine.J.有限元法在岩石力学中的应用[M].辛洪波译.北京:冶金工业出版社,1979.
    [24]于学馥,乔端.轴变论和围岩稳定轴比三规律[J].有色金属,1981.(4):9-14.
    [25]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990,(2):1-5.
    [26]陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990,(3):20-24.
    [27]郑雨天.关于软岩巷道地压与支护的基本观点[J].软岩巷道掘进与支护论文集,1985.(5):31-35.
    [28]董方庭.巷道围岩松动圈支护理论锚杆支护[J].锚杆支护,1997,(1):5-9.
    [29]方祖烈.拉压域特征及主次承载区的维护理论[J].世纪之交软岩工程技术现状与展望,北京:煤炭工业出版社,1999:48-51.
    [30]康红普.巷道围岩的承载圈分析[J].岩土力学,1996,17(4):84-89.
    [31]何满潮.软岩工程岩体力学理论研究最新进展[J].长春科技大学学报,2001,31:8-17.
    [32]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62
    [33]何满潮,李春华,王树仁.大断面软岩硐室开挖非线性力学特性数值模拟研究[J].岩土工程学报,2002,24(4):483-486
    [34]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,24(8):1215-1224
    [35]何满潮.软岩变形力学机制与支护对策[J].广西煤炭,1992,(1):20-24.
    [36]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [37]何满潮,胡永光,郭志飚,等.大断面软岩巷道耦合支护技术研究[J].矿山压力与顶板管理,2005,(4):1-3.
    [38]孙晓明,何满潮.深部开采软岩巷道耦合支护数值模拟研究[J].中国矿业大学学报,2005,34(2):166-169.
    [39]严志才.巷道装配式支架及其应用[M].北京:煤炭工业出版社,1982.
    [40]SeohJ.J. Underground mining Praetical rock mechinics[M]. Mining engineering,1991.
    [41]曲兆军.深埋巷道支护设计与稳定性分析[硕士学位论文][D].北京:北京科技大学,2003.
    [42]刘同有.充填采矿技术与应用[M].北京:冶金工业出版社,2001.
    [43]宋恒.金川二矿区深部软岩巷道变形及支护研究[硕士学位论文][D].长沙:中南大学,2009.
    [44]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社,1995.
    [45]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [46]臧德胜,李安琴.钢管砼支架的工程应用研究[J].岩土工程学报,2001,23(3):342-344.
    [47]臧德胜,韦潞.钢管混凝土支架的研究和实验室试验[J].建井技术,2001,22(6):25-28.
    [48]苏林王,臧德胜.钢管混凝土支架构件工作性能的模型试验研究[J].地下空间与工程学报,2005,(1):397-400.
    [49]高延法,王波,王军,等.深井软岩巷道钢管混凝土支护结构性能试验及应用[J].岩石力学与工程学报,2010,29(S1):2604-2609.
    [50]王波.软岩巷道变形机理分析与钢管混凝土支架支护技术研究[博士学位论文][D].北京:中国矿业大学,2009.
    [51]谷拴成,刘皓东.钢管混凝土拱架在地铁隧道中的应用研究[J].铁道建筑2009,(9):56-60.
    [52]谷拴成,刘皓东.径向荷载作用下的钢管混凝土支架研究[J].煤矿安全2010,(1):2-15.
    [53]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31
    [54]张素梅,王玉银.圆钢管高强混凝土轴压短柱的破坏模式[J].土木工程学报,2004,37(9):1-10.
    [55]唐书恒,颜志丰,朱宝存,等.饱和含水煤岩单轴压缩条件下的声发射特征[J].煤炭学报,2010,(1):37-40.
    [56]袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
    [57]杨永杰,陈绍杰,韩国栋.煤样压缩破裂过程的声发射试验[J].煤炭学报,2006,31(5):562-565.
    [58]杨永杰,王德超,陈绍杰,等.基于离散小波分析的灰岩压缩破坏声发射特征实验研究[J].煤炭学报,2010,35(2):213-217.
    [59]吴贤振,刘祥鑫,梁正召,等.不同岩石破裂全过程的声发射序列分形特征试验研究[J].岩土力学,2012,33(12):3561-3569.
    [60]徐速超,冯夏庭,陈炳瑞.矽卡岩单轴循环加卸载试验及声发射特性研究[J].岩土力学,2009,30(10):2929-2934.
    [61]陈晓霞.ANSYS7.0高级分析[M].北京:机械工业出版社,2004.
    [62]刘坤.ANSYS有限元方法精解[M].北京:国防工业出版社,2004.
    [63]尚晓江.ANSYS有限元高级分析方法与范例应用(第二版)[M].中国水利水电出版社,2008.
    [64]阐前华,谭长建,张娟,等.ANSYS高级工程实例分析与二次开发[M].北京:电子工业出版社,2006.
    [65]宋永.精通ANSYS7.0有限元分析[M].北京:清华大学出版社,1999.
    [66]黎志军.带约束拉杆方形钢管混凝土柱轴压和偏压性能的基础研究[硕士学位论文][D].广州:华南理工大学,2002.
    [67]刘威.钢管混凝土局部受压时的工作机理研究[硕士学位论文][D].福州:福州大学,2005.
    [68]Hodge P.G. Diseussion to A New Method of Analyzing Stresses and Strains in Working Hardening Solids[J]. Journal of Applied Mechanics,ASME,1989,24(4):81-87.
    [69]张元植.外包U型钢与混凝土组合梁-方钢管混凝土柱竹点力学性能分析[硕士学位论文][D].济南:山东建筑大学,2011.
    [70]刘鹏程.圆钢管混凝土短柱受压力学性能试验及有限元研究[硕士学:位论文][D].昆明:昆明理上大学,2007.
    [71]杨明.考虑泊松比和弹性模量变化的钢管混凝土有限元分析[硕士学位论文][D].沈阳:沈阳工业大学,2008.
    [72]丁发兴.圆钢管混凝土结构受力性能与设计方法研究[博士学位论文][D].长沙:中南大学,2006.
    [73]江兴敏.钢管混凝与短柱轴压力学性能与温度场研究[硕土学位论文][D].济南:山东大学,2007.
    [74]徐迪.方钢管混凝土短柱轴压性能分析[硕士学位论文][D].武汉:武汉理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700