SAAT法介导铁皮石斛遗传转化及NAC启动子的克隆与载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NSC转录因子是植物特有的、家族成员较多的一类转录因子,其表达受植物发育时期和多种环境因素的诱导,并在植物发育、激素反应以及抗逆性的调控中起重要作用。本实验以铁皮石斛愈伤组织诱导的类原球茎为实验材料,优化超声波处理辅助农杆菌介导铁皮石斛遗传转化体系,使用常规PCR法分离克隆NAC转录因子,再采用染色体步移法获得NAC转录因子5’和3’侧翼序列,通过生物信息学手段对启动子和基因结构进行预测,并构建该启动子的表达载体,从而为进一步研究NAC启动子遗传转化和调控机制提供思路和手段,主要研究结果如下:
     (1)以铁皮石斛愈伤组织诱导的类原球茎为材料,通过PLBs对潮霉素敏感性实验确定潮霉素选择压,结果发现,PLBs对潮霉素较为敏感,10mg/L潮霉素能够有效抑制PLBs的增殖和分化并完全死亡,因此确定10mg/L为潮霉素有效选择压浓度。
     (2)优化SAAT法转化条件,研究超声波预处理时间、根瘤农杆菌侵染时间和共培养时间对GUS瞬时表达率的影响,实验结果表明,使用40KHZ、90W的超声波对预培养2d的PLBs超声处理3min,再用预培养2hr的OD600为0.8-0.95的农杆菌侵染液侵染30min,转入共培养基暗培养5d,所获得的蓝色斑点数为42个/100mg PLBs,而且其除菌也相对容易,其中预培养基、侵染液和共培养基中均含有100μM AS。
     (3)采用常规PCR法和染色体步移法分离克隆出一条长度为6324bp的基因序列,通过分析发现,NAC转录因子在起始密码子和终止密码子之间长度为1611bp,含有3个外显子和2个内含子,在距离终止密码子下游859处和886处分别有一个ployA结构和Stem-loop结构,在TTS上游348处和378处分别为TSS位点和TATA box。5’侧翼序列长度为TSS前3401bp, PlantCare分析表明,该序列不仅含有TATA box、CAAT box等启动子核心顺式作用元件,而且含有光信号反应元件、激发子响应元件、生理节律元件、激素诱导相关的顺式作用元件、生长发育相关顺式元件和逆境肋、迫响应元件,这些顺式元件的存在与NAC转录因子主要生物学功能相符合。
     (4)通过软件预测,确定翻译起始位点上游862bp大小的序列为NAC启动子核心区域,分离克隆该段基因,并构建表达载体,采用冻融法转入到农杆菌中,经双酶切验证证明构建和转化成功。
As a kind of plant specific transcriptional factors. NAC plays an important role in plant development and responses to hormone and stresses, whose expression is regulated by plant developmental stages and various environmental factors. In this study, we optimized sonication-assisted Agrobacterium-mediated transformation system of Dendrobium candidum Wall ex Lindl. for PLBs induced from callus, isolated a NAC transcription factor by PCR and its 5' and 3' flanking sequence by genome walking, predicted the promoter and gene structure of NAC gene through bioinformatic websites and softwares, and then constructed the expression vector of the promoter, which provided the ideas and tools to further research the genetic transformation and regulatory mechanism of NAC promote. The main results were described as follows:
     1. Confirm that 10mg/L is the concentration of selective agent Hyg for PLBs. Through the sensitive experiment of PLBs to hygromycin, it was found that PLBs were very sensitive to hygromycin, and as high as 10mg/L proliferation and differentiation of PLBs were inhibited and completely dead.
     2. An optimal sonication-assisted Agrobacterium-mediated transformation system was obtained by adjusting pre-treatment time of sonication, infection time of Agrobacterium and co-culture time.The results showed that PLBs which pre-cultured 2 days as treated 3 min with sonication of 40KHz,90W were incubated for 30min by Agrobacterium tumefaciens GV3101 which was resuspended in 1/2 MS at OD600 between 0.8-0.95 and pre-cultured 2 hours, and then was placed on the co-culture medium with 5 days co-culture periods. With this transformation system, numbers of blue spots per 100mg PLB was 42, and at the same time A. tumefaciens was sterilized easily.
     3. We isolated a 6324bp length gene sequence by convetiona PCR and genome walking. Sequence analysis showed that NAC transcription factor between initiation codon and termination codon was 1611bp in size, including 3 exons and 2 introns. There were ployA and stem-loop structure at a distance of 859bp and 886bp after termination codon respectively. TSS and TATA box were found at a distance of 348bp and 378bp before TTS respectively.5' flanking sequence was 3401bp in size before TSS and not only contained TATA box, CAAT box and other core promoter element but also included light responsive elements, elicitor responsive elements, stress responsive elements, biorhythm element and other cis-elements. which could help us to understand the biological functions of NAC transcription factor.
     4. The prediction of softwares showed that the size of core promoter region was 862bp before TTS. This gene fragment was isolated and inserted into expression vector, and then the recombinant plasmid was transferred into Agrobaclerium tutmefaciens using freeze-thaw method, and detected successfully by double enzymes digestion.
引文
[1]Chia T F. Chan Y S. Chua N H. Genetic engineering of tolerance to cymbidium msaic virus/Bonham D G. Proceeding of the 13th World Orchid Conference. Auckland: 13WOC Proceedings Trust.1990:284.
    [2]王关林,方宏筠主编.植物基因工程原理与技术.北京:科学出版社,2002:471
    [3]Krens F A, Molendijk L, Wullems G J. In vitro transformation of plant protoplasts with Ti-plasmid [J]. Nature,1982.296:72-74
    [4]薛红卫,卫志明,许智宏.通过PEG法转化甘蓝获得转基因植株[J].植物学报.1997.39(1):28-33
    [5]周冀明,卫志明,许智宏,刘世贵,罗鹏.PEG法介导转化诸葛菜下胚轴原生质体获得转基因植株[J].遗传学报,1996,,23(1):69-76
    [6]Omirull EH S, Abraham M, Golovkin M. Activity of a chimeric promoter with the doubled CaMV35S enhancer element in protoplast-derived cells and transgenic plant of maize [J]. Plant Mol Biol,1993,21:415-428.
    [7]程金水.园林植物遗传育种学[M]。中国林业出版社,2000
    [8]Griesbach R J, Hammond J. Incorporation of GUS gene into orchids through embryo electrophoresis, Acta Hort.1993,336:165-169.
    [9]Griesbac R.J. An improved method for transforming plants through electrophoresis [J]. Plant science.1994,102(1):81-89.
    [10]Zhou G Y, Weng J et ai.Introduction of exogenous DNA into cotton embryos [J]. Meth Enzymol,1983,101:433-481.
    [11]Adelheid R, Kuehnle, Nellie Sugii. Transformation of Dendrobium orchid using particle bombardment of protocorms [J]. Plant Cell reports,1992,11:484-488
    [12]陈志俊,明小天,刘荣维,李毅,陈章良.兰花圆球茎基因枪转化后的GUS基因表达[J].高技术通讯.2000,4:94-96
    [13]Chong Siang Tee, Mahmood Maziah. Optimization of biolistic bombardment parmeters for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter systems [J]. Plant cell, Tissue and Organ Culture,2005,80:77-89
    [14]Nan G L, et al. Dendrobium orchid contain an inducer of Agrobacterium virulencegenes [J]. Physiol Mol Plant Pathol,1997,51:391-399
    [15]Belarmino M M, Mii M. Agrobacterium-mediated genetic transformation of a Phalae-nopsis orchid [J]. Plant Cell Reports.2000,19(5):435-442
    [16]Chai M L. Xu C J. Senthil K K et al. Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens [J]. Scientia Horticulturae. 2002,96(1-4):213-224
    [17]张瑜,向殿军.殷奎德.农杆菌介导的大花蕙兰转ICE 1基因[J].中国农学通报,2008,12(24):40-43
    [18]Yu H. Yang S H, Goh C J. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1 [J]. Plant Cell Reports.2001,20(4):301-305
    [19]李杰.几种名贵洋兰转基因受体系统的建立及遗传转化[D].南京林业大学博士论文.2005
    [20]谢从华,柳俊.植物细胞工程.高等教育出版社.2004年:243-245
    [21]王育花,田继微,肖国樱.根癌农杆菌介导的水稻遗传转化影响因素研究[J].江西农业学报.2006,18(3):60-63
    [22]张妙彬.梁擎中,肖浩,岑鹏,范干群,潘丽晶.农杆菌介导石斛兰遗传转化的研究[J].园艺学报.2008.35(4):565-570
    [23]Liau C H, You S J, Prasad V, Hsiao H H, Lu J C, Yang N S. Chan M T. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid [J]. Plant Cell Reports. 2003,21:993-998
    [24]李杰.几种名贵洋兰转基因受体系统的建立及遗传转化[D].南京林业大学博士论文.2005
    [25]潘才博.蝴蝶兰ACS反义基因的遗传转化及ACS基因的克隆研究[D].福建农林大学硕士论文.2007
    [26]邓艺,曾炳山,赵思东,刘英,裘珍飞,李湘阳,王曙.乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用[J].安徽农业科学.2010.38(5):2229-2232
    [27]Stachel S E, Messens E, Montagu M V. Identification of the signal molecules produced by wounded plant cells that active T-DNA transfer in Agrobacterium tumefa-ciens [J]. Nature,1985,318:624-629
    [28]满若君,卜朝阳,李杨瑞.蝴蝶兰文心兰遗传转化体系的初步研究[J].安徽农业科学,2008,36(8):3129-3131
    [29]卢毕生.石斛兰高效再生体系的建立与抗冻蛋白AFP基因转化的研究[D].华南热带农业大学硕士学位论文.2005
    [30]Men S Zh. Ming X T, Liu R W et al. Agrobacterium-mediated genetic transformation of a Dendrobium orchid [J]. Plant Cell. Tissue and Organ Culture.2003,75(1):63-71
    [31]杨翠芹.秦耀国.刘伟.超声波处理对根癌农杆菌介导转化金钗石斛影响的初步研究[J].四川农业大学学报,2006.12.4(24):455-458
    [32]Bondta D. Eggermont K, Druart P. Agrobacterium-mediated transformation of apple and assessment of factors affecting gene transfer efficiency during early trans-formation steps [J]. Plant Cell Rep.1994,13:587-593
    [33]吴开云.大花蕙兰抗病转基因体系及相关技术研究[D].南京林业大学博士论文,2008
    [34]陈之林,段俊,曾宋君,梁承邺,叶秀粦.原球茎为转化受体的农杆菌介导石斛遗传转化[J].中山大学学报(自然科学版).2007,1(47):86-89
    [35]杨翠芹,秦耀国,罗玉容,刘运权,黎扬辉,刘伟.利用正交设计优化金钗石斛的转化体系[J].西南大学学报(自然科学版).2009.6(31):41-45
    [36]Kei-ichiro Mishiba, Dong Poh Chin, Masahiro Mii. Agrobacterium-mediated trans-formation of Phalaenopsis by targeting protocorms at an early stage after germination [J]. Plant Cell Rep,2005,24:279-303
    [37]丁志山,沃兴德.Biological effects of sonication and application on gene transfer [J].生命科学.1997,9(4):187-189
    [38]张宏,王国英,谢友菊,戴景瑞,许宁.赵南明等.超声波介导法转化玉米愈伤组织及可育转基因植株的获得[J].中国科学(C辑),1997,27(2):162-167
    [39]Trick H N, Finer J J. SAAT:sonication-assisted Agrobacterium-mediated transformation [J]. Transgenic Research.1997,6(5):329-336
    [40]Trick H N, Finer J J. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue [J]. Plant Cell Reports.1998,17(6-7):482-488
    [41]Santarem E R, Trick H N, Essig J S et al. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons:optimization of transient expression [J]. Plant Cell Reports.1998,17(10):752-759
    [42]姜玲,Maoka Tetsuo. Komori Sadao, Fukamachi Hiroshi, Kato Hidenori. Ogawa Kazunori.超声波辅助农杆菌介导CP基因转化番木瓜(Carioca papaya L.)的有效方法[J].实验生物学报,2004,37(3):]89-198
    [43]金双侠.棉花遗传转化体系的优化及突变体的创制[D].华中农业大学.2006
    [44]Bipna Rani Shrestha, Dong Poh Chin, Ken Tokuhara. Masahiro Mii. Efficient production of transgenic plantlets of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies [J]. Plant Biotechnology.2007.24: 429-434
    [45]Malabika Roy Pathak. Riyad Yousif Hamzah. An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas [J]. Plant Cell Tiss Organ Cult.2008.93:65-71
    [46]姚春娜.王亚馥.超声波辅助的发根农杆菌对黄瓜的遗传转化[J].兰州大学学报(自然科学版).2001.37(5):77-81
    [47]刘莉莉,刘丹,丛郁,章镇.超声波辅助对农杆菌介导新红星苹果遗传转化中gus基因瞬时表达的影响[J].江苏农业学报.2008.24(2):213-215
    [48]丛郁.王三红.王红霞,姚泉洪,章镇.超声波辅助农杆菌介导八棱海棠转rolC基因[J].果树学报.2006,23(5):659-663
    [49]Souer E. Houwelingen VA, Kloos D, Mol J. Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries [J]. Cell,1996.85:159-170
    [50]Aida M, Ishida T. Fukaki H. Fujisawa H. Tasaka M. Genes involved in organ separation in Arabidopsis. analysis of the cup-shaped cotyledon mutant [J]. The Plant Cell,1997, 9(6):841-857
    [51]Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors:structurally distinct. functionally diverse [J].Trends in Plant Science.2005.10(2):79-87
    [52]Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashi-zaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Res,2003.10,239-247.
    [53]Hui Shen, Yanbin Yin, Fang Chen, Ying Xu,Richard A. Dixon. A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production [J]. Bioenerg. Res.2009.2:217-232
    [54]Ernst HA, Olsen AN, Skriver K, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J]. EMBO Rep. 2004.5(3):297-303.
    [55]Duval M, Hsieh TF, Kim SY, Thomas TL. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily [J]. Plant Mol Biol,2002,50(2): 237-248
    [56]蔡斌,周军.李成慧.彭日荷,熊爱生.高峰.姚泉洪,章镇.基因组水平上杨树NAC基因家族的初步分析[J].中南林业科技大学学报,2009.29(4):126-131
    [57]Rushton P J, Bokowiec M T, Han SC, Zhang HB, Brannock JF, Chen XF, Laudeman TW, Timko MP. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae [J]. Plant Physiol,2008,147:280-295
    [58]Takada S, Hibara K. Ishida T, Tasaka M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem for mation [J]. Development,2001,128: 1127-1135
    [59]Vroemen C W, Mordhorst A P, Albrecht C. The Cup-shaped Cotyledon 3 gene is required for boundary and shoots meristem formation in Arabidopsis [J]. The Plant Cell, 2003,15(7):1563-1577
    [60]Zhong R, Demura T, YE Z H. SND1, a NAC domain transcript ion fact or, is a key regulator of secondary w all synthesis in fibers of Arabidopsis [J]. T he Plant Cell,2006, 18(11):3158-3170
    [61]冯莹,石斛兰ACS反义基因的遗传转化及离体开花的研究[D].福建农林大学硕士学位论文.2008,4
    [62]高莉萍,包满珠.优化农杆菌介导的月季遗传转化系统的研究[J].北京林业大学学报.2005,7,27(4):60-64
    [63]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002:511
    [64]刘丽艳,张喜梅,李琳,李冰,周丽珍.超声波杀菌技术在食品中的应用[J].食品科学.2006.27(12):778-780
    [65]赵鹏.铁皮石斛体细胞胚胎发生研究.西南交通大学硕士学位论文[D],2004,5
    [66]http://www.takara.com.cn
    [67]颜松,樊晓霞,茆灿泉,李迪强,王万军.铁皮石斛RAPD反应体系的优化[J].现代商贸工业,2009,11:264-266
    [68]Rouster J, Leah R, Mundy J, et al.. Identification of a methyljasmonate responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain [J]. Plant J, 1997.11(3):513-523
    [69]Ohnishi T, Sugahara S,Yamada T. el al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice [J]. Genes Genet.Syst,80:135-139
    [70]Fujita M, Fujita Y, Maruyama K. Seki M, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J,2004,39:863-876
    [71]Hegedus D, Yu M, Baldwin D. Gruber M. A sharpe molecular characterization of brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress [J]. Plant Mol. Biol,2003,53:383-397
    [72]张海文.谢丙炎,卢向阳.杨宇红,陈琪,黄荣峰.拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件[J].科学通报,2004.49(23):2444-2448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700