水稻秸秆降解放线菌的分离鉴定及其降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水稻秸秆资源十分丰富,利用微生物使其降解转化为饲料、能源和化工原料对于解决目前面临的环境污染和能源危机具有重大现实意义。
     在黑龙江省3个水稻主产区采集27份土壤样品,通过刚果红染色平板初筛;液体摇瓶发酵纤维素酶活测定;水稻秸秆失重率测定;半纤维素和木质素酶活性检测等多重筛选,得到一株高产纤维素酶、对水稻秸秆有较好降解效果的放线菌菌株C-5,该菌株同时具有多种木质纤维素酶活性。通过对该菌株的形态特征、培养特征和生理生化特征观察;16S rDNA序列测定及系统发育分析,将菌株C-5鉴定为灰略红链霉菌(Streptomyces griseorubens)。
     测定了灰略红链霉菌C-5对水稻秸秆降解过程中,水稻秸秆主要成分含量的变化和纤维素酶活、半纤维素酶活的连续变化。发酵后,水稻秸秆细胞壁的主要成分得到了有效降解,粗纤维含量明显降低;纤维素、半纤维素酶活均可以在大部分发酵时间内保持在相对较高水平。
     采用红外光谱(FTIR)法研究灰略红链霉菌C-5对水稻秸秆的生物降解过程,分析表明,水稻秸秆中含有碳水化合物、木质素和有机硅化物等成分,降解后生成了碳酸盐、硅酸盐和多糖类物质;羧基在发酵过程中以羧酸盐形式存在,一些无机阳离子形成碳酸盐。
     对水稻秸秆木质素生物降解过程的红外光谱分析表明,灰略红链霉菌C-5对水稻秸秆木质素的降解主要是氧化作用,发生在木质素单元结构侧链Cα的氧化及Cα-Cβ键的氧化断裂;脂肪醚键发生断裂,苯环侧链的短链脂肪烃被降解;甲氧基含量明显增加,氢醌类物质形成;愈疮木基型木质素的降解程度高于紫丁香基型木质素的降解程度。
     利用扫描电镜观察水稻秸秆生物降解过程中的组织结构变化,观察结果表明,在生物降解初期,菌丝通过水稻秸秆端部侵入内部,并在薄壁细胞的腔内繁殖,薄壁细胞开始分解,蜡质-硅化层明显变薄;当菌体大量繁殖后,维管束组织和部分厚壁组织开始降解;降解试验结束时,水稻秸秆的完整结构被严重破坏,薄壁组织被全部降解,蜡质-硅化层大部分也被降解破坏,只剩下部分高度木质化的表皮组织。
     研究了不同培养条件对灰略红链霉菌C-5产纤维素酶的影响。结果表明,碳源浓度、氮源浓度、pH和培养温度对CMCase活力的影响均为极显著,碳源浓度是影响CMCase活力的关键性因子;较高浓度的碳源对合成纤维素酶更为有利,外加有机氮源豆饼粉对产纤维素酶的促进作用相对较大,较低浓度的氮源比较高浓度的氮源更能促进纤维素酶的合成;31℃和pH7.5是产酶最佳温度与酸碱度;菌株C-5在最佳产酶条件下的最佳产酶时间为发酵的4~14天。
The rice straw resources are very abundant in China. Its degradation and transformation into feed, energy and chemical raw materials by microorganisms has great realistic meaning of the solution to environmental pollution and energy crisis.
     A streptomycete strain C-5 which producing high cellulase activities was selected by screening plate stained with congo red, determination of cellulase activities in liquid culture, determination of rice straw weight loss rate, detection of xylanase and ligninase activity from 27 soil samples which collected from three major rice-producing areas in Hei longjiang province. And it has great potential on the degradation of rice straw. This strain has multi-lignocellulase activities simultaneously. By studying the morphology, cultural characteristics, physiological and biochemical propertices, 16S rDNA and phylogenetic tree, strain C-5 was identified as Streptomyces griseorubens.
     Degradation rates of the main components of rice straw and the continuous variation of cellulase activities and xylanase activities were determined during the rice straw fermentation by S. griseorubens C-5. The cell wall composition of rice straw was degradated effectively and the content of crude fiber was obviously reduced after cultivation. The results showed that the cellulase and xylanase activities could still maintain relative higher level in most of the fermentation time.
     Fourier transform infrared spectroscopy (FTIR) was used to study the biodegradation process of rice straw. The analysis on the FTIR of rice straw showed that the carbohydrates, lignin and silica were degraded effectively after fermentation. Some of carbonate, silicate and polysaccharide were generated. Carboxyl group in the form of carboxylate in the process of degradation. Some inorganic cations were formed carbonate.
     The biodegradation process of rice straw lignin by S. griseorubens C-5 was investigated by FTIR. The results demonstrated that the main function in rice straw lignin biodegradation by S. griseorubens C-5 was oxidation which occurred on side-chain Cαoxidation of lignin monomer and the oxidative cleavage of Cα-Cβbond. Aliphatic ether bond was breaking and some short chain aliphatic hydrocarbons were degraded. The methoxyl content was significantly increased and some hydroquinone substances was formed. The degradation degree of the guaiacyl type lignin was higher than the syringic type lignin by S. riseorubens C-5.
     Histological changes of rice straw were observed by scanning electron microscope during fermentation by S. griseorubens C-5. The results showed that in the initial stage of biodegradation, hypha invaded in the rice straw through the end of the rice straw and were already fixed on the parenchyma of rice stem. The parenchyma of rice stem began to degrade and the wax-silicide layer was thinner significantly at the early stage of degradation. The vascular bundles and sclerenchyma began to degrade after the numerous actinomycetes colonized. The rice fragments had lost their intact structures and the parenchyma had completely disappeared and the cuticle wax and silica layer was destroyed partially after fermentation. The remaining tissues in rice stem was the part epidermal tissue which was lignified in high degree.
     Different culture conditions on production of cellulase of S. griseorubens C-5 were investigated. The results showed that the carbon concentration, nitrogen concentration, pH and incubation temperature were significant on the activity of CMCase. Carbon concentration was the key factor which affecting CMCase activity. The higher concentrations of carbon sources was more favorable to the synthesis of cellulose. Organic nitrogen soybean could promote the synthesis of cellulase production. The lower concentrations of nitrogen could enhance the cellulose synthesis than the higher concentrations of nitrogen. 31℃and pH 7.5 was the optimal temperature and pH of cellulose synthesis. The optimal time of the cellulase production of S. griseorubens C-5 was between 4~14 fermentation days in the optimal cellulase production condition.
引文
1杨游.秸秆资源的开发现状与趋势.饲料资源开发. 2006, (196): 27~29
    2史雅娟,吕永龙.农业废弃物的资源化利用.环境科学进展. 1997, 7(6): 332~337
    3 S. Malherbe, T. E. Cloete. Lignocellulose Biodegradation: Fundamentals and Applications. Rev Environ Sci Biotech. 2002, (1): 105~114
    4 M. Thomas Wood, V. Garcia-Campayo. Enzymology of Cellulose Degradation. Biodegradation. 1990, (1): 47~161
    5 J. Y. Park, R. Shiroma, Al-Haq MI, et al. A Novel Lime Pretreatment for Subsequent Bioethanol Production from Rice Straw-calcium Capturing by Carbonation (CaCCO) Process. Bioresour Technol. 2010,101(17): 6805~6811
    6 K. N. Niladevi, R. K. Sukumaran and P. Prema. Utilization of Rice Straw for Laccase Production by Streptomyces psammoticus in Solid-State Fermentation. J Ind Microbiol Biotechnol. 2007, 34(10): 665~674
    7金显春.直接降解稻草秸秆的菌株筛选及其发酵过程研究.安徽农业科学. 2006, 34(20): 5144~ 5145
    8沈恒胜.稻草品质促变因素的系统评价与秸秆种类品质比较.福建农业学报. 2003, 13(4): 222~226
    9杭怡琼.白腐真菌对水稻秸秆的降解及其有关酶活性的变化.菌物系统. 2001, 20(3): 403~407
    10 A.Agbagla-Dohnani. Effect of Silica Content on Rice Straw Ruminal Degradation. J Agr Sci. 2003, (140): 183~192
    11徐勇.水稻秸秆接力处理过程中的红外光谱研究.光谱学与光谱分析. 2004, 24(9): 1050~1054
    12 A. Agbagla-Dohnani. Microbial Degradation of Rice and Barley Straws in the Sheep Rumen and the Donkey Caecum. J Sci Food Agr. 2003, 83(12): 383~394
    13 O. Faix, D. M. Michael and T. K. KirK. Degradation of Gymonsperm (Guaiacyl) vs. Angiosperm (syringyl/guaiacyl) Lignins by Phanerochaete Chrysosporium, Holztorschung. 1985, (39): 203~208
    14付时雨.白腐菌Panus conchatus降解水稻秸秆木质素机理研究. (一)低分子木质素降解产物各组分的分离及特征.纤维素科学与技术. 1997, 5(1): 21~27
    15曹稳根,高贵珍,方雪梅等.我国农作物秸秆资源及其利用现状.宿州学院学报. 2007, 22(6): 110~126
    16毕于运.中国秸秆资源数量估算.农业工程学报. 2009, 25(12): 211~217
    17高利伟,马林,张卫峰等.中国作物秸秆养分资源数量估算及其利用状况.农业工程学报. 2009, 25(7): 173~179
    18靳胜英,张礼安,张福琴.可用于生产燃料乙醇的秸秆资源分析.可持续发展. 2008, (9): 51~55
    19张燕.中国秸秆资源“5F”利用方式的效益对比探析.中国农学通报. 2009, 25(23): 45~51
    20陈苇,卢婉芳,段彬伍等.稻草还田对晚稻稻田甲烷排放的影响.土壤学报. 2002, 39(2): 170~176
    21徐华,蔡祖聪,贾仲君等.前茬季节稻草还田时间对稻田CH4排放的影响.农业环境保护. 2001, 20(5): 289~292
    22 W. Sabine, S. Stephan and C. Ralf. Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Applied and Environmental Microbiology. 2001, 67(3): 1318~1327
    23 R. M. Liu, S. N. Huang, C. N. Lin, et. al. Methane Emission from Fields with Three Various Rice Straw Treatments in Taiwan Paddy Soils. Journal of Environmental Sci Health B. 2003, 38(4): 511~527
    24 F. Lu, X. K. Wang, B. Han, et al. Modeling the Greenhouse Gas Budget of Straw Returning in China: Feasibility of Mitigation and Countermeasures. Ann N Y Acad Sci. 2010, (1195): 107~130
    25韩鲁佳,闫巧娟,刘向阳等.中国农作物秸秆资源及其利用现状.农业工程学报. 2002, (5): 87~91
    26钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学. 2003, 25(4): 62~67
    27国家统计局.中国统计年鉴.北京:中国统计出版社. 1999, (9): 395
    28强健.秸秆资源利用方式与开发对策.节能技术. 2006, 24(6): 564~572
    29张承龙.农业废弃物资源化利用技术现状及其前景.中国资源综合利用. 2002, (2): 14~16
    30高金权.木腐蕈菌对稻草基质的降解特性研究.西南大学硕士论文.2006: 5
    31 M. Antongiovanni. Variability in Chemical Composition of Straws. Options Mediterraneennes. 1991, (16): 49~53
    32 O. Theander, P. Aman. In Straw and Other Fibrous By-products as Feed. Ed. Sundstal and Owen. Elsevier. Amsterdam. 1984, 45~78
    33 L. S. Wang, Y. Z. Zhang, P. J. Gao, et al. Changes in the Structural Propertiesand Rate of Hydrolysis of Cotton Fibers During Extended Enzymatic Hydrolysis. Biotechnol Bioeng. 2006, 93(3): 443~456
    34 S. Anna, M. Ria and E. Lars. Ethanol Production from Hexoses, Pentoses and Dilute-acid Hydrolyzate by Mucorindicus. FEMS Yeast Res. 2005, (5): 669~676
    35 M. H. Gold, M. Alic. Molecular Biology of the Lignin-degradation Basidiomycete Phanerochaete Chrysosporium. Microbiol Rel. 1993, 57(3): 605~622
    36陶用珍,管映亭.木质素的化学结构及其应用.纤维素科学与技术. 2003, 11(1): 42~55
    37蒋挺大.木质素.化学工业出版社. 200l: 58~60
    38 T. Kent Kirk, H. Takayoshi and H. Chang. Lignin Biodegradation Microbiology, Chemistry, and Potential Applications. Boca Raton, Florida: CRC Press. 1980
    39阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学. 1995, 7(5): 22~25
    40 P. Biely, D. Mislovicova and R. Toman. Solube Chromogenic Substrates for the Assay of Endo-1.4-xylanases and Endo-1.4-glucanases. Anal Biochem. 1985, (144): 141~146
    41 H. Shen, F. Sundstol and D. Ni. Study on Untreated and Urea-treated Rice Straw from Three Cultivation Seasons:2, Evaluation of Straw Quality through In Vitro Gas Production and In Sacco Degradation Measurements. Anim Feed Sci Tech. 1998, (74): 193~212
    42 E. R. Orskov. Options for Better Extraction of the Vast Amount of Energy Locked up in Crop Residues. In: Z. H.Yang ed. Proceedings of Third International Conference on Increasing Animal Production with Local Resources. Beijing: China Agr Scientech Press. 2001: 1~5
    43 J. A. Buswell. CRC critical Reviews in Biotechnology. 1987, 6(1): 1
    44 Y. Sun and J. Y. Cheng. Hydrolysis of Lignocellulosic Materials for Ethanol Production: a review. Bioresource Technol. 2002, (83): 1~11
    45陈立祥,章怀云.木质素生物降解及其应用研究进展.中南林学院学报. 2003, 23(1): 79-85
    46 D. Cullen. Recent Advances on the Molecular Genetics of Ligninolytic Fungi. J Biotechnol. 1997, (53): 273~289
    47 H. W. Kern and T. K. Kirk. Influence of Molecular Size and Ligninase Pretreatment on Degradation of Lignins by Xanthomonas sp. strain 99. Appl Environ microbiol. 1987, 53(9): 2242~2246
    48 H. W. Kern. Bacterial Degradation of Dehydropolymers of Coniferylalcohol. Arch Microbiol. 1984, (138): 18~25
    49 T. J. Kerr. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin. Appl Environ Microbiol. 1953, (46): 1201~1206
    50 A. J. MeCarthy and P. Broda. Screening for Lignin Degrading Actinomycetes and Characterization of Their Activity Against [14C]-Lignin-labelled Wheat Lignocellulose. J Gen Microbiol. 1954, (130): 2905~2913
    51 A. J. MeCarthy. Degradation of [14C]-Lignin-labelled Wheat Lignocellulose by White Rot Fungi. J Gen Microbiol. 1984, (130): 1023~1030
    52 A. J. MeCarthy. Lignin Solubilisation by Thermomonospora Mesophila. Appl Microbiol Biotechnol. 1986, (24): 347~352
    53 K. Narayanan. Actinomycetes as the Source of Ligninolytic Enzymes. Actinomycetologica. 2005, 9(2): 40~47
    54阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学. 1995, 7(5): 22~25
    55夏黎明,萧庆,余世袁.碳源对固定里氏木霉合成纤维素酶的影响.纤维素科学与技术. 1994, 2(3~4): 72~77
    56 M. Suto and F. Tomita. Induction and Catabolite Repression Mechanisms of Cellulase in Fungi. Appl Environ Microbiol. 2001, 92(4): 305~311
    57 K. P. Mcdermid, C. W. Forsberg and C. R. MacKonzie. Appl Environ Microbiol.1990, (56): 3805~3810
    58王伟东.快速木质纤维素分解菌复合系MC1对秸秆的分解能力及稳定性.环境科学. 2005, 26(5): 156~160
    59许修宏,肖玉珍,陈建平等.高效纤维素分解菌分离筛选的研究.东北农业大学学报. 1998, 29(4): 330~333
    60李双祁.水稻秸秆同时糖化与乳酸发酵的研究.湖南农业大学硕士论文. 2003: 13~15
    61 S. Weber, S. Stubner and R. Conrad. Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Appl Environ Microbiol. 2001, 67(3): 1318~1327
    62 H. Y. Yang, X. F. Wang, L. J. Gao, et al. Development of an Enrichment Culture Growing at Low Temperature Used for Ensiling Rice Straw. J Microbiol Biotechnol. 2008, 18(4): 711~717
    63 L. Gao, H. Yang, X. Wang, et al. Rice Straw Fermentation Using Lactic Acid Bacteria. Bioresour Technol. 2008, 99(8): 2742~2748
    64宋瑞清.平菇菌株对水稻秸秆生物降解的能力.东北林业大学学报. 2004,32(1): 81~83
    65燕红.两株芽胞杆菌纤维素酶诱导产生机制及其作用的研究.哈尔滨工业大学博士论文. 2007: 76~77
    66吴景贵,席时权,曾广赋等.玉米秸秆腐解过程的红外光谱研究.土壤学报. 1999, 2(1): 91~100
    67徐勇.化学处理和微生物混合培养对水稻秸秆腐解和组分变化的影响.中国农业科学. 2003, 36(1): 59~65
    68吴景贵,曾广赋,汪冬梅等.玉米叶片残体腐解过程的傅里叶变换红外光谱研究.分析化学. 1997, 25(12): 1395~1400
    69 H. S. Shen, Frik Sundst?l, R. Eng Elisabeth, et. al. Studies on Untreated and Urea-treated Rice Straw from Three Cultivation Seasons: 3 Histological Investigations by Light and Scanning Electron Microscopy. Anim Feed Sci Tech. 1999, 80(2): 151~159
    70 J. K. Wang. Histological and Rumen Degradation Changes of Rice Straw Stem Epidermis as Influenced by Chemical Pretreatment. Anim Feed Sci Tech. 2007, 136(1-2): 51~62
    71沈恒胜.水稻秸秆硅化和溶解特性对水稻秸秆纤维降解率及其利用的影响.中国农业科学. 2001, 34(6): 672~678
    72沈恒胜,陈君琛.生物去硅化作用对提高水稻秸秆降解率的处理效果探讨.中国农业科学. 2006, 39(2): 406~411
    73 J. A. Buswell, E. Odier. Lignin Biodegradation. CRC Crit Rev Biotechnol. 1987, (6): 1~60
    74 T. K. Kirk, R. L. Farrell. Enzymatic“combustion”: The Microbial Degradation of Lignin. Ann Rev Microbiol. 1987, (41): 465~505
    75余惠生,付时雨.白腐菌Panus conchatus降解水稻秸秆木质素机理研究(二)木质素降解产物高分子部分的结构特征.纤维素科学与技术. 1998, 6(4): 41~49
    76付时雨,余惠生.白腐菌Panus conchatus降解水稻秸秆木质素机理研究(三)木质素降解产物低分子部分芳香酸类化合物的结构特征.纤维素科学与技术. 1998, 6(4): 50~55
    77邰瓞生,周卫星.水稻秸秆木质素的生物降解.南京林业大学学报. 1986, (4): 34~41
    78刘梦茹,付时雨,詹怀宇等.毛柄金钱菌产漆酶固体发酵条件及其酶液对水稻秸秆木质素降解的研究.造纸科学与技术. 2006, 25(6): 41~45
    79 M. Amira, S. Abdul-razzak, S. Siham, et al. Cellulase Production fromActinomycetes Isolated from Iraqi soils: II. Cell Growth and Cellulase Activity of Streptomyces sp. Strain AT7 at Different Temperatures. J Islamic Acad Sci. 1989, 2(3): 185~188
    80 H. D. Jang, K. S. Chen. Production and Characterization of Thermostable Cellulases from Streptomyces Transformant T3-1. World J Microb Biot. 2003, (19): 263~268
    81 J. Lacey. Actinomycetes in Composts. Ann Agric Environ Med. 1997, (4): 113~121
    82 A. Josep Pérez-pons, X. Rebordosa and E. Querol. Induction and Preliminary Characterization of Intracellularβ-glucosidases from a Cellulolytic Streptomyces Strain. FEMS Microbiol Lett. 1995, 128(3): 235~239
    83吴襟,何秉旺.诺卡氏菌形放线菌-甘露聚糖酶的化学修饰及活性中心的研究.中国生物化学与分子生物学报. 2000, 16(2): 227~230
    84席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备. 2002, 3(3): 19~23
    85 S. Walter, H. Schrempf. Physiological Studies of Cellulase (Avicelase) Synthesisin Streptomyces reticuli. Appl Environ Microbiol. 1996, 62(3): 1065~1069
    86 K. Narayanan. Actinomycetes as the Source of Ligninolytic Enzymes. Actinomycetologica. 2005, 9(2): 40~47
    87叶姜瑜.高纤维酶活性放线菌的分离及产酶条件研究.西南农业大学报. 1997, 19(3): 261~264
    88齐云,陈飞,袁月祥等.一株能分解纤维素的高温耐碱放线菌.应用与环境生物学报. 2003, 9(3): 322~325
    89宋波,羊键.一株降解纤维素的放线菌的筛选及其产酶条件的研究.微生物学杂志. 2005, 25(5): 36~39
    90谭周进,肖嫩群,张杨珠等.纤维素分解混合菌群腐解水稻秸秆的使用技术研究.生态环境. 2007, 16(2): 573~578
    91解玉红,宋文华,葛艳辉等.土壤和空气中纤维素酶高产菌株的筛选.生物技术通. 2007, 18(1): 68~73
    92周新萍,徐尔尼,汪金萍.高产纤维素酶生二素链霉菌的鉴定与选育研究.中国酿造. 2007, (3): 20~24
    93余晓斌,郝学财.纤维素酶液体发酵最佳培养基的确定.工业微生物. 2005, 35(3): 1~5
    94唐贇,邓晓皋.利用产纤维素酶放线菌转化农作物秸秆的初步研究.四川食品与发酵. 2000, (3): 51~54
    95宋波,邓小文.一株能分解纤维素放线菌的固态发酵研究.生物技术. 2005, 15(6): 71~74
    96邵继海,胡俊林,孙毓临等.一株产耐热纤维素酶放线菌的固体发酵.饲料工业. 2006, 27(24): 37~39
    97 H. Willem. A Study of the Cellulases Produced by Three Mesophilic Actinomycetes Grown on Bagasse as Substrate. Biotechnol Bioeng. 1985, 27(9): 1367~1373
    98 T. Legon, M. Penninckx. The Production of Endoglucanase andβ-xylanase by Immobilized Cells of Streptomyces. Biomass. 1988, 16(3): 205~210
    99 M. Amira, B. A.Abdul-nour, H. Shatha, et al. Cellulase Production from Actinomycetes Isolated from Iraqi soils: I Characterization of a Celluloytic Streptomyces sp. Atrain AT7. J Islamic Acad Sci. 1989, 2(2): 109~112
    100 J. Gallagher, A. Winters, N. Barron, et al. Production of Cellulase andβ-glucosidase Activity during Growth of the Actinomycete Micromonospora Chalcae on Cellulose-containing Media. Biotechnol Lett. 1996, 18(5): 537~540
    101庞宗文,董志刚,梁静娟等.高温放线菌GPL1纤维素酶的酶学性质研究.现代食品科技. 2006, 22(2): 20~23
    102 F. Stutzenberger. Extracellular Enzyme Production Grown on by Thermomonospora Curvata Bagasse. J Ind Microbiol. 1994, (13): 35~42
    103 R. K. Harchand, S. Singh. Characterization of Cellulase Complex of Streptomyces Albaduncus. J Basic Microb. 1997, 37(2): 93~103
    104 L. Anthony. Effects of pH on Lignin and Cellulose Degradation by Streptomyces viridosporus. Appl Environ Microbiol. 1986, 52(2): 246~250
    105 P. G. Sudeep, A. Ahmad, B. R. Mala, et al. Studies on Carboxymethyl Cellulase Produced by an Alkalothermophilic Actinomycete. Bioresource Technol. 2001, (77): 171~175
    106 A. S. Ball. Lignocarbohydrate Solubilization from Straw by Actinomycetes. Appl Environ Microbiol. 1990, 56(10): 3017~3022
    107李宪臻,徐德贵,任钢弋等.新分离菌Streptomyces产小分子CMC液化酶的研究.微生物学通报. 1996, 23(5): 277~281
    108 X. Li, P. Gao. CMC-liquefying Enzyme, a Low Molecular Mass Initial Cellulose-decomposing Cellulase Responsible for Fragmentation from Streptomyces sp. LX. J Appl Microbiol. 1997, 83(1): 59~66
    109 X. Z. Li. Streptomyces Cellulolyticus sp. nov., A New Cellulolytic Member ofthe Genus Streptomyces. Int J Syst Bacteriol. 1997, 47(2): 443~445 32(11): 97~107
    111 F. Stutzenberger, D. Lupo. pH-dependent Thermal Activation of Endo-1,4-β-glucanase in Thermomonospora curvata. Enzyme Microb Tech. 1986, 8(4): 205~208
    112 R. K. Harchand, S. Singh. Characterization of Cellulase Complex of Streptomyces Albaduncus. J Basic Microb. 1997, 37(2): 93~103
    113 L. Anthony. Effects of pH on Lignin and Cellulose Degradation by Streptomyces viridosporus. Appl Environ Microbiol. 1986, 52(2): 246~250
    114 P. G. Sudeep, A. Ahmad, B. R. Mala, et al. Studies on Carboxymethyl Cellulase Produced by an Alkalothermophilic Actinomycete. Bioresource Technol. 2001, (77): 171~175
    115 A. S. Nikolay, B. W. David. A celR Mutation Affecting Transcription of Cellulase Genes in Thermobifida fusca. J Bacteriol. 2000, 182(1): 252~255
    116艾云灿,孟繁梅,高培基等.纤维二糖诱导阻遏真菌合成纤维素酶的特异性基础.中山大学学报(自然科学版). 2000, 39(3): 73~77
    117胡晓燕,曲音波.细菌纤维素的研究进展.纤维素科学与技术. 1998, 6(4): 56~64
    118 R. Coppelcchia, M. R. Dessi, A. Giacomini, et al. Cloning in E.coli of a Streptomyces Cellulase Gene. Biotechnol Lett. 1987, 9(7): 495~500
    119 B. Peritoa, E. Hanharta, T. Irdania, et al. Characterization and Sequence Analysis of a Streptomyces rochei A2 Endoglucanase-encoding Gene. Gene. 1994, 148(1): 119~124
    120 G. Mastromei, E. Hanhart, B. Perito, et al. Cloning and Expression in Escherichia coli of a Streptomycesβ-glucosidase Gene. J Biotechnol. 1992, 24(2): 149~157
    121 P. Solingen, D. Meijer, A. H. Wilhelmus, et al. Cloning and Expression of an Endocellulase Gene from a Novel Streptomycetes Isolated from an East African Soda lake. Extremophiles. 2001, (5): 333~341
    122 A. S. Nikolay, B. W. David. Cloning and Biochemical Characterization of BglC, aβ-Glucosidase from the Cellulolytic Actinomycete Thermobifida fusca. Curr Microbiol. 2001, (42): 295~301
    123 S. Walter, H. Schrempf. Studies of Streptomyces reticuli cel-1 (Cellulase) Gene Expression in Streptomyces Strains, Escherichia coli, and Bacillus subtilis. Appl Environ Microbiol. 1995, 61(2): 487~494
    124 Y. Heng, P. Zhang and R. L. Lee. Toward an Aggregated Understanding of Enzymatic Hydrolysis of Cellulose: Noncomplexed Cellulase Systems. Biotechnol Bioeng. 2004, 88(7): 797~824
    125 Y. Heng, P. Zhang and R. L, Lee. A Functionally Based Model for Hydrolysis of Cellulose by Fungal Cellulase. Biotechnol Bioeng. 2006, 94(5): 888~898
    126李阜棣.农业微生物学实验技术.中国农业出版社. 1996: 56
    127谢正喝.现代微生物培养基和试剂手册.福建科技出版社1994: 89
    128孙晓华,罗安程.纤维素分解菌的分离筛选及环境适应性初步研究.科技通讯. 2005, 21(2): 236~240
    129 H. Minamiyamat, M. Shimizu, H. Kunoh,et al. Mutiplication of Isolates R-5 of Streptomyces galbus on Rhododendron Leaves and its Production of Cellwall-degrading Enzymes. J Gen Plant Pathol. 2003, (69): 65~70
    130 C. Srinivasan. Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM2F1767. Appl Environ Microb. 1995, 61(12): 4272~4277
    131王亚珍,吴庆禹,池玉杰.针叶树上主要多孔菌培养特性.东北林业大学学报. 1998, 26(5): 26~29
    132 C. Moreno, J. Romero and R. T. Espejo. Polymorphism in Repeated 16S rRNA Genes is a Common Property of Type Strains and Environmental Isolates of the Genus Vibrio. Microbiology. 2002, (148): 1233~1239
    133 S. Kumar, K. Tamura, I. B. Jakobson, et al. MEGA2: Molecular Evolution Analysis Software. Bioinformatics. 2001, (17): 1244~1245
    134 S. Kumar, K. Tamura, I. B. Jakobson, et al. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Briefings in Bioinformatics. 2004, (5): 150~163
    135王静,向文胜.现代农业仪器分析应用技术.东北农业大学出版社. 2000: 75
    136谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法.电子显微学报. J Chin Electr Microsc Soc. 2005, 24(4): 440~441
    137 R. E.布坎南,N. E.吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社. 1990
    138 Y. Adachi, K. Wantanabe. Nuclear Ribiosomal DNA as a Probe for Genetic Variability in the Janpanese Pear Pathotype Alternaria Alternate. Appl Environm Microbiol. 1993, (59): 3197~3205
    139张利平,陈冠平.放线菌化学分类的研究现状及发展趋势.微生物学报, 1997, 24(5): 310~312
    140刘洁,李宪臻,高培基.纤维素酶活力测定方法评述.工业微生物. 1994, 24(4): 27~32
    141叶姜瑜.一种纤维素分解菌鉴别培养基.微生物学通报. 1997, 24(4): 251~252
    142 R. M. Teather, P. J. Wood. Use of Congo Red-Polysaccaride Interaction in Enumeration and Characterization of Cellulilytic Bacteria from the Bovine Rumen. Appl Environ Microbiol. 1982, (38): 148~158
    143肖舸.绿色木霉的筛选与产纤维素酶发酵条件优化及部分酶学性质研究.四川大学硕士论文. 2006: 16
    144都占魁,王超,赵金生等.一株高活力纤维素酶产生菌-绿色木霉T2产酶研究.太阳能学报. 2006, 27(12): 1298~1301
    145郑佐兴,段明星,徐文联.高活性纤维素酶菌株的筛选及其产酶条件的研究.微生物学杂志. 1996, (16): 35~38
    146侯晓娟.碱性纤维素酶产生菌的分离、选育、发酵产酶条件及酶学性质研究.西北大学硕士论文. 2006: 26
    147 T. P. Preobrazhenskaya, N. O. Blinov and I. D. Ryabova. Problems of Classification of Actinomycetes-antagonists. Government Publishing House of Medical Literature. Medgiz, Moscow, USSR. 1957, 1~398
    148 T. G. Pridham, C. W. Hesseltine and R. G. Benedict. A Guide for the Classification of Streptomycetes According to Selected Groups: Placement of Strains in Morphological Sections. Appl Microbiol. 1958, (6): 52~79
    149王晓芳,徐旭士,吴敏等.一株纤维素分解菌的分离与筛选.生物技术. 2001, 11(2): 27~30
    150李振红,陆贻通.高效纤维素降解菌的筛选.环境污染与防治. 2003, 25(3): 133~135
    151叶生梅,薛正莲,王岚岚.纤维素酶产生菌的筛选及其固态发酵初步研究安徽理工大学学报. 2003, 23(1): 57~59
    152王志超,陆文静,王洪涛.好氧堆肥中高温纤维素分解菌的筛选及性状研究.北京大学学报(自然科学版). 2006, 42(2): 259~264
    153 J. H. Crawford. Composting of Agricultural Wastes:a Review. Process Biochem. 1983, (18): 14~18
    154 B. Godden, A. S. Ball, P. Helvenstein, et al. Towards Elucidation of the Lignin Degradation Pathway in Actinomycetes. J Gen Microbiol. 1992, (138): 2441~2448
    155李亚澜.纤维素高效降解菌的分离鉴定及固态发酵条件研究.西南交通大学硕士论文. 2005: 33
    156 L. Ye, Q. F. Zhou, C. H. Liu, et al. Identification and Fermentation Optimization of a Marine-Derived Streptomyces griseorubens with Anti-tumor Activity. Indian J Marine Sci. 2009, 38(1): 14~21
    157蔡海宝.产几丁质酶海洋放线菌C203的分离鉴定及其酶基因的克隆.华南热带农业大学博士论文. 2007: 81
    158东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学技术出版. 2001
    159 P. L. Cen, L. M. Xia. Production of Cellulase by Solid-state Fermentation. Adv Biochem Eng Biotechnol. 1999, (65): 68~92
    160 D. S. Ghahal. Solid-state Fermentation with Trichoderma reesei for Cellulase Production. Appl Envir Microbiol. 1985, 39(2): 194~196
    161 G. T. Tsao. Recent Progress in Bioconversion of Lignocellulosics. Heidelberg, New York, Berlin: Springer. 1999, 68~92
    162 K. Karunanandaa, S. L. Fales, G. A. Varga, et al. Chemical Composition and Biodegradability of Crop Residues Colonized by White-rot Fungi. J Sci Food Agric. 1992, (60): 105~112
    163 K. Singh, S. N. Rai, T. W. Flegel, et al. Solid Substrate Fermentation of Ground and Un-ground Wheat Straw with Pleurotus ostreatus. Ind J Anim Sci. 1990, 60(10): 1230~1234
    164 Y. W. Han, J. S. Lee, and A. W. Anderson. Chemical Composition and Digestibility of Ryegrass Straw. J Agric Food Chem. 1975, 23(5): 928~931
    165贾新成,李喜梅,李磊等.紫孢侧耳栽培期基质中纤维素类的降解和有关酶活变化.微生物通报. 1994, 21(3): 148~152
    166 E. Moyson, H.Verachtert. Growth of Higher Fungi on Wheat Straw and Their Impact on the Digestibility of the Substrate. Appl Microbiol Biotechnol. 1991, (36): 421~424
    167王宏勋,杜甫佑,张晓昱.白腐菌选择性降解秸秆木质纤维素研究.华中科技大学学报(自然科学版). 2006, 34(3): 97~100
    168占新华,周立祥,沈其荣等.污泥堆肥过程中水溶性有机物光谱学变化特征.环境科学学报. 2001, 21(4): 470
    169陈允魁.红外吸收光谱法及其应用.上海交通大学出版社. 1993: 3
    170谷勋刚,王果,方玲.有机肥非水溶性分解产物对铜、镉吸附及解吸的影响.植物营养与肥料学报. 2001, 7(1): 93
    171 S. Kuwatsuka, A. Watanabe and K. Itoh. Comparison of Two Methods of Preparation of Jumic and Fulvic Acids, IHSS Method and NAGOYA Method. Soil Sci Plant Nutr. 1992, 38(1): 23~30
    172 Y. Inbar, Y. Chen and Y. Hadar. Carbon-13 CPMASNMR and FTIR Spectroscopic Analysis of Organic Matter Transformations during Decomposition of Solid Wastes from Wineries. Soil Sci. 1991, (4): 272~281
    173 D. T. Durig, J. S. Esterle and T. J. Dickson. An Investigation of the Chemical Variability of Woody Peat by FTIR Spectroscopy. Appl Spectrosc. 1988, (42): 1239~1244
    174 K. Nakanshi, P. H. Solomon.红外光谱分析100例.科学出版社. 1984: 8~45
    175 N. I. Gresse, A. E. McGrath, G. J. McColl, et al. Soil Sci Soc Am J. 1995, (59): 1715
    176 Y. Shoichi, O. Yoshiko and K. Kakuzo. Soil Sci Plant Nutr. 1962, 8(3): 15
    177 Y. Cao, Y. L. Lu and Y. Huang. NIR FT-Raman Study of Biomass (Triticum aestivum) Treated with Cellulase. J Mol Struct. 2004, (693): 87~93
    178 A. J. Michell. Second Derivative FTIR Spectra of Woods. In Cellulose and Wood Chemistry and Technology; Schuerch C., Ed.; Wiley: New York. 1989: 995~1008
    179刘鑫宇.三倍体毛白杨木质素结构的研究.北京林业大学硕士论文. 2004: 18
    180付时雨.富里埃变换红外光谱法分析生物漂白过程木质素结构变化.中国造纸学报. 2000, (15): 18~22
    181周晓宏,陈洪章,李佐虎.固态发酵中纤维素基质降解过程初步研究.过程工程学报. 2003, 3(5): 447~452
    182黎先发,贺新生.木质素的微生物降解.纤维素科学与技术. 2004, 12(2): 41~46
    183张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报. 2001, (8): 470~477
    184 E. Kenneth, H. Hammel. Extracellular Free Radical Biochemistry of Ligninolytie Fungi.New J Chem. 1996, 20(2): 195~198
    185 J. Perez, J. Munoz-Dorado, T.de la Rubia, et al. Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: an Overview. Int Microbiol. 2002, (5): 53~63
    186马登波,刘紫鹃,高培基.木素生物降解的研究进展.纤维素科学与技术. 1996, 4(1): 1~12
    187薛志民,邹霞青,郑伸坤.氨化与微贮水稻秸秆组织结构的比较.福建农业大学学报. 1997, 26(2): 223~227
    188 H. D. Bae, T. A. McAllister, E. G. Kokko, et al. Effect of Silica on theColonization of Rice Straw by Ruminal Bacteria. Anim Feed Sci Technol. 1997, (65): 165~181
    189 L. H. Harbers, D. J. Raiten and G. M. Paulsen. The Role of Plant Epidermal Silica as a Structural Inhibitor of Rumen Microbial Digestion in Steers. Nutr Rep Int. 1981, (24): 1057~1065
    190 O. Kawamura, T. Senshu, M. Horiguchi, et al. Histochemical Studies on the Rumen Digestion of Rice Straw Cell Wall and on the Chemical Determination of its non Nutritive Residue. Tohoku J Agric Res. 1973, (24): 183~191
    191 D. B. Dresb?ll, J. Magid. Structural Changes of Plant Residues during Decomposition in a Compost Environment. Bioresource Technol. 2006, (97): 973~981
    192 Y. Morikawa, T. Ohashi, O. Mantani, et al. Cellulase Induction by Lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol. 1995, (44): 106~111
    193 C. P. Kubicek, R. Messner, F. Cruber, et al. The Trichodema reesei Cellulase Regulatory Puzzle; from the Interior Life of a Secretory Organism. Enzyme Microb Technol. 1993, (15): 90~99
    194 T. K. Ghose,张玉臻摘译,高培基校.纤维素酶活力的测定. Pure Appl. chem. 1987, 59(2): 257~268
    195刘北东,杨谦,周麒等.绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达.北京林业大学学报. 2004, 26(6): 71~75
    196 S. Walter, H. Schrempf. Physiological Studies of Cellulase (Avicelase) Synthesisin Streptomyces reticuli. Appl Environ Microbiol. 1996, 62(3): 1065~1069

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700