丙二腈取代烷基喹吖啶酮化合物的合成、结构与光伏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计、合成了14种丙二腈取代烷基喹吖啶酮化合物,并对其光物理特性、热力学特性、电化学特性、单晶结构、自组装特性、分子轨道分布及其体异质结光伏器件的制备、优化和机理等进行了研究,讨论了材料分子的结构、自组装特性等与光伏器件性能之间的关系,获得了一些具有较好光伏特性的小分子受体材料。
     1、合成了8种双丙二腈取代烷基喹吖啶酮化合物,研究了丙二腈基团的引入对烷基喹吖啶酮材料性能的影响。该系列化合物具有较窄的带隙,较好的溶液加工特性,较高的热稳定性,可逆的电化学氧化还原性能以及与P3HT匹配较好的分子轨道能量。是一类适合于有机体异质结太阳能电池的小分子受体材料。
     2、通过X-射线单晶衍射、XRD及DSC等方法分别研究了丙二腈取代烷基喹吖啶酮系列化合物的分子构型与分子堆积方式、晶体层状结构与二维生长优势,以及无定形冷却与热致结晶的特性。丙二腈基团的引入使喹吖啶酮刚性核发生较大程度的弯曲,降低分子间π…π相互作用力,进而降低分子的结晶能力。分子间其它各种弱相互作用的竞争使不同分子具有不同的聚集特性和结晶特性,该研究对丙二腈取代烷基喹吖啶酮系列化合物在有机体异质结太阳能电池中的应用和对电池活性层形貌的控制与理解等方面有重要的意义。
     3、通过紫外-可见吸收光谱、原子力、XRD等方法考察了系列丙二腈取代烷基喹吖啶酮受体材料在有机体异质结太阳能电池活性层中的吸收特性和聚集特性,同时采用空间电荷限制电流(SCLC)方法估算了材料的电子迁移率。以P3HT为给体制备了基于丙二腈取代烷基喹吖啶酮受体材料的体异质结光伏器件并对器件性能进行了表征。结果表明,通过引入吸光型受体材料可以明显增加光伏器件对太阳光谱的响应范围,取代烷基的长度对材料的迁移率、成膜特性、与给体分子的相互作用以及器件性能有较大影响。其中以DCN-8CQA为受体的光伏器件实现了1.57%的光电转换效率,仅次于国际报道的非富勒烯小分子受体材料体异质结光伏器件性能的最高值2%,证明丙二腈取代烷基喹吖啶酮是一类较好的小分子光伏受体材料。
     4、设计合成了一系列单丙二腈取代烷基喹吖啶酮化合物。系统研究了这些化合物的光物理、热力学、电化学以及光伏性能。单丙二腈取代烷基喹吖啶酮较双丙二腈取代烷基喹吖啶酮化合物有更高的LUMO能量,采用单丙二腈取代烷基喹吖啶酮化合物制备出的光伏器件具有显著提高的开路电压。通过XPS分析证明在有机/铝界面处受体分子与金属铝的相互作用以及氧化铝薄层的形成可能也是引起开路电压提高的重要原因之一。该研究注重于体异质结光伏电池有机/电极界面,对进一步提高开路电压,提高电池光电转换效率的研究具有重要的指导意义。
Solar power has attracted much attention due to its pollution free, widespread and non-expensive characters. It may become one of the major ways for people to get energy in the near future. Nowadays, the commercialized solar cells are based on silicon material. Although such solar cell has the power conversion efficiency as high as 20%, the high cost and heavy work in producing silicon solar cell has made this technology difficult to popularize. Thus, the organic solar cell, which is cheap, less complicated and easy to carry with, has aroused great interest of the scientists. The most common and promising organic solar cell is a bulk-heterojunction type with P3HT as the donor and fullerene derivatives as the acceptor. Although fullerene and its derivatives are proved to be the most efficient acceptor for organic solar cell, their weak absorption in the solar spectrum has seriously limited the improvement of power conversion to solar energy. Then, it will be more meaningful to develop novel organic none-fullerene small molecule acceptors since they are more flexible in molecule modulation, synthesis and more possible to achieve proper energy level and improved absorption. Up to now, there have been some novel acceptor materials reported, however, the efficient one with power conversion efficiency more than 1% is still scarce. Thus, in this thesis, I have synthesized a series of novel organic non-fullerene acceptors by modulation to the typical dye material alkyl-quinacridone and characterized its photovoltaic properties. A careful study of the open circuit voltage was also carried out.
     1. In Chapter Two, we had designed and synthesized 8 malononitrile substituted alkyl-quinacridone compounds and studied their photophysical, electro-chemical and thermo-dynamical properties. A theoretical calculation to investigate their electron structure was also included. By introducing the electron drawing malononitrile groups, the absorption of alkyl-quinacridone has significantly red-shifted, which has testified the feasibility of obtaining narrow band gap material by enhancing the intramolecular charge transfer transition effect. In addition, these malonitrile substituted alkyl-quinacridone compounds have relatively good solvability, high thermo-stability, stable electro-chemical properties and proper energy level match to P3HT donor showing that they are good candidates for organic bulk-heteroj unction solar cell.
     2. In Chapter Three, the structure, packing styles and crystallization properties of malononitrile substituted alkyl-quinacridone were closely studied. It was found that the substitution by malononitrile has caused a large bend to the quinacridone molecule, which has significantly weakened the intermolecularπ...πinteractions and decreased the crystallization. Besides, the competition of alkyl-alkyl and other weak interactions are responsible for the 2-dimentional growth character and the amorphous cooled aggregates of some malononitrile substituted quinacridone compounds.
     3. In Chapter Four, the bulk hetero-junction solar cells using P3HT as the donor and molononitrile substituted alkyl-quinacridone as the acceptor were prepared and characterized. By using an acceptor with intense absorption in the visible spectrum, the solar spectrum response range of the former P3HT:PCBM device has been expanded from 650 nm to about 700 nm. One of the device using DCN-8CQA as the acceptor has achieved the short circuit current density of 5.73 mA/cm2 and the power conversion efficiency of 1.57% with external quantum efficiency more than 15% at wavelength region more than 650 nm. This has proved the feasibility of improving the performance of device by using acceptors that has intense absorption in visible spectrum. Moreover, the impact of alkyl chain length on the molecule aggregating behaviors, the morphology of the active layer and the corresponding performance of the device are also discussed. The conclusion we have is that a good-performed solar cell should have a moderate molecule aggregation in the active layer.
     4. In Chapter Five, we have synthesized a series of mono-malononitrile substituted alkyl-quinacridone compounds. Their thermo-dynamic, photophysical and photovoltaic properties were studied. By using mono-malononitrile substituted alkyl-quinacridone compounds, all solar cells fabricated have a prominent improved opencircuit voltage than the device using corresponding double-malononitrile substituted alkyl-quinacridone compounds. Notably, the device using SCN-8CQA has achieved the open circuit voltage as high as 0.66 V. By electro-chemical analysis and XPS method, we found that the large open circuit voltage of these devices not only originates from the higher LUMO level of the mono-malononitrile substituted alkyl-quinacridone compounds, but also originates from their stronger interaction with cathode Al and the existence of Al2O3 thin layer at the organic/electrode interface. This work has provided valuable support to the research and improvement of open circuit voltage of the organic solar cell.
     In conclusion, we have obtained a series of novel non-fullerene small molecule acceptor materials with narrow band gap, good thermo-stability, proper energy level matching and high power conversion efficiency. These materials are powerful proof for the strategy of using donor and acceptor co-absorption to improve the performance of the device. As a novel type of non-fullerene small molecule acceptor materials and semiconductors, they also have promising potential in application.
引文
[1]Chapin D. M., Fuller C. S., Pearson G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. ofAppl. Phys.,1954,25,676.
    [2]Green M. A., Emery K., Hishikawa Y., Warta W., Solar cell efficiency tables (version 31). Progress in Photovoltaics,2008,16,61-67.
    [3]Shockley W., Queisser H. J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. of Appl. Phys.,1961,32,510.
    [4]Green M. A., Solar cells- Operating principles, technology and system applications, University of New South Wales, Sydney, (1992).
    [5]Gunes S., Neugebauer H., Sariciftci N. S., Conjugated polymer-based organic solar cells, Chemical Reviews,2007,107,1324.
    [6]Brabec C. J., Sariciftci N. S., Hummelen J. C., Plastic solar cells, Adv. Funct. Mater. 2001,11,15.
    [7]Hoppe H., Sariciftci N. S., Organic solar cells:An overview, J. of Mater. Research, 2004,19,(7),1924-1945.
    [8]Thompson B. C., Frechet J. M. J., Organic photovoltaics-Polymer-fullerene composite solar cells, Angewandte Chemie-International Edition,2008,47,58.
    [9]Jorgensen M., Norrman K., Krebs F. C., Stability/degradation of polymer solar cells. Solar, Energy Mater, and Solar Cells,2008,92,686.
    [10]Winder C., Sariciftci N. S., Low bandgap polymers for photon harvesting in bulk heteroj unction solar cells, J. of Mater. Chem.,2004,14,1077.
    [11]Coakley K. M., McGehee M. D., Conjugated polymer photovoltaic cells, Chem. of Mater.,2004,16, (23),4533-4542.
    [12]Bundgaard, E.; Krebs, F. C., Low band gap polymers for organic photovoltaics. Solar Energy Mater. and Solar Cells,2007,91,954.
    [13]Crossley P. A., Noel G. T., Wolf M., Review and Evaluation of Past Solar-Cell Development Efforts, Report by RCA Astro-Electronics Division for NASA, NASW-1427 [R] Washington DC.1968.
    [14]Loferski JJ,1993. The first forty years:A brief history of modern photovoltaic age [M]//Progress in Photovoltaics:Research and Application,1,67.
    [15]Ghosh A. K., Morel D. L., Show R. F., Rowe Jr C. A.., Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells, J. Appl. Phys.,1974,45, 230.
    [16]Tang C. W., Two-Layer Organic Photovoltaic Cell Appl. Phys. Lett.,1986,48,183.
    [17]Xue J., Uchida S., Rand B. P., and Forrest S. R., Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Appl. Phys. Lett. 2004,85,5757.
    [18]Xue J., Rand B. P., Uchida S., and Forrest S. R., Mixed donoracceptor molecular heterojunctions for photovoltaic applications. Ⅱ. Device performance,J. of Appl. Phys.. 2005,98, Article ID 124903.
    [19]Drechsel J., Mannig B., Kozlowski F., Pfeiffer M., Leo K., and Hoppe H., Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers, Appl. Phys. Lett.,2005,86, Article ID 244102.
    [20]Yang F., Shtein M., and Forrest S. R., Morphology control andmaterialmixing by high-temperature organic vaporphase deposition and its application to thin-film solar cells, J. of Appl. Phys.,2005.98, Article ID 014906.
    [21]Yang F., Shtein M., and Forrest S. R., Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Mater.,2005,4,37-41.
    [22]Uchida S., Xue J., Rand B. P., and Forrest S. R., Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine:C60 active layer, Appl. Phys. Lett., 2004,84,4218.
    [23]Mutolo K. L., Mayo E. I., Rand B. P., Forrest S. R. and Thompson M. E., Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells, J. of the American Chemical Society,2006,128,8108.
    [24]Rand B. P., Xue J., Yang F., and Forrest S. R., Organic solar cells with sensitivity extending into the near infrared, Appl. Phys. Lett.,2005,87, Article ID 233508.
    [25]Schulze K., Uhrich C., Schuppel R., et al., Efficient vacuumdeposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60, Adv. Mater.,2006,18, 2872.
    [26]Cravino A., Leriche P., Aleveque O., Roquet S., and Roncali J., Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer, Adv. Mater.,2006,18,3033.
    [27]Pandey A. K. and Nunzi J.-M., Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells, Appl. Phys. Lett.,2006,89, Article ID 213506.
    [28]Gregg B. A., Hanna M. C., Comparing organic to inorganic photovoltaic cells:Theory, experiment, and simulation, J. of Appl. Phys.2003,93,3605.
    [29]Gregg B. A., Excitonic solar cells, J. of Physical Chem. B,2003,107,4688.
    [30]Schweitzer B., Bassler H., Excitons in conjugated polymers, Synth. Metals,2000,109, 1.
    [31]Barth S., Bassler H., Intrinsic photoconduction in PPV-type conjugated polymers, Physical Review Lett.,1997,79,4445.
    [32]Halls J. J. M., Pichler K., Friend R. H., Moratti S. C., Holmes A. B., Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell, Appl. Phys. Lett.,1996,68,3120.
    [33]Haugeneder A., Neges M., Kallinger C., Spirkl W., Lemmer U., Feldmann J., Scherf U., Harth E., Gugel A., Mullen K., Exciton diffusion and dissociation in conjugated polymer fullerene blends and heterostructures, Physical Review B,1999,59,15346.
    [34]Stubinger T., Brutting W., Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells, J. of Appl. Phys.,2001,90,3632.
    [35]Theander M., Yartsev A., Zigmantas D., Sundstrom V., Mammo W., Andersson M. R., Inganas O., Photoluminescence quenching at a polythiophene/C-60 heterojunction, Physical Review B,2000,61,12957.
    [36]Maniloff E. S., Klimov V. I., McBranch D. W., Intensity-dependent relaxation dynamics and the nature of the excited-state species in solid-state conducting polymers, Physical Review B,1997,56,1876.
    [37]Vacar D., Maniloff E. S., McBranch D. W., Heeger J. A., Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends, Physical Review B, 1997,56,4573.
    [38]Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science,1995,270,1789.
    [39]段晓菲,王金亮,毛景,裴坚,有机太阳能电池材料的研究进展,大学化学,20卷,3期,1页。
    [40]Ma W. L., Yang C. Y., Gong X., K. Lee, Heeger A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct Mater.,2005,15,1617.
    [41]Halls J. J. M., Walsh C. A., Greenham N. C., Marseglia E. A., Friend R. H., Moratti S. C., Holmes A. B., Efficient Photodiodes from Interpenetrating Polymer Networks, Nature, 1995,376,498.
    [42]Halls J. J. M., Friend R. H., The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction, Synth. Metals.,1997,85,1307.
    [43]Kietzke T., Horhold H. H., Neher D., Efficient polymer solar cells based on M3EH-PPV, Chem. Mater.,2005,17,6532.
    [44]Dittmer J. J., Marseglia E. A., Friend R. H., Electron trapping in dye/polymer blend photovoltaic cells, Adv. Mater.,2000,12,1270.
    [45]Breeze A. J., Schlesinger Z., Carter S. A., et al., Nanoparticlepolymer and polymer-polymer blend composite photovoltaics, Organic Photovoltaics,2001,4108,57.
    [46]Yin C., Kietzke T., Neher D., and Horhold H.-H., Photovoltaic properties and exciplex emission of polyphenylenevinylene-based blend solar cells, Appl. Phys. Lett., 2007,90, Article ID 092117.
    [47]Offermans T., Van Hal P. A., Meskers S. C. J., Koetse M. M., Janssen R. A. J., Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties:MDMO-PPV and PCNEPV, Physical Review B,2005,72, Article ID 045213.
    [48]Padinger F., Rittberger R. S., Sariciftci N. S., Effects of postproduction solar cells, Adv. Funct. Mater.,2003,13,85.
    [49]Li G., Shrotriya V., Huang J. S., Yao Y., Moriarty T., Emery K., Yang Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater.,2005,4,864.
    [50]Treat N. D., Brady M. A., Smith G., Toney M. F., Kramer E. J., Hawker C. J., Chabinyc M. L., Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend, Adv. Energy Mater.,2011,1,82.
    [51]Wei G. D., Wang S. Y., Sun K., Thompson M. E. and Forrest S. R., Solvent-Annealed Crystalline Squaraine:PC70BM (1:6) Solar Cells, Adv. Energy Mater.2011,1,184.
    [52]Granstrom M., Petritsch K., Arias A. C., Lux A., Andersson M. R., Friend R. H., Laminated fabrication of polymeric photovoltaic diodes, Nature,1998,395,257.
    [53]Chen L. C., Godovsky D., Inganas O., Hummelen J. C., Janssens R. A. J., Svensson M., Andersson M. R., Polymer photovoltaic devices from stratified multilayers of donor-acceptor Blends, Adv. Mater.,2000,12,1367.
    [54]Matsuo Y., Sato Y., Niinomi T., Soga I., Tanaka H., Nakamura E., Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60] fullerene, J. Am. Chem. Soc.,2009,131,16048.
    [55]Ramos A. M., Rispens M. T., Hummelen J. C., Janssen R. A. J., A poly(p-phenylene ethynylene vinylene) with pendant fullerenes, Synth. Met.,2001,119,171.
    [56]Ramos A. M., Rispens M. T., Van Duren J. K. J., Hummelen J.C., Janssen R. A. J., Photoinduced Electron Transfer and Photovoltaic Devices of a Conjugated Polymer with Pendant Fullerenes, J. Am. Chem.Soc.,2001,123,6714.
    [57]Zhang F., Svensson M., Andersson M. R., Maggini M., Bucella S., Menna E., Inganas O., Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes, Adv.Mater.,2001,13,1871.
    [58]Peumans P., Bulovic V., Forrest S. R., Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett., 2000,76,2650.
    [59]Zhou Y. H., Zhang F. L., Tvingstedt K., Tian W. J., O. Inganas, Multifolded polymer solar cells on flexible substrates, Appl. Phys. Lett.2008,93,033302.
    [60]Conibeer G., Third-generation photovoltaics, Material Today,2007,10,42.
    [61]Standard test conditions. http://ecotec-energy.com/gekuehlte_photovoltaik/bedingungen_e.htm
    [62]Zhang F. L., Perzon E., Wang X. J., Mammo W., Andersson M. R., Inganas O., Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm, Adv. Funct. Mater.,2005,15,745.
    [63]Wang X. J., Perzon E., Oswald F., Langa F., Admassie S., Andersson M. R., Inganas O., Enhanced photocurrent spectral response in low-bandgap polyfluorene and C-70-derivative-based solar cells, Adv. Funct. Mater.,2005,15,1665.
    [64]Wang X. J., Perzon E., Delgado J. L., Cruz P., Zhang F. L., Langa F., Andersson M., Inganas O., Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative, Appl. Phys., Lett.,2004,85,5081.
    [65]Wang X. J., Perzon E., Mammo W., Oswald F., Admassie S., Persson N. K., Langa F., Andersson M. R., Inganas O., Polymer solar cells with low-bandgap polymers blended with C-70-derivative give photocurrent at 1 mu m, Thin Solid Films,2006,511,576.
    [66]Mihailetchi V. D., Xie H. X., Boer B., Koster L. J. A., Blom P. W. M., Charge transport and photocurrent generation in poly (3-hexylthiophene):Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater.,2006,16,699.
    [67]Brabec C. J., Shaheen S. E., Winder C., Sariciftci N. S., Denk P., Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80,1288. [68] Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T., Hummelen J. C.,2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78,841.
    [69]Andersson L. M., Zhang F. L., Inganas O., Stoichiometry, mobility, and performance in bulk heterojunction solar cells, Appl. Phys. Lett.,2007,91,071108.
    [70]Hoppe H., Niggemann M., Winder C., Kraut J., Hiesgen R., Hinsch A., Meissner D., Sariciftci N. S., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heteroj unction solar cells, Adv. Funct. Mater.,2004,14,1005.
    [71]Hoppe H., Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem.,2006,16,45.
    [72]Lacic S., Inganas O., Modeling electrical transport in blend heterojunction organic solar cells, J. Appl. Phys.,2005,97,124901.
    [73]Sievers D. W., Shrotriya V., Yang Y., Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells, J. Appl. Phys.,2006,100, 114509.
    [74]Zhang F. L., Johansson M., Andersson M. R., Hummelen J. C., Inganas O., Polymer solar cells based on MEH-PPV and PCBM, Synth. Metals 2003,137, (1-3),1401-1402.
    [75]Brabec C. J., Cravino A., Meissner D., Sariciftci N. S., Fromherz T., Rispens M. T., Sanchez L., Hummelen J. C., Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11,374.
    [76]Gadisa A., Svensson M., Andersson M. R., Inganas O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative, Appl. Phys. Lett.,2004,84,1609.
    [77]Scharber M. C., Wuhlbacher D., Koppe M., Denk P., Waldauf C., Heeger A. J., Brabec C. J., Design rules for donors in bulk-heteroj unction solar cells-Towards 10% energy-conversion efficiency, Adv. Mater.2006,18,789.
    [78]Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T., Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heteroj unction solar cells, J. Appl. Phys.,2003,94,6849.
    [79]Zhang F. L., Gadisa A., Inganas O., Svensson M., Andersson M. R., Influence of buffer layers on the performance of polymer solar cells, Appl. Phys. Lett.,2004,84,3906.
    [80]Mihailetchi V. D., Device Physics of Organic Bulk Heteroj unction Solar Cells, University of Groningen. PhD Thesis 2005.
    [81]Schilinsky P., Waldauf C., Hauch J., Brabec C. J., Simulation of light intensity dependent current characteristics of polymer solar cells, J. Appl. Phys.2004,95,2816.
    [82]Riedel I., Dyakonov V., Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices, Physica Status Solidia-Appl. Research,2004,201,1332.
    [83]Zhang F. L., Jespersen K. G., Bjorstrom C., Svensson M., Andersson M. R., Sundstrom V., Magnusson K., Moons E., Yartsev A., Inganas O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends, Advanced Funct. Mater.,2006,16,667.
    [84]Duren J. K. J., Yang X. N., Loos J., Tang C. W.. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance, Adv. Funct. Mater.,2004,14, 425.
    [85]Yang X. N., Duren J. K. J., Janssen R. A. J., Michels M. A. J., Loos J., Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices, Macromolecules,2004,37,2151.
    [86]Yang X. N., Loos J., Veenstra S. C., Verhees W. J. H., Wienk M. M., Kroon J. M., Michels M. A. J., Janssen R. A. J., Nanoscale morphology of high-performance polymer solar cells, Nano Lett.,2005,5,579.
    [87]Chirvase D., Parisi J., Hummelen J. C., Dyakonov V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites, Nanotechnology,2004,15, 1317.
    [88]Li G., Shrotriya V., Yao Y., Huang J. S., Yang Y., Manipulating regioregular poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells, J. Mater. Chem.2007,17,3126.
    [89]Li G., Yao Y., Yang H., Shrotriya V., Yang G., Yang Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Advanced Funct. Mater.2007,17,1636.
    [90]Hoppe H., Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem.2006,16,45-61.
    [91]Hoth C. N., Choulis S. A., Schilinsky P., Brabec C. J., High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends, Adv. Mater.2007,19,3973.
    [92]Kim S. S., Na S. I., Jo J., Tae G., Kim D. Y., Efficient Polymer Solar Cells Fabricated by Simple Brush Painting, Adv. Mater.,2007,19,4410.
    [93]Hoppe H., Niggemann M., Winder C., Kraut J., Hiesgen R., Hinsch A., Meissner D., Sariciftci N. S., Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk-Heterojunction Solar Cells, Adv. Funct. Mater.2004,14,1005.
    [94]Irwin M. D., Buchholz D. B., Hains A. W., Chang R. P. H., Marks T. J., PNAS,2008, 105,2783.
    [95]Gommans H., Aernouts T., Verreet B., Heremans P., Medina A., Claessens C. G., Torres T., Perfluorinated Subphthalocyanine as a New Acceptor Material in a Small-Molecule Bilayer Organic Solar Cell, Adv. Funct. Mater.,2009,19,3435.
    [96]Ooi Z. E., Tam T. L., Shin R. Y. C., Chen Z. K., Kietzke T., Sellinger A., Baumgarten M., Mullen K., Demello J. C., Solution processable bulk-heterojunction solar cells using a small molecule acceptor, J. Mater. Chem.,2008,18,4619.
    [97]Woo C. H., Holcombe T. W., Unruh D. A., Sellinger A., Frechet J. M. J., Chem. Mater., Phenyl vs Alkyl Polythiophene:A Solar Cell Comparison Using a Vinazene Derivative as Acceptor,2010,22,1673.
    [98]Sonar P., Ng G. M., Lin T. T., Dodabalapur A., Chen Z. K., Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives:novel acceptors for organic solar cells, J. Mater. Chem.,2010,20,3626.
    [99]Schwenn P. E., Gui K., Nardes A. M., Krueger K. B., Lee K. H., Mutkins K., Dunlop H. R., Shaw P. E., Kopidakis N., Burn P. L., Meredith P., Plasmonic Back Reflectors:A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells, Adv. Energy Mater.,2011,1,73.
    [100]Lim Y. F., Shu Y., Parkin S. R., Anthony J. E., Malliaras G. G., Soluble n-type pentacene derivatives as novel acceptors for organic solar cells, J. Mater. Chem.,2009,19, 3049.
    [101]Brunetti F. G., Gong X., Tong M., Heeger A. J., Wudl F., Strain and Huckel Aromaticity:Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics, Angew. Chem. Int. Ed.,2010,49,532.
    [102]Kivala M., Boudon C., Gisselbrecht J. P., Enko B., Seiler P., Muller I. B., Langer N., Jarowski P. D., Gescheidt G., Francois Diederich, Organic Super-Acceptors with Efficient Intramolecular Charge-Transfer Interactions by [2+2] Cycloadditions of TCNE, TCNQ, and F4-TCNQ to Donor-Substituted Cyanoalkynes, Chem. Eur. J.,2009,15,4111.
    [103]Shin R. Y. C., Kietzke T., Sudhakar S., Dodabalapur A., Chen Z. K., Sellinger A., Chem. Mater., N-Type Conjugated Materials Based on 2-Vinyl-4,5-dicyanoimidazoles and Their Use in Solar Cells,2007,19,1892.
    [104]Woo C. H., Holcombe T. W., Unruh D. A., Sellinger A., Frechet J. M. J., Phenyl vs Alkyl Polythiophene:A Solar Cell Comparison Using a Vinazene Derivative as Acceptor, Chem. Mater.,2010,22,1673.
    [105]Zhao G. J., He Y. J., Li Y. F.,6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization, Adv. Mater., 2010,22,4355.
    [106]Pfuetzner S., Meiss J., Petrich A., Riede M., Leo K., Improved bulk heterojunction organic solar cells employing C70 fullerenes, Appl. Phys. Lett.,2009,94,223307.
    [107]Troshin P. A., Hoppe H., Renz J., Egginger M., Yu J. L., Goryachev A. E., Peregudov A. S., Lyubovskaya R. N., Gobsch G., N. S. Sariciftci, Razumov V. F., Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells, Adv. Funct. Mater.,2009,19,779.
    [108]Nelson, J. THE PHYSICS OF SOLAR CELLS, World Scientific,2003.
    [109]http://www.clevios.com/index.php?page_id=995&prod_service_id=443.
    [110]Peumans P., Uchida S., Forrest S. R., Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature,2003,425,158.
    [111]Forrest S. R., Yoon W. Y., Leu L. Y., So F. F., Optical and electrical properties of isotype crystalline molecular organic heteroj unctions, J. Appl. Phys.,1989,66,5908.
    [112]Peumans P. and Forrest S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells, Appl. Phys. Lett.,2001,79,126.
    [113]Mutolo K. L., Mayo E. I., Rand B. P., Forrest S. R. and Thompson M. E., Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells, J. Am. Chem. Soc.,2006,128,8108.
    [114]Petritsch K. et al. Dye-based donor/acceptor solar cells, Solar Energy Mater. & Solar Cells,2000,61,63.
    [115]Chiang C. K., Fincher Jr C. R, Park Y. W., et al., Electrical conductivity in doped polyacetylene, Physical Review Lett.,1977,30,1098.
    [116]Yu G. and Heeger A. J., Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunction, J. Appl. Phys.,1995,78,4510.
    [117]Breeze A. J., Schlesinger Z., Carter S. A., Tillmann H., Haorhold H.-H., Improving power efficiencies in polymer—polymer blend photovoltaics, Solar Energy Mater. & Solar Cells,2004,83,263.
    [118]Koetse M. M., Sweelssen J., Hoekerd K. T., et al., Efficient polymer:polymer bulk heterojunction solar cells, Appl. Phys. Lett.,2006,88,083504.
    [119]Sariciftci N. S., Smilowitz L., Heeger A. J., and Wudl F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science,1992,258,1474.
    [120]Sariciftci N. S., Baun D., Zhang C., Srdanov V. I., Heeger A. J., Stucky G., and Wudl F., Appl. Phys. Lett.1993,62,585.
    [121]Brabec C. J., Dyakonov V., Parisi J., and Sariciftci N. S., Eds., Organic Photovoltaics:Concepts and Realization,2003,60.
    [122]Brabec C. J., Organic photovoltaics:technology and market, Solar Energy Mater. & Solar Cells,2004,83,273.
    [123]Brabec C. J., Winder C., Sariciftci N. S., et al., A lowbandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes, Adv. Funct. Mater.,2002, 12,709.
    [124]Gebeyehu D., Brabec C. J., Padinger F., et al., The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes, Synth. Metals,2001,118,1.
    [125]Van Duren J. K. J., Yang X., Loos J., et al., Relating the morphology of poly(p-vinylene)/methanofullerene blends to solar-cell performance, Adv. Funct. Mater., 2004,14,425.
    [126]Reyes-Reyes M., Kim K., and Carroll D. L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Appl. Phys. Lett.,2005,87,083506.
    [127]Muhlbacher D., Scharber M., Morana M., et al., High photovoltaic performance of a low-bandgap polymer," Advanced Materials, Adv. Mater.,2006,18,2884.
    [128]Zhang F. L., Bijleveld J., Perzon E., Tvingstedt K., Barrau S., Inganas O., Andersson M. R., High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives, J. Mater. Chem., 2008,18,5468.
    [129]Svensson M., Zhang F., Veenstra S. C., et al., Highperformance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative, Adv. Mater.,2003,15, 988.
    [130]Liang Y., Feng D., Wu Y., Tsai S. T., Li G., et al., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties, J. Am. Chem. Soc.,2009,131,7792.
    [131]Wienk M. M., Kroon J. M., Verhees W. J. H., Knol J., Hummelen J. C., Hal P. A., Janssen R. A. J., Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells, Angew. Chem-Int. Ed.2003,42,3371.
    [132]Yao Y., Shi C. J., Li G., Shrotriya V., Pei Q. B., Yang Y., Effects of C-70 derivative in low band gap polymer photovoltaic devices:Spectral complementation and morphology optimization Appl. Phys. Lett.,2006,89,153507.
    [133]Sista S., Park M.-H., Hong Z., Wu Y., Hou J. H., Kwan W. L., Li G. and Yang Y., Highly Efficient Tandem Polymer Photovoltaic Cells, Adv. Mater.,2010,22,380.
    [134]Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C. Blom, P. W. M., Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells, Advanced Mater.,2008,20,2116.
    [135]Shin W. S., Jeong H.-H., Kim M.-K., et al., Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application, J. Mater. Chem.,2006,16, 384.
    [136]Li J., Dierschke F., Wu J., Grimsdale A. C., and Mullen K., Poly(2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells, J. Mater. Chem.,2006,16,96.
    [137]Kietzke T., Shin R. Y. C., Egbe D. A. M., Chen Z.-K., Sellinger A., Effect of Annealing on the Characteristics of Organic Solar Cells:Polymer Blends with a 2-Vinyl-4,5-dicyanoimidazole Derivative, Macromolecules,2007,40,4424.
    [138]Zhou Y. H., Pei J. N., Dong Q. F., Sun X. B., Liu Y. Q., Tian W. J., Donor-Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heteroj unction Solar Cells, J. Phys. Chem. C.2009,113,7882.
    [1]Brabec C. J., Cravino A., Meissner D., Sariciftci N. S., Fromherz T., Rispens M. T., Sanchez L., Hummelen J. C., Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11,314.
    [2]Hou J. H., Chen H.-Y., Zhang S. Q., Li G., Yang Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole, J. Am. Chem. Soc.2008,130,16144.
    [3]Zhou Y. H., Pei J. N., Dong Q. F., Sun X. B., Liu Y. Q., W. J. Tian, Donor-Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells, J. Phys. Chem. C.2009,113,7882.
    [4]Kietzke T., Shin R. Y. C., Egbe D. A. M., Chen Z.-K., Sellinger A., Effect of Annealing on the Characteristics of Organic Solar Cells:Polymer Blends with a 2-Vinyl-4,5-dicyanoimidazole Derivative, Macromolecules,2007,40,4424.
    [5]Shin R. Y. C., Kietzke T., Sudhakar S., Dodabalapur A., Chen Z.-K., and Sellinger A., N-Type Conjugated Materials Based on 2-Vinyl-4,5-dicyanoimidazoles and Their Use in Solar Cells, Chem. Mater.,2007,19,1892.
    [6]Ooi Z. E., Tam T. L., Shin R. Y. C., Chen Z. K., Kietzke T., Sellinger A., Baumgarten M., Mullen K., Demello J. C., Solution processable bulk-heterojunction solar cells using a small molecule acceptor, J. Mater. Chem.2008,18,4619.
    [7]Lim Yee-Fun, Shu Ying, Sean Parkin R., Anthony J. E., Malliaras G. G., Soluble n-type pentacene derivatives as novel acceptors for organic solar cells, J. Mater. Chem., 2009,19,3049.
    [8]Schwenn P. E., Gui K., Nardes A. M., Krueger K. B., Lee K. H., Mutkins K., Dunlop H. R., Shaw P. E., Kopidakis N., Burn P. L., Meredith P., A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells, Adv. Energy Mater.,2011,1,73.
    [9]Lincke G., On quinacridone and their supramolecular mesomerism within the crystal lattice, Dyes and Pigments,2002,169.
    [10]Lincke G., Review of thirty years of reseach on quinacridones. X-ray crystallography and crystal engineering-Part Ⅰ. Extension of the Donnay-Harker-Law, Dyes and Pigments, 2000,101.
    [11]Paulus E. F., Leusen F. J. J. and Schmidt M. U., Crystal structures of quinacridones, CrysEngComm,2007,131.
    [12]Shaheen S. E., Jabbour G. E., Kippelen B., Peyghambarian N., Anderson J. D., Marder S. R., Amstrong N. R., Bellmann E., Grubbs R. H., Organic Light-Emitting Diode with 20 lm/W Efficiency Using a Triphenyldiamine Side-Goup Polymer as the Hole Transport Layer, Appl. Phys. Lett.2002,3212.
    [13]Murata H., Merritt C. D., Inada H., Shirota Y., Kafafi Z. H., Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability, Appl. Phys. Lett.1999,3252.
    [14]Liu J., Gao B., Cheng Y., Xie Z., Geng Y., Wang L., Jing X., Wang F., Novel White Electroluminescent Single Polymer Derived from Fluorene and Quinacridone, Macromolecules 2008,1162.
    [15]Yanagisawa H., Mizuguchi J., Aramaki S., Sakai Y., Organic Field-Effect Transistor Devices Based on Latent Pigments of Unsubstituted Diketopyrrolopyrrole or Quinacridone,. J. Appl. Phy.2008,4728.
    [16]Klein G., Kaufmann D., Schurch S., Reymond J. L., A fluorescent metal sensor based on macrocyclic chelation, Chem. Commun.2001,561.
    [17]Law K. Y., Organic photoconductive materials:recent trends and development, Chem. Rev.1993,449.
    [18]Chen J. J-A., Chen T. L., Kim B. S., Poulsen D. A., Mynar J. L., Frechet J. M. J. and Ma B., Quinacridone based molecular donors for solution processed bulk-heterojunction organic solar cells, Applied. Materials & Interface,2010,2,2679.
    [1]Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T., Hummelen J. C., 2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78,841.
    [2]Hoppe H., Niggemann M., Winder C., Kraut J., Hiesgen R., Hinsch A., Meissner D., Sariciftci N. S., Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk-Heterojunction Solar Cells, Adv. Funct. Mater.,2004,14,1005.
    [3]Hoppe H., Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem.,2006,16,45.
    [4]Zhang F. L., Jespersen K. G., Bjorstrom C., Svensson M., Andersson M. R., Sundstrom V., Magnusson K., Moons E., Yartsev A., Inganas O., Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends, Advanced Funct. Mater.,2006,16,667.
    [5]Duren J. K. J., Yang X. N., Loos J., Tang C. W., Bulle-Lieuwma, Sieval A. B., Hummelen J. C., Janssen R. A. J., Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance, Adv. Funct. Mater.,2004, 14,425.
    [6]Yang X. N., Duren J. K. J., Janssen R. A. J., Michels M. A. J., Loos J., Morphology and Long-Term Stability of the Active Layer in a Poly(p-phenylene vinylene) /methanofullerene Plastic Photovoltaic Device, Macromolecules,2004,37,2151.
    [7]Yang X. N., Loos J., Veenstra S. C., Verhees W. J. H., Wienk M. M., Kroon J. M., Michels M. A. J., Janssen R. A. J., Nanoscale Morphology of High-Performance Polymer Solar Cells, Nano Lett.,2005,5,579.
    [8]Chirvase D., Parisi J., Hummelen J. C., Dyakonov V., Nanotechnology,2004,15,1317.
    [9]Li G., Shrotriya V., Yao Y., Huang J. S., Yang Y., Manipulating regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells, J. Mater. Chem.2007,17,3126.
    [10]Li G., Yao Y., Yang H., Shrotriya V., Yang G., Yang Y., "Solvent Annealing" Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes, Adv. Funct. Mater.2007,17,1636.
    [11]Hoppe H., Sariciftci N. S.,J.Mater. Chem. Morphology of polymer/fullerene bulk heteroj unction solar cells,2006,16,45-61.
    [12]Debenedetti P. G., Stillinger F. H., Supercooled liquids and the glass transition, Supercooled liquids and the glass transition, Nature,2001,410,259.
    [13]Ana L. P., etc. Solvent- and thermal-induced crystallization of poly-L-lactic acid in supercritical CO2 medium, J. Appl. Poly. Sci.,2008,111,291.
    [14]Obeid R., Tanaka F., Winnik F. M., Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water, Macromolecules,2009,42,5818.
    [15]Treat N. D., Brady M. A., Smith G., Toney M. F., Kramer E. J., Hawker C. J., Chabinyc M. L., Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend, Adv. Energy Mater.,2011,1,82.
    [16]Yang X. N., Loos J., Veenstra S. C., Verhees W. J. H., Wienk M. M., Kroon J. M., Michels M. A. J., Janssen R. A. J., Nanoscale Morphology of High-Performance Polymer Solar Cells, Nano Lett.,2005,5,579.
    [17]Chirvase D., Parisi J., Hummelen J. C., Dyakonov V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites, Nanotechnology,2004,15, 1317.
    [1]Tang C. W., Two-layer organic photovoltaic cell, Appl. Phys. Lett.,1986,48,183.
    [2]Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science,1995,270,1789.
    [3]Gunes S., Neugebauer H., Sariciftci N. S., Conjugated polymer-based organic solar cells, Chemical Reviews,2007,107,1324.
    [4]Coakley K. M., McGehee M. D., Conjugated polymer photovoltaic cells, Chem. of Mater.,2004,16, (23),4533-4542.
    [5]Chen J. W., Cao Y., Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices, Acc. Chem. Res.,2009,42, 1709.
    [6]Kim J. Y, Kim S. H., Lee H. Ho., Lee K., Ma W., Gong X., A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater.2006,18,572.
    [7]Ma W. L., Yang C. Y., Gong X., Lee K., Heeger A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater.,2005,15,1617.
    [8]Irwin M. D., Buchholz D. B., Hains A. W., Chang R. P. H., Marks T. J., PNAS,2008, 105,2783.
    [9]Dennler G., Scharber M. C, Brabec C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater.,2009,21,1323.
    [10]Li G., Shrotriya V., Huang J. S., Yao Y., Moriarty T., Emery K., Yang Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater.,2005,4,864.
    [11]Reyes-Reyes M., Kim K., and Carroll D. L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6)C61 blends, Appl. Phys. Lett.,2005,87,083506.
    [12]Kim Y., Cook S., Tuladhar S. M., Choulis S. A., Nelson J., Durrant J. R., Bradley D. D. C., Giles M., McCulloch I., Ha C.-S., Ree M., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, Nat. Mater.2006,5,197.
    [13]Lenes M., Wetzelaer G.-J. A. H., Kooistra F. B., Veenstra S. C., Hummelen J. C., Blom P. W. M., Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells, Adv. Mater.2008,20,2116.
    [14]Ross R. B., Cardona C. M., Guldi D. M., Sankkaranarayanan S. G., Reese M. O., Kopidakis N., Peet J., Walker B., Bazan G., Keuren E. V., Holloway B. C., Drees M., Endohedral fullerenes for organic photovoltaic devices, Nat. Mater.2009,8,208.
    [15]Brabec C. J., Cravino A., Meissner D., Sariciftci N. S., Fromherz T., Rispens M. T., Sanchez L., Hummelen J. C., Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11,374.
    [16]Hou J. H., Chen H.-Y., Zhang S. Q., G. Li, Yang Y, Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole, J. Am. Chem. Soc.2008,130,16144.
    [17]Gommans H., Aernouts T., Verreet B., Heremans P., Medina A., Claessens C. G., Torres T., Perfluorinated Subphthalocyanine as a New Acceptor Material in a Small-Molecule Bilayer Organic Solar Cell, Adv. Funct. Mater.,2009,19,3435.
    [18]Ooi Z. E., Tam T. L., Shin R. Y. C., Chen Z. K., Kietzke T., Sellinger A., Baumgarten M., Mullen K., Demello J. C., Solution processable bulk-heterojunction solar cells using a small molecule acceptor, J. Mater. Chem.,2008,18,4619.
    [19]Woo C. H., Holcombe T. W., Unruh D. A., Sellinger A., Frechet J. M. J., Chem. Mater., Phenyl vs Alkyl Polythiophene:A Solar Cell Comparison Using a Vinazene Derivative as Acceptor,2010,22,1673.
    [20]Sonar P., Ng G. M., Lin T. T., Dodabalapur A., Chen Z. K., Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives:novel acceptors for organic solar cells, J. Mater. Chem.,2010,20,3626.
    [21]Schwenn P. E., Gui K., Nardes A. M., Krueger K. B., Lee K. H., Mutkins K., Dunlop H. R., Shaw P. E., Kopidakis N., Burn P. L., Meredith P., Plasmonic Back Reflectors:A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells, Adv. Energy Mater.,2011,1,73.
    [22]Lim Y. F., Shu Y., Parkin S. R., Anthony J. E., Malliaras G. G., Soluble n-type pentacene derivatives as novel acceptors for organic solar cells, J. Mater. Chem.,2009,19, 3049.
    [23]Brunetti F. G., Gong X., Tong M., Heeger A. J., Wudl F., Strain and Huckel Aromaticity:Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics, Angew. Chem. Int. Ed.,2010,49,532.
    [24]Kivala M., Boudon C., Gisselbrecht J. P., Enko B., Seiler P., I. Muller B., Langer N., Jarowski P. D., Gescheidt G., Francois Diederich, Organic Super-Acceptors with Efficient Intramolecular Charge-Transfer Interactions by [2+2] Cycloadditions of TCNE, TCNQ, and F4-TCNQ to Donor-Substituted Cyanoalkynes, Chem. Eur. J.,2009,15,4111.
    [25]Shin R. Y. C., Kietzke T., Sudhakar S., Dodabalapur A., Chen Z. K., Sellinger A., Chem. Mater., N-Type Conjugated Materials Based on 2-Vinyl-4,5-dicyanoimidazoles and Their Use in Solar Cells,2007,19,1892.
    [26]Woo C. H., Holcombe T. W., Unruh D. A., Sellinger A., Frechet J. M. J., Phenyl vs Alkyl Polythiophene:A Solar Cell Comparison Using a Vinazene Derivative as Acceptor, Chem. Mater.,2010,22,1673.
    [27]Zhao G. J., He Y. J., Y. Li F.,6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization, Adv. Mater. 2010,22,4355.
    [28]Matsuo Y., Sato Y., Niinomi T., Soga I., Tanaka H., Nakamura E., Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60] fullerene, J. Am. Chem. Soc.,2009,131,16048.
    [29]Pfuetzner S., Meiss J., Petrich A., Riede M., Leo K., Improved bulk heteroj unction organic solar cells employing C70 fullerenes, Appl. Phys. Lett.,2009,94,223307.
    [30]Troshin P. A., Hoppe H., Renz J., Egginger M., Yu J. L., Goryachev A. E., Peregudov A. S., Lyubovskaya R. N., Gobsch G., Sariciftci N. S., Razumov V. F., Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells, Adv. Funct. Mater.,2009,19,779.
    [31]Wang X. J., Perzon E., Oswald F., Langa F., Admassie S., Andersson M. R., Inganas O., Enhanced photocurrent spectral response in low-bandgap polyfluorene and C-70-derivative-based solar cells, Adv. Funct. Mater.,2005,15,1665.
    [32]Gross E. M., erson J. D., Slaterbeck A. F., Thayumanavan S., Barlow S., Zhang Y., Marder S. R., Hall H. K., Nabor M. F., Wang J. R., Mask E. A., Armstrong N. R., R. Wightman M., Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones:Cross-Reactions with Triarylamines Lead to Singlet Emission through Triplet-Triplet Annihilation Pathways, J. Am. Chem. Soc.2000,122, 4972.
    [33]Chen J. J. A., Chen T. L., Kim B. S., Poulsen D. A., Mynar J. L., Frechet J. M. J., Ma B., Quinacridone-Based Molecular Donors for Solution Processed Bulk-Heterojunction Organic Solar Cells, ACSAppl. Mater. Interface 2010,2,2679.
    [34]Ye K. Q., WanJ. g, Sun H., Liu Y, Mu Z., Li F., Jiang S., Zhang J., Zhang H., Wang Y., Che C. M., Supramolecular Structures and Assembly and Luminescent Properties of Quinacridone Derivatives,J. Phys. Chem.B 2005,109,8008.
    [35]Wang J., Zhao Y. F., Dou C. D., Sun H., Xu P., Ye K. Q., Zhang J. Y., Jiang S. M., Li F., Wang Y., Alkyl and Dendron Substituted Quinacridones:Synthesis, Structures, and Luminescent Properties, J. Phys. Chem. B 2007,111,5082.
    [36]Sun H., Zhao Y. F., Huang Z. W., Wang Y., Li F., 1H NMR Study on the Self-Association of Quinacridone Derivatives in Solution, J. Phys. Chem. A 2008,112, 11382.
    [37]Zhao Y. F., Mu X. Y., Bao C. X., Fan Y., Zhang J. Y., Wang Y., Alkyl Chain Length Dependent Morphology and Emission Properties of the Organic Micromaterials Based on Fluorinated Quinacridone Derivatives, Langmuir 2009,25,3264.
    [38]Fan Y., Zhao Y. F., Ye L., Li B., Yang G. D., Y. Wang, Polymorphs and Pseudopolymorphs of N,N-Di(n-butyl)Quinacridone:Structures and Solid-State Luminescence Properties, Cryst. Growth & Design 2009,9,1421. [39] Dou C. D., Wang C. G., Zhang H. Y., Gao H. Z., Wang Y., Novel Urea-Functionalized Quinacridone Derivatives:Ultrasound and Thermo Effects on Supramolecular Organogels, Chem. Eur. J.2010,16,10744.
    [40]Park Y. D., Park J. K., Seo J. H., Yuen J. D., Lee W. H., Cho K., Bazan G. C., Solubility-Controlled Structural Ordering of Narrow Bandgap Conjugated Polymers, Adv. Energy Mater.2011,1,63.
    [41]Hoven C. V., Dang X. D., Coffin R. C., Peet J., Nguyen T. Q., Bazan G. C., Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives, Adv. Mater.2010,22, E63.
    [42]Lee J. K., Ma W. L., Brabec C. J., Yuen J., Moon J. S., Kim J. Y., Lee K., Bazan G. C., Heeger A. J., Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells, J. Am. Chem. Soc.2008,130,3619.
    [43]Treat N. D., Brady M. A., Smith G., Toney M. F., Kramer E. J., Hawker C. J., Chabinyc M. L., Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend, Adv. Energy Mater.,2011,1,82.
    [44]Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T., Hummelen J. C.,2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001,78,841.
    [45]Hoppe H., Niggemann M., Winder C., Kraut J., Hiesgen R., Hinsch A., Meissner D., Sariciftci N. S., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells, Adv. Funct. Mater.,2004,14,1005.
    [46]Hoppe H., Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem.,2006,16,45.
    [47]Zhang F. L., Jespersen K. G., Bjorstrom C., Svensson M., Andersson M. R., Sundstrom V., Magnusson K., Moons E., Yartsev A., Inganas O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends, Advanced Funct. Mater.,2006,16,667.
    [48]Duren J. K. J., Yang X. N., Loos J., Tang C. W., Bulle-Lieuwma, Sieval A. B., Hummelen J. C., Janssen R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance,Adv. Funct. Mater.,2004,14, 425.
    [49]Yang X. N., Duren J. K. J., Janssen R. A. J., Michels M. A. J., Loos J., Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices, Macromolecules,2004, 37,2151.
    [50]Yang X. N., Loos J., Veenstra S. C., Verhees W. J. H., Wienk M. M., Kroon J. M., Michels M. A. J., Janssen R. A. J., Nanoscale Morphology of High-Performance Polymer Solar Cells, Nano Lett.,2005,5,579.
    [51]Chirvase D., Parisi J., Hummelen J. C., Dyakonov V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites, Nanotechnology,2004,75, 1317.
    [52]Li G., Shrotriya V., Yao Y., Huang J. S., Yang Y., Manipulating regioregular poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester blends-route towards high efficiency polymer solar cells, J. Mater. Chem.2007,17,3126.
    [53]Li G., Yao Y., Yang H., Shrotriya V., Yang G., Yang Y.; "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Advanced Funct. Mater.2007,17,1636.
    [54]Hoppe H., Sariciftci N. S., Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem. 2006,16,45-61. [55] Blom P. W. M., Dejong M. J. M., VanMunster M. G., Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene), Phys. Rev. B 1997,55, 656.
    [56]Zhou Y. H., Pei J. N., Dong Q. F., Sun X. B., Liu Y. Q., Tian W. J., Donor-Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heteroj unction Solar Cells, J. Phys. Chem. C.2009,113,7882.
    [57]Mihailetchi V. D., Duren J. K. J. V., Blom P. W. M., Hummelen J. C., Janssen R. A. J., Kroon J. M., Rispens M. T., Verhees W. J. H., Wienk M. M., Electron Transport in a Methanofullerene, Adv. Funct. Mater.2003,13,43.
    [1]Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science,1995,270,1789.
    [2]Gunes S., Neugebauer H. S., Sariciftci N. S., Conjugated Polymer-Based Organic Solar Cells, Chem. Rev.,2007,107,1324.
    [3]Coakley K., Mcgehee M. D., Conjugated Polymer Photovoltaic Cells, Chem. Mater. 2004, 16,4533.
    [4]Chen J. W., Cao Y., Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices, Acc. Chem. Res.,2009,42, 1709.
    [5]Ramsdale C. M., Barker J. A., Arias A. C., MacKenzie J. D., Friend R. H., Greenham N. C., The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices, J. Appl. Phys.2002,92,4266.
    [6]Kietzke T., Egbe D. A. M., Horhold H.-H., Neher D., Comparative Study of M3EH-PPV-Based Bilayer Photovoltaic Devices, Macromolecules,2006,39,4018.
    [7]Rand B. P., Burk D. P., Forrest S. R., Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Phys. Rev. B 2007,75,115327.
    [8]Brumbach M., Placencia D., Armstrong N. R., Titanyl Phthalocyanine/C60 Heterojunctions:Band-Edge Offsets and Photovoltaic Device Performance, J. Phys. Chem. C,2008,112,3142.
    [9]Brabec C. J., Cravino A., Meissner D., Sariciftci N. S., Fromherz T., M. T. Rispens, Sanchez L., Hummelen J. C.,Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater.2001,11,374.
    [10]Gadisa A., Svensson M., Andersson M. R., Inganas O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative, Appl. Phys. Lett.,2004,84,1609.
    [11]Potscavage W. J., JR., Sharma A., Kippelen B., Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage, Acc. Chem. Res.,2009,42,1758.
    [12]任殿胜,华庆恒,严如岳,刘咏梅,XPS法测量铝箔表面氧化铝的厚度,分子测试学报,1996年04期。
    [13]Singh V. P., Singh R.S., Parthasarathy B., Aguilera A, Antony J., Payne M., Copper-phthalocyanine-based organic solar cells with high open-circuit voltage, Appl. Phys. Lett.2005,86,082106.
    [14]Singh V. P., Parthasarathy B., Singh R. S., Aguilera A, Antony J., Payne M., Characterization of high-photovoltage CuPc-based solar cell structures, Solar Energy Materials and Solar Cells,2006,90,798.
    [1]Luo J. D., Xie Z. L., Lam J. W. Y, Cheng L., Chen H. Y, Qiu C.F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B. and Tang B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,1740.
    [2]Ning Z. J., Chen Z., Zhang Q., Yan Y. L., Qian S. X., Cao Y and Tian H., Aggregation-induced Emission (AIE)-active Starburst Triarylamine Fluorophores as Potential Non-doped Red Emitters for Organic Light-emitting Diodes and C12 Gas Chemodosimeter, Adv. Funct Mater.2007,17,3799.
    [3]Liu Y., Tao X. T., Wang F. Z., Shi J. H., Sun J. L., Yu W. T., Ren Y., Zou D. C. and Jiang M. H., Intermolecular Hydrogen Bonds Induce Highly Emissive Excimers: Enhancement of Solid-State Luminescence, J. Phys. Chem. C,2007,111,6544.
    [4]Liu Y., Tao X. T., Wang F. Z., Dang X. N., Zou D. C., Ren Y. and Jiang M. H., Aggregation-Induced Emissions of Fluorenonearylamine Derivatives:A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes, J. Phys. Chem. C,2008,112, 3975.
    [5]Xu J. L., Liu X. F., Lv J., Zhu M., Huang C. S., Zhou W. D., Yin X. D., Liu H. B., Li Y. L. and Ye J. P., Morphology Transition and Aggregation-Induced Emission of an Intramolecular Charge-Transfer Compound, Langmuir,2008,24,4231.
    [6]An B. K., Kwon S. K., Jung S. D. and Park S. Y., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles, J. Am. Chem. Soc.,2002,124,14410.
    [7]Tong H., Dong Y Q., HauBler M., Hong Y. N., Lam J. W. Y., Sung H. H-Y., Williams I. D., Kwok H. S. and Tang B. Z., Molecular packing and aggregation-induced emission of 4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives, Chem. Phys. Lett.,2006,428,326.
    [8]Chan C. P., Haeussler M., Tang B. Z., Dong Y Q., Sin K-K., Mak W-C., Trau D., Seydack M. and Renneberg R., Silole nanocrystals as novel biolabels, Journal of Immunological Methods.,2004,295,111.
    [9]Ren Y., Dong Y. Q., Lam J. W. Y., Tang B. Z. and Wong K. S., Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique, Chem. Phys. Lett.,2005,402,468.
    [10]Ren Y., Lam J. W. Y., Dong Y. Q., Tang B. Z. and Wong K. S., Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates, J. Phys. Chem. B,2005,109,1135.
    [11]Zeng Q., Li Z., Dong Y. Q., Di C., Qin A. J., Hong Y N., Ji L., Zhu Z. C., Jim C. K. W., G. Yu, Li Q. Q., Li Z. A., Liu Y. Q., Qin J. G. and Tang B. Z., Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects, Chem. Commun.,2007,70.
    [12]Chen J. W., Xu B., Ouyang X. Y., Tang B. Z. and Cao Y.. Aggregation-Induced Emission of cis,cis-1,2,3,4-Tetraphenylbutadiene from Restricted Intramolecular Rotation, J. Phys. Chem. A,2004,108,7522.
    [13]Tong H., Dong Y. Q., Hong Y N., Haussler M., Lam J. W. Y., Sung H. H.-Y., Yu X. M., Sun J. X., Williams I. D., Kwok H. S., and Tang B. Z., Aggregation-Induced Emission: Effects of Molecular Structure, Solid-State Conformation, and Morphological Packing Arrangement on Light-Emitting Behaviors of Diphenyldibenzofulvene Derivatives, J. Phys. Chem.C,2007,111,2287.
    [14]An B. K., Lee D. S., Lee J. S., Park Y. S., Song H. S. and Park S. Y., Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative, J. Am. Chem. Soc.2004,126,10232.
    [15]Xie Z. Q., Yang B., Xie W. J., Liu L. L., Shen F. Z., Wang H., Yang X. Y., Wang Z. M., Li Y P., Hanif M., Yang G. D., Ye L. and Ma Y G., A Class of Nonplanar Conjugated Compounds with Aggregation-Induced Emission:Structural and Optical Properties of 2,5-Diphenyl-1,4-distyrylbenzene Derivatives with All Cis Double Bonds, J. Phys. Chem. B,2006,110,20993.
    [16]Tong H., Hong Y. N., Dong Y. Q., Ren Y., Haussler M., Lam J. W. Y., Wong K. S., and Tang B. Z.. Color-Tunable, Aggregation-Induced Emission of a Butterfly-Shaped Molecule Comprising a Pyran Skeleton and Two Cholesteryl Wings, J. Phys. Chem. B,2007,111, 2000.
    [17]Yuan C. X., Tao X. T., Ren Y., Li Y, Yang J. X., Yu W. T., Wang L. and Jiang M. H., Synthesis, Structure, and Aggregation-Induced Emission of a Novel Lambda ((?))-Shaped Pyridinium Salt Based on Troger's Base, J. Phys. Chem. C,2007,111,12811.
    [18]Smith J. A., West R. M. and Allen M., Acridones and Quinacridones:Novel Fluorophores for Fluorescence Lifetime Studies, Journal of Fluorecence,2004,14,151.
    [19]Demas J. N. and Grosby G. A., Measurement of photoluminescence quantum yields. Review, J. Phy. Chem.,1971,75,991.
    [20]Lewschin W. L., Z. Phys.1927,43,230.
    [21]Rabinowitch E., and Epstein L., Polymerization of Dyestuffs in Solution. Thionine and Methylene Bluel, J. Am. Chem. Soc.1941,63,69.
    [1]Thomas. S. The Hydrogen Bond in the Solid State, Angew. Chem. Int. Ed.2002,41,48.
    [2]Zhou, T. L.; Li, F.; Fan, Y.; Song, W. F.; Mu, X. Y.; Zhang, H. Y.; Wang, Y. Hydrogen-bonded dimer stacking induced emission of aminobenzoic acid compounds, Chem. Commun.2009,3199.
    [3]Zhang, Z. L.; Zhang, Y.; Yao, D. D.; Bi, H.; Iqbal, J.; Fan, Y.; Zhang, H. Y.; Wang, Y. Anthracene-Arrangement-Dependent Emissions of Crystals of 9-Anthrylpyrazole Derivatives, Cryst. Growth Des.2009,9,5069.
    [4]Xie, Z. Q.; Liu, L. L.; Yang, B.; Yang, G. D.; Ye. L.; Li, M.; Ma, Y. G. Polymorphism of 2,5-Diphenyl-1,4-distyrylbenzene with Two cis Double Bonds:The Essential Role of Aromatic CH/7π Hydrogen Bonds, Cryst. Growth Des.2005,5,1959.
    [5]Savarimuthu, P. A.; Sunil, V.; Sylvia, M. D. Impact of molecular structure on intermolecular interactions and organic solid state luminescence in supramolecular systems, J. Phys. Org. Chem.2010,23 1074.
    [6]Gautam, R. D. Hydrogen Bridges in Crystal Engineering:Interactions without Borders, Acc. Chem. Res.2002,35,565.
    [7]Lin, I. J.; Erika, B. G.; Timothy, E. M.; William, M. W.; John, L. M., Correlation between Hydrogen Bond Lengths and Reduction Potentials in Clostridium pasteurianum Rubredoxin, J. Am. Chem. Soc.2003,125,1464.
    [8]Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures, Springer, Berlin,1991.
    [9]Yao, Y. S.; Xiao, J.; Wang, X. S.; Deng, Z. B.; Zhang, B. W., Starburst DCM-Type Red-Light-Emitting Materials for Electroluminescence Applications, Adv. Funct. Mater. 2006,16,709.
    [10]Vanallang, J. A.; Reynold, A.; Maier, D. P. Reactions of cyanoacetic acid with 2,6-diphenyl-4-pyrone, J. Org. Chem.1968,35,4418.
    [11]Nobuko, Y.; Tadashi, O. A rapid detection of PCR amplification product using a new fluorescent intercalator; the pyrylium dye, P2, Nucleic Acids Research,1995,23,1445.
    [12]Karmazin, V. P.; Knyazhanskii, M. I.; Olekhnovich, E. P.; Dorofeenko, G. N. Journal of Applied Spectroscopy,1975,22,234.
    [13]Takuya, Y., Junpei, K.; Takaki, K., Synthesis of highly fluorescent diketopyrrolopyrrole derivative and two-step response of fluorescence to acid, Tetrahedron Letters.2010,51,1596.
    [14]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.
    [15]Fabien, F. V.; Mark, R. J.; Gordon, J. K.; Judith, A. K. H.; Stewart, F. P. How Phonons Govern the Behavior of Short, Strong Hydrogen Bonds in Urea-Phosphoric Acid, J. Am. Chem. Soc.2006,128,2963.
    [16]Yitbarek, H. M.; Ryza, N. M. Transition from Moderate to Strong Hydrogen Bonds: Its Identification and Physical Bases in the Case of O-H…O Intramolecular Hydrogen Bonds, J. Phys. Chem. A,2008,112,134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700