几种分子组装体振动光谱的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Density Functional Theory Studies on Vibrational Spectroscopy of Several Molecular Assemblied Systems
  • 作者:程建波
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2005
  • 导师:赵冰
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-10-01
摘要
振动光谱是研究分子组装体的重要方法,谱带位置、强度及光谱形状等都与组装体结构的性质密切相关。通过研究分子的振动光谱即可了解分子组装前后结构与性能上的变化,进而进一步了解组装机理、基底的形貌和性能、以及分子在基底上的取向等一些信息。本文使用密度泛函理论中的B3LYP 方法,对几种组装体分子的结构和振动光谱进行了研究,取得了令人满意的结果。
    1、利用DFT理论对MHOCPOOB 和MHOCPOOB的结构和振动频率进行了B3LYP/6-31G(d,p)水平下的计算。结果表明,实验光谱与计算光谱之间符合地很好。计算所得的最稳定结构以及在计算基础上对光谱所进行地指认,有助于人们对液晶分子在Sm-CA*相下刚性部分与碳氢链的取向问题的阐述。两个碳氢链(手性与非手性)均为全反式的zigzag构象;非手性链的取向与刚性核的取向基本是一致的,而手性链则与刚性片断间相互垂直。这个结论不仅是全新的,而且不同于已有结果所显示的:反铁电液晶与铁电液晶的碳氢链是无序的结论。
    2、依据DFT 理论的计算结果,首次对该分子的振动光谱给出全面而准确地解析与指认。根据理论计算结果和对不同浓度下银基底上的SERS 光谱的分析,应用SERS 表面选择定则我们得到,随着溶液浓度的增加BPENB 分子在新型银基底上的取向,是按照从完全平躺式到近于平躺式再倾斜式的方式变化的。
    3、计算了4-巯基吡啶单体的硫醇式与酮式两种互变异构体及其二聚体和二水合体的结构,并计算了它们的振动光谱,对形成二聚体和二水合体的结构和光谱上的变化与差别做了初步分析,对它们的光谱做了指认;并与4MPY 的FT-Raman 和不同pH 值溶液的Raman 光谱做了对比。
1. This is the first time to combine the density functional theory (DFT) and two-dimensional (2D) correlation spectroscopic techniques in one results analysis, to our knowledge. The structures and vibrational frequencies of the chiral anti-ferroelectric liquid crystal (AFLC) molecule, 4-(1-methyheptyloxycarbonyl) phenyl-4-(4`-octyloxy) benzoate (MHOCPOOB) and (1-methylheptyl)4-(4’-decyloxy-4-biphenyl) oxymethylene benzoate (MHDBOB) have been calculated using the DFT method with the B3LYP/6-31G(d,p) level. The observed vibrational spectra have been resolved and assigned in detail by comparison to the computed values. The results indicate that the computed and observed spectra are in good agreement with each other. The stable molecular structure obtained with the DFT theory, shows that the two hydrocarbon chains are all-trans zigzag conformer and nearly perpendicular to each other. The orientation of the mesogen part and the hydrocarbon chains for MHOCPOOB and MHDBOB in the Sm-CA* phase are investigated by employing the polarization-angle-dependent infrared spectra in the electric field induced and the 2D correlation spectroscopy. After combining with the DFT method and 2D correlation spectroscopy, we obtained that the transition dipole moments of the
    CH2 and CH2* stretching modes are oriented at the reverse direction and the transition dipole moments of the CH2 and C=O stretching modes are almost the same orientation. Since the orientation of the CH2 transition dipole moment is nearly perpendicular to the hydrocarbon chain axis, the orientation of the achiral chain and the mesogen core are almost the same direction, and with the chiral chain and the mesogen part are nearly perpendicular to each other. We can deduce from the results above that the two CH2 chains (achiral and chiral) are both a probable all-trans zigzag conformer. The conclusions are quite new and different from the previous results, which show that the hydrocarbon chains of AFLC and/or FLC are in disorder. The obtained stable structure and the assignment of vibrational spectra are helpful in the interpretation of the orientation of the mesogen part and the hydrocarbon chains in the Sm-CA* phase. From the discussion above, the results, which are that the two CH2 chains (achiral and chiral) are both a probable all-trans zigzag conformer and nearly perpendicular to each other in AFLC at the Sm-CA* phase, are normal conclusions. 2. In the second part, the molecular structure and vibrational spectra of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene (BPENB) were studied by using B3LYP/6-31++G(d,p) method, as well as were investigated by the Fourier transform infrared (FTIR), Fourier transform Raman spectra (FT-Raman) and SERS spectra of BPENB on a new Ag substrates at different concentrations. The assignments of the vibrational spectra on BPENB are well resolved and accurately assigned on the basis of the calculation by using DFT methods for the first time. The results of the optimized molecular structure obtained using B3LYP/6-31++G(d,p) level suggest a strong conjugation and π-electron
    delocalization and a planar molecule for BPENB. The two conformations (all-trans and trans-cis) of BPENB have been studied by means of DFT methods. The conversion between two conformations should be rapid and the population of these two conformations is almost the same at the room temperature because of a very small absolute energy difference ΔE0 (0.178kJ/mol with the B3LYP/6-31++G(d,p) methods). According to the results of assignments on FTIR, FT-Raman and SERS bands for BPENB, the B3LYP/6-31++G(d,p) method is very accurate in predicting harmonic vibrational frequencies and the normal modes, as well as the vibrational spectra were well resolved. On the basis of our theoretical calculations and the experimental SERS spectra recorded at different concentrations on a novel Ag substrates, the orientation of BPENB to the Ag substrate surface with the variation in concentration is discussed by employing the SERS surface selection rules. It is concluded that the orientation of BPENB on the new silver substrate is from a significantly tilted to almost flat or complete flat fashion with decreasing concentration and at the lowest concentration (1.0 ×10-9 mol L-1), BPENB adsorbs in a complete flat orientation, whereas at highest concentration (1.0 ×10-4 mol L-1) the orientation is considerably tilted. Additionally, we also suggest a model, which is employed describing the interaction of BPENB with the substrates, is that the interaction between BPENB and the metal surface via the N atom, and the chemisorption takes place but it is not strong. 3. To the best of our knowledge, this is the first report on the structures and vibrational spectra of the thiol and thione tautomers of 4MPY and their dihydrates and dimers with using the DFT method(B3LYP/6-311++G(d,p)) as well as their optimized molecular structures and vibrational frequencies.
    Comparing the calculated spectra to the experimental spectra (Raman spectra of the bulk and 4MPY in aqueous solutions with different pH values of 1.0, 6.0 and >12, respectively.), the assignments of vibrational spectra are performed on the monomer, dimers and dihydrates. The changes of structure and vibrational spectra on the dihydrates and dimers are also investigated. The results show the followings: (1). Raman spectra of the bulk of 4MPY is the combination of Raman spectra of the thiol and thione tautomers. The theoretical Raman spectra of the thione tautomer are agreement with the experimentals better than the thiol ones. This indicates that the thiol and thione tautomrs are coexisting in the bulk of 4MPY, and that the thione is the main component. (2). The structures and spectra of two tautomers are both greatly impacted on water molecules, due to the strong H-bonds between water molecules and two tautomers, and the influence on the thione tautomer is stronger than on the thiol by H2O. After comparing the theoretical spectra and experimental spectra with different pH values, we can find that the thiol and thione spectra are in better agreements with the raman spectra with pH 1.0 and 6.0, respectively. This result shows that the thiol and thione tautomers are the main component in aqueous solutions with pH 1.0 and 6.0, respectively. (3). The formation of dimer have a some influence on the structures and spectra of the monomer of 4MPY, but this effect is smaller than the waters. From the calculated results, we concluded that the theoretical spectra of the monomers or dimers have a little difference from each other but have a large difference from the raman spectrum of the bulk. One of the thione tautomer is in better agreements with the experimentals.
引文
[2] Wahlgren, U.; Pacansky, J.; Bagus, P. S. J. Chem. Phys. 1975, 63, 2847.
    [3] Pulay, P. Mol. Phys. 1969, 17, 97.
    [4] Gerretto, J.; Mills, I.M. J. Chem. Phys. 1968, 49, 1719.
    [5] Thomson, K.; Swanstrom, P. Mol. Phys. 1973, 26, 735.
    [6] Dupuis, M.; Rys J.; King, H. F. J. Chem. Phys. 1976, 65, 111.
    [7] Dupuis, M.; King, H. F. J. Chem. Phys. 1978, 68, 3998.
    [8] Pople, J. A.; Krishnan, R.; Schlegal, H. B.; Binkly, J. S. Int. J. Quant. Chem. Symp. 1979, 13, 225.
    [9] Shman, R.; Schlegel, H. B.; Pople J. A. J. Chem. Phys. 1980, 72, 4654.
    [10] Lgray, D.; Robiette, A. Mol. Phys. 1970, 37, 1901.
    [11] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh PA, 2003.
    [12] Pulay, P. In Applications of Electronics Structure Theory Schaefer. H. F. III Ed; Plenum; New York, 1977, P153.
    [13] Fograsi, G.; Pulay, P. In Molecular Spectra and Structure. Vol l4; Ed. Durig. J. R.
    [14] Fograsi, G.; Pulay, P. Annu. Rev. Phys. Chem. 1984, 36, 191.
    [15] Carby, P.; Zahradnik, R. Chem. Rev. 1986, 86, 709.
    [16] Healy, E. F.; Holder, A. J. Mol. Struct. 1993, 281, 141.
    [17] Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley,J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum Chem., Quantum Chem. Symp. 1981, 15, 269.
    [18] Hout, R. F.; Levi, B. A.; Hehre, W. J. J. Comput. Chem. 1982, 3, 234.
    [19] DeFrees, D. J.; McLean, A. D. J. Chem. Phys. 1985, 82, 333.
    [20] Pople, J. A.; Scott, A. P.; Wong, M. W.; Radom, L. Isr. J. Chem. 1993, 33, 345.
    [21] Harris, N. J. J. Phys. Chem. 1995, 99, 14689.
    [22] Rauhut, G.; Pulay, R. J. Phys. Chem. 1995, 99, 3093.
    [23] Bauschlicher, C. W.; Partridge, H. J. Chem. Phys. 1995, 103, 1788.
    [24] Finley, J. W.; Stephens, P. J. J. Mol. Struct. (THEOCHEM) 1995, 357, 225.
    [25] Peterson, P. E.; Abu-Omar, M.; Johnson, T.W.; Parham, R.; Goldin, D.; Henry, C.; Cook, A.; Dunn, K. M. J. Phys. Chem. 1995, 99, 5927.
    [26] Dewar, M. J. S; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902.
    [27] (a) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209. (b) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221.
    [28] (a) G1: Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622. (b) G2: Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. (c) See also: Curtiss, L. A.; Carpenter, J. E.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1992, 96, 9030.
    [29] Scotts, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
    [30] Miyawaki, J.; Sugawara, K.; Li, S.; Yang, D. J. Phys. Chem. A 2005, 109, 6697.
    [31] Malysheva, L.; Onipko, A.; Valiokas, R.; Liedberg, B. J. Phys. Chem. B 2005, 109, 13221
    [32] Sobolewski, A. L.; Domcke, W.; J. Phys. Chem. A 2002, 106, 4158.
    [33] Gruzdkov, Y. A.; Gupta, Y. M.; J. Phys. Chem. A 2001, 105, 6197.
    [34] Michalska, D.; Zierkiewicz, W.; Bienko, D. C.; Wojciechowski, W.; Zeegers-Huyskens, T. J. Phys. Chem. A. 2001, 105, 8734.
    [35] Fliegl, H.; Kohn, A.; Hattig, C.; Ahlrichs, R.; J. Am. Chem. Soc. 2003, 125, 9821.
    [36] Hommel, E. L.; Merle, J. K.; Ma, G.; Hadad, C. M.; Allen, H. C. J. Phys. Chem. B 2005, 109, 811
    [37] Yokoyama, H.; Watanabe, H.; Omi, T.; Ishiuchi, S.-i.; Fujii, M. J. Phys. Chem. A. 2001, 105, 9366.
    [38] Ault, B. S.; Balboa, A.; Tevault, D.; Hurley, M. J. Phys. Chem. A 2004, 108, 10094.
    [39] Saldyka, M.; Mielke, Z.; J. Phys. Chem. A 2002, 106, 3714.
    [40] Alexander, B. D.; Dines, T. J.; J. Phys. Chem. A 2004, 108, 146.
    [41] Chaban, G. M.; J. Phys. Chem. A 2004, 108, 4551.
    [42] El-Azhary, A. A.; Al-Kahtani, A. A.; J. Phys. Chem. A 2005, 109, 8041.
    [43] Watson, T. M.; Hirst, J. D.; J. Phys. Chem. A. 2002, 106, 7858.
    [44] Carbonniere, P.; Begue, D.; Pouchan, C.; J. Phys. Chem. A. 2002, 106, 9290.
    [45] Ch.; Schmitt, M.; J. Phys. Chem. A. 2002, 106, 3998
    [46] Ozeryanskii, V. A.; Pozharskii, A. F.; Bienko, A. J.; Sawka-Dobrowolska, W.; Sobczyk, L. J. Phys. Chem. A. 2005, 109, 1637.
    [47] Fujii, A.; Morita, S.-i.; Miyazaki, M.; Ebata, T.; Mikami, N. J. Phys. Chem. A. 2004, 108, 2652.
    [48] Durig, J. R.; Hur, S. W.; Gounev, T. K.; Feng, F.; Guirgis, G. A. J. Phys. Chem. A 2001, 105, 4216.
    [49] Nandini, G.; Sathyanarayana, D.N. Spectrochimica Acta Part A 2004, 60, 1115.
    [50] Szafran, M.; Koput, J. J. Mol. Struct. 2001, 565-566, 439.
    [51] Kowal, Andrzej T. J. Mol. Struct. 2003, 625, 71.
    [52] Morzyk-Ociepa, Barbara; Nowak, Maciej J.; Michalska, Danuta Spectrochimica Acta Part A 2004, 60, 2113.
    [53] F?rner, Wolfgang; Utz, Wolfram J. Mol. Struct. 2002, 618, 65.
    [54] Badawi, Hassan M. J. Mol. Struct. 2002, 584, 201.
    [55] Dimitrova, Yordanka. Spectrochimica Acta Part A 2004, 60, 2163.
    [56] Altun, A.; G?lcük, K.; Kumru, M. J. Mol. Struct. 2003, 637, 155.
    [57] Pergolese, Barbara; Bigotto, Adriano J. Mol. Struct. 2003, 655, 479.
    [58] Ramachandran, Gnanasekaran; Manogaran, Sadasivam J. Mol. Struct. 2005, 719, 7.
    [59] Durig, James R.; Hur, Seung Won; Guirgis, Gamil A. Spectrochimica Acta Part A 2003, 59, 2449.
    [60] Badawi, Hassan M.; El-Rayyes, Ali A. J. Mol. Struct. 2002, 588, 17.
    [61] Thomas, J. R.; DeLeeuw, B. J.; Vacek, G.; Schaefer, H. F. J. Chem. Phys. 1993, 98, 1336.
    [62] Thomas, J. R.; DeLeeuw, B. J.; Vacek, G.; Crawford, T. D.;Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1993, 99, 403.
    [63] a) Martin, J. M. L. J. Chem. Phys. 1994, 100, 8186. (b) Martin, J.M. L.; Taylor, P. R. Chem. Phys. Lett. 1994, 225, 473. (c) Martin, J. M. L. Chem. Phys. Lett. 1995, 242, 343. (d) Csaszar, A. G.; Allen, W. D. J. Chem. Phys. 1996, 104, 2746.
    [64] Oliphant, N.; Bartlett, R. J. J. Chem. Phys. 1994, 100, 6550.
    [65] Ana M.; Luis E. S.; Roberto S.; Francisco J. T. J. Phys. Chem. A 2002, 106, 10630.
    [66] Francisco, J. S. Chem. Phys. Lett. 1997, 265, 521.
    [67] (a) Galland, N.; Hannachi, Y.; Lanzisera, D. V.; Andrews, L. Chem. Phys. 2000, 255, 205. (b) Galland, N.; Hannachi, Y.; Lanzisera, D. V.; Andrews, L. Chem. Phys. Lett. 1998, 230, 140.
    [68] Wang, B. -C.; Chang, J. -C.; Jiang, J. -C.; Lin, S. -H. Chem. Phys. 2002,276, 93.
    [69] Schofield, D. P.; Kjaergaard, H. G.; J. Phys. Chem. A. 2005, 109, 1810.
    [70] Kjaergaard, H. G.; Low, G. R.; Robinson, T. W.; Howard, D. L.; J. Phys. Chem. A. 2002, 106, 8955.
    [71] Cooper, P. D.; Kjaergaard, H. G.; Langford, V. S.; McKinley, A. J.; Quickenden, T. I.; Schofield, D. P.; J. Am. Chem. Soc. 2003, 125, 6048
    [72] Letendre, L.; Dai, H. L.; J. Phys. Chem. A 2002, 106, 12035.
    [73] Galabov, B.; Yamaguchi, Y.; Remington, R. B.; Schaefer, H. F. J. Phys. Chem. A 2002, 106, 819.
    [74] Kubelka, J.; Keiderling, T. A.; J. Phys. Chem. A 2001, 105, 10922.
    [75] Reva, I. D.; Stepanian, S. G.; Adamowicz, L.; Fausto, R. J. Phys. Chem. A 2003, 107, 6351.
    [76] Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
    [77] Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    [78] Salahub, D. E.; Zerner, M. C. The Challenge of d and f Electrons ACS: Washington,D.C., 1989.
    [79] Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [80] Pople ,J. A.; Gill P. W. M.; Johnson, B. G. Chem. Phys. Letters 1992, 199, 557
    [81] Johnson, B. G.; Frisch M. J. J. Chem. Phys. 1994, 100, 7429.
    [82] Labanowski, J. K.; Andzelm, J. W. Density Functional Methods in Chemistry Springer-Verlag: New York, 1991.
    [83] Wong, M. W. Chem. Phys. Lett. 1996, 256, 391.
    [84] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
    [85] (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    [86] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. [87] Perdew, J. P.; Chevary,J. A.; Vosko, S. H. Phys. Rev. B 1992, 46, 6671.
    [88] Andzelm, J.; Shlahub, D. J. Chem. Phys. 1929, 90, 6371.
    [89] Fournier, R. J. Chem. Phys. 1990, 92, 5422.
    [90] Dunlap,B.; Andzelm, I. J. Phys. Rev. A 1992, 45, 81.
    [91] Komomicki, A.;. Frisch, M. J.Chem.Phys. 1993, 98, 1398.
    [92] Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Int. J. Quantum. Chem, Qauntum. Chem. Symp. 1992, 26, 319.
    [93] Handy, N. C.; Maslen, P. E.; Amos, R. D.; Pople, J. A.; Andrews, J. S. Chem. Phys. Lett. 1992, 28, 319.
    [94] Bauschlicher, C. W.; Langhoff, S. R. Spectrochimica Acta Part A 1997, 53, 1225.
    [95] Dixon, D. A.; Andzein, Fitzgerald, J. G.; Wimmer, E. J. Phys. Chem. 1991, 95, 9179.
    [96] Dixon, D. A.; Christe, K.O. J. Phys. Chem. 1992, 96, 1018.
    [97] Amos, R. D.; Murray, C. W.; Handy, N.C. Chem. Phys. Lett. 1993, 23, 489.
    [98] Johnson, B.G.; Gill, P. M. W.; Pople, J. A. J. Phys. Chem. 1993, 98, 5612
    [99] Hertwig, R. H.; Koch, W. J. Comput. Chem. 1995, 16, 576.
    [100] Zhou, X.; Liu, R. Specreochimica Acta Part A 1997, 53, 259.
    [101] Jarecki, A. A.; Kozlowski, D. M.; Pulay, P.; Ye, B. H.; Li, X. L. Spectrochimica Acta Part A 1997, 53, 1195.
    [102] Fograsi, G. Spectrochimica Acta Part A 1997, 53, 1211.
    [103] Santamaria R.; Charro, E.; Zacarias, A.; Casto, M. J. Comp. Chem. 1999, 20, 511.
    [104] (a) Giese, B.; McNaughton, D. J. Phys. Chem. B 2002, 106, 101. (b) Giese, B.; McNaughton, D. J. Phys. Chem. B 2002, 106, 1461.
    [105] Kalinsak, F.; Pongor, G. Spectrochimica Acta Part A 2002, 38, 1011.
    [106] Zhou, Z. Y; Guo, L. et al. Spectrochimica Acta Part A 2002, 58, 1553.
    [107] Biswas, N.; Umapathy, S. J. Phys. Chem. A 2000, 104, 2734.
    [108] Kozlowski, P. M.; Jarzeücki, A. A.; Pulay, P. J. Phys. Chem. 1996, 100, 13985.
    [109] Schlu1cker, S.; Koster, J.; Nissum, M.; Popp, J.; Kiefer, W. J. Phys. Chem. A 2001, 105, 9482.
    [110] Stoll, L. K.; Zgierski, M. Z.; Kozlowski, P. M. J. Phys. Chem. A 2003, 107, 4165.
    [111] (a) Oakes, R. E.; Spence, S. J.; Bell, S. E. J. J. Phys. Chem. A 2003, 107, 2964. (b) R Oakes, R. E.; Bell, S. E. J. J. Phys. Chem. A 2003, 107, 10953.
    [112] Rush III, T. S.; Kozlowski, P. M.; Piffat, C. A.; Kumble, R.; Zgierski, M.Z.; Spiro, T. J. Phys. Chem. B 2000, 104, 5020.
    [113] Kozlowski, P. M.; Kozlowski, P. M.; Jarzeücki, A. A.; Zgierski, M. Z. etal. J. Phys. Chem. A 1999, 103, 1357.
    [114] Kudoh, S.; Takayanagi, M.; Nakata, M. Chem. Phys. Lett. 2000, 322, 363.
    [115] Gellini, C.; Moroni, L. ; Muniz-Miranda, M. J. Phys. Chem. A 2002, 106,10999.
    [116] Dubis, A.T.; Grabowski, S. J.; Romanowska, D. B.; Misiaszek, T.;Leszczynski, J. J. Phys. Chem. A 2002, 106, 10613.
    [117] Leopold, N.; Baena, J. R.; Bolboaca, M.; Cozar, O.; Kiefer, W.; Lendl, B.Vib. Spectrosc. 2004, 36, 47.
    [118] Robertson, E. G.; McNaughton, D. J. Phys. Chem. A 2003, 107, 642.
    [119] Kiyohara, T.; Shinohara, H.; Kasahara, T.; Okubo, R.; Itoh, K. J. Phys.Chem. B 2003, 107, 5008.
    [120] Zierkiewicz, W.; Michalska, D. J. Phys. Chem. A 2003, 107, 4547.
    [121] Morsy, M. A.; Al-Khaldi, M. A.; Suwaiyan, A. J. Phys. Chem. A 2002,106, 9196.
    [122] Unno, M.; Kumauchi, M.; Sasaki, J.; Tokunaga, F.; Yamauchi, S. J. Phys.Chem. B 2003, 107, 2837.
    [123] Kortus, J.; Pederson, M. R.; Richardson, S. L. Chem. Phys. Lett. 2001,340, 565.
    [124] Chu, W.; LeBlanc, R. J.; Williams, C. T.; Kubota, J.; Zaera, F. J. Phys.Chem. B 2003, 107, 14365.
    [125] Reiher, M.; Brehm, G.; Schneider, S. J. Phys. Chem. A 2004, 108, 734.
    [126] Bahgat, K. Spectrchim. Acta A 2004, 60, 1557.
    [127] Krishnakumar, V.; Keresztury, G.; Sundius, T.; Ramasamy, R. J. Mol.Struct. 2004, 702, 9.
    [128] Gordon, R.G. Adv. Magnetic Reson. 1968, 3, 1.
    [129] Bratos, S.; Rios, J.; Ouissani, Y. J. Chem. Phys. 1970, 52, 439.
    [130] Bratos, S. J. Chem. Phys. 1975, 63, 3499.
    [131] Cardini, G; Schettino, V. J. Chem. Phys. 1991, 94, 2502.
    [132] Noid, D.W.; Koszykowski, M. L.; Marcus, R. A. J. Chem. Phys. 1977, 67,404.
    [133] Noid, D.W.; Sumpter, B. G.; Wunderlich, B. Anal. Chim. Acta. 1990, 235,143.
    [134] Brown, D.; Clarke, J. H. R. J. Chem. Phys. 1986, 84, 2858.
    [135] Yang, X.; Hsu, S. L. Macromolecules 1993, 26, 1465.
    [136] Koszykowski, M. L.; Noid, D. W.; Tabor, M.; Marcus, R. A. J. Chem.Phys. 1981, 74, 2530.
    [137] Barnes, A. J.; Orville-Thomas, W. J. Vibrational Spectra Modern Trends Amsterdam, Elsevier 1977.
    [138] (a) 杨小震,第十二届全国分子光谱学学术会议论文集,中国?昆明,2002.8 (b) 杨小震,全国第八届分子光谱学学术报告会文集:分子光谱学方法和应用,中国?西安,1994.5
    [139] Gwinn, D. J. chem. Phys. 1971, 55, 477.
    [140] Levine, Ira. N. Molecular Spectroscopy John Wiley&Sons, Inc. 1975.
    [141] Ochterski, J. W. Vibration analysis in Gaussian help@gaussian.com,October 29, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700