改性TiO_2纳米管阵列的制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳极氧化法制备的TiO_2纳米管阵列因其具有高度整齐的一维排列结构、高的电子传输速率和电子寿命,在染料敏化太阳能电池中展现出诱人的应用前景。但又因结构易坍塌和染料吸附量低等问题,难以充分发挥一维TiO_2纳米管阵列的结构优势。本文针对阳极氧化法合成TiO_2纳米管阵列的制备条件选择和改善太阳能电池光电转化性能等问题进行了研究。选择不同的电解液体系,研究TiO_2纳米管阵列的结构及其影响因素;采用表面处理、ZnO及Sm_2O_3改性,使制得的TiO_2纳米管阵列获得了较高的光电转化效率。
     在H_3PO_4/NH_4F无机电解液体系中采用阳极氧化法制得了TiO_2纳米管阵列,通过FESEM系统地考察了搅拌速率、煅烧温度、H_3PO_4添加量、F-浓度、氧化电压、氧化时间对纳米管阵列表面形貌、管径及管长的影响。结果发现,搅拌速率、H_3PO_4与F-浓度、氧化电压对形貌和孔径有较大的影响,氧化反应时间对管长的影响较为显著。根据单因素影响条件,选择其中影响较为显著的三个因素,采用Box-Behnken Design方法设计实验,通过软件模拟得到排列紧密的TiO_2纳米管阵列的最佳制备条件为:氧化时间为240min,氧化电压为15.39V,NH_4F的浓度为0.5mol/L,经由软件模拟得到TiO_2纳米管阵列管内径为33nm,管长为1.43μm。通过XRD和UV-vis表征手段分析了不同煅烧温度和煅烧时间对TiO_2纳米管阵列晶体结构和光电性质的影响,得到最佳的煅烧条件为500℃煅烧2h。并通过实时的电流监控探讨TiO_2纳米管阵列的生长机理。
     以乙二醇有机体系为电解液,采用阳极氧化法制得了TiO_2纳米管阵列,分析了F-浓度、水添加量、氧化电压及反应温度对TiO_2纳米管阵列形貌、管径及管长的影响,发现水添加量是能否形成TiO_2纳米管阵列的关键因素,在40V的氧化电压,0.3wt%的NH_4F浓度,2vol%的水添加量及25℃的反应温度下得到的TiO_2纳米管阵列的管径光滑,且高度有序的排列。同时以乙二醇制备的TiO_2纳米管阵列为染料敏化太阳能电池的光阳极,采用四异丙氧基钛(TnB)和氧电浆联合处理其表面,结果表明:TiO_2纳米管阵列结构仍然存在,在纳米管阵列表面及侧壁出现了TiO_2纳米粒子,提高了表面粗糙度和亲水性,增加了染料的吸附量,相对于纯TiO_2纳米管阵列,染料敏化太阳能电池的光电转化效率从1.89%提高至3.68%。
     采用阴极电沉积方法制备了异质结型ZnO/TiO_2纳米管阵列。研究了ZnO/TiO_2复合电极的表面形貌、晶形及光吸收性能,结果表明:阴极电沉积法制备的ZnO/TiO_2复合电极表面出现致密的ZnO粒子,表面粗糙度提高、禁带宽度变小、染料吸附量大、电子寿命长。以ZnO/TiO_2纳米管阵列为光阳极组装的染料敏化太阳能电池,相对于纯TiO_2纳米管阵列,60min电沉积的ZnO/TiO_2复合光阳极的光电转化效率可从1.71%提高至3.76%。
     采用水热法制备了Sm_2O_3改性TiO_2纳米管阵列,研究了Sm_2O_3/TiO_2纳米管阵列表面形貌、晶形、光吸收和荧光发光性能,发现Sm_2O_3改性后TiO_2纳米管阵列的晶粒尺寸变小,禁带宽度变低;可一定程度地吸收紫外光,并通过荧光性质以可见光发射。将Sm_2O_3/TiO_2复合电极作为染料敏化太阳能电池的光阳极,发现通过Sm3+的下转换荧光性质,可提高太阳能电池中的短路电流。相对于纯TiO_2纳米管阵列,0.02mol/L Sm_2O_3/TiO_2复合光阳极的光电转化效率从1.86%提高至3.22%。这些改性研究为进一步探讨TiO_2纳米管阵列对染料敏化太阳能电池光电转化效率的提高提供了理论及实验参考。
TiO_2nanotubes arrays fabricated by anodization method have highly orderedone-dimensional structure, higher electron transport and electron lifetime, which havea better application prospect in dye-sensitized solar cells(DSSCs). However, becauseof the problems of collapose structure in synthetic process and low dye adsorption,the one-dimensional structure didn’t show advantages. This study carried out researchfor the problem of synthesized TiO_2nanotube arrays and how to improve thephotoelectric conversion efficiency of DSSCs. The structures and influence factorswere investigated by using different electrolytes. The photoelectric conversionefficiencies were improved through using surface modification, ZnO and Sm_2O_3modified TiO_2nanotubes.
     The TiO_2nanotube arrays were fabricated in H_3PO_4/NH_4F electrolyte by anodicoxidation method, in which the effects of stirring rates, calcination temperatures,H_3PO_4ammounts, F-concentrations, oxidic voltages and reaction times on surfacemorphology, tube length and tube diameter were investigated using FESEM analysis.The results show that stirring rates, F-concentrations and voltages have importanteffects on the morphology and pore diameter, whereas anodization times affect thelength of the TiO_2nanotube arrays. Based on the influencing conditions of singlefactor, we selected three important factors. The optimum experimental conditionswere obtained by using Box-Behnken Design. The optimal factor conditions wereobtained as follows: anodization time of240min, anodization voltage of15.39V,and NH_4F concentration of0.50mol/L. The results of software simulation using theoptimized conditions were as follows: TiO_2nanotube arrays were obtained with anaverage tube length of1.43μm and average tube diameter of33nm. Moreover, theeffects of calcining temperatures and calcining times on the phase transformation andphoto-electrical properties of TiO_2nanotubes were analyzed by XRD and UV-vis.The optimum calcination conditions were obtained at500℃for2h. The mechanismof fabrication of TiO_2nanotube arrays was investigated using real time-currentanalysis.
     The TiO_2nanotube arrays were constructed in ethylene glycol electrolyte byanodic oxidation method. The effects of F-concentrations, oxidic voltages, amount ofH2O and reaction temperatures were investigated. The results show that the H2Oamount is a key factor to controlling the formation TiO_2nanotube arrays. TiO_2nanotube arrays have smooth tube wall and the most ordered structure obtained in anelectrolyte mixture of ethylene glycol,2vol%H2O and0.3wt%NH_4F at40V with 25℃reaction temperature. The surface of the TiO_2nanotube arrays were treatedwith titanium (IV) n-butoxide using a hydrothermal method in combination with anoxygen-plasma treatment. Comparative studies show that the roughness,hydrophilicity and the dye adsorption are increased. The TiO_2nanotube arrays treatedby the combined methods under optimum conditions exhibited a conversionefficiency is increased from1.89%to3.68%.
     ZnO/TiO_2nanotube arrays were prepared by a convenient electro-depositiontechnique. The morphology, structure and electrochemical properties wereinvestigated. It is found that ZnO/TiO_2nanotube arrays possess higher roughness,higher dye adsorption, lower band gap energy and longer electron lifetime. Comparedwith that of bare TiO_2nanotube arrays, the photoelectrical performance of thedye-sensitized solar cells is increased from1.71%to3.76%with deposition for60min. This improvement comes from the synergetic effect between ZnO and TiO_2.
     The highly ordered TiO_2nanotubes grown on Ti substrate were modifiedconveniently with samarium (Sm) by hydrothermal method for use in backilluminated dye-sensitized solar cells. The morphology, crystal phase, fluorescenceand electrochemical properties were investigated. It is found that Sm_2O_3/TiO_2nanotubes can decrease grain size and band gap energy, and transfer ultraviolet lightto visible light. As a down-conversion luminescence material, samarium oxideimproves the UV radiation harvesting. The result shows that Sm_2O_3modified TiO_2nanotubes can increase short-circuit current and photoelectrical properties ofdye-sensitized solar cells. When TiO_2nanotubes are modified using0.02mol/LSm_2O_3, the efficiency is improved from1.86%to3.22%compared to the bare TiO_2nanotubes. These modifications provide the theoretical and experimental referencefor improving photoelectrical conversion efficiency of dye-sensitized solar cells infuture explorations.
引文
1Gr tzel M. Photoelectrochemical Cells[J]. Nature,2001,414:338-344.
    2于哲勋,李冬梅,秦达等.染料敏化太阳能电池的研究与发展现状[J].中国材料进展,2009,28:8-15.
    3Regan B O, Gr tzel M. A Low Cost, High-efficiency Solar Cell Based onDye-sensitized Colloidal TiO2Films[J]. Nature,1991,353:737-740.
    4Zhu K, Neale N R, Miedaner A, et al. Enhanced Charge-Collection Efficienciesand Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2Nanotubes Arrays[J]. Nano Letters,2007,7:69-74.
    5Kang T S, Smith A P, Taylor B E, et al. Fabrication of Highly-Ordered TiO2Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells[J]. Nano Letters,2009,9(2):601-606.
    6Stergiopoulos T, Ghicov A, Likodimos V, et al. Dye-Sensitized Solar CellsBased on Thick Highly Ordered TiO2Nanotubes Produced by ControlledAnodic Oxidation in Non-aqueous Electrolytic Media[J]. Nanotechnology,2008,19:235602-235608.
    7Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium OxideNanotube[J]. Langmuir,1998,14:3160-3163.
    8Tian Z R R, Voigt J A, Liu J, et al. Large Oriented Arrays and Continuous Filmsof TiO2-based Nanotubes[J]. Journal of the American Chemical Society,2003,125(41):12384-12385.
    9Hoyer P. Formation of a Titanium Dioxide Nanotube Array[J]. Langmuir,1996,12:1411-1413.
    10Zhang M, Bando Y, Wada K. Sol-gel Template Preparation of TiO2Nanotubesand Nanorods[J]. Journal of Materials Science Letters,2001,20(2):167-170.
    11Maiyalagan T, Viswanathan B, Varadaraju U V. Fabrication andCharacterization of Uniform TiO2Nanotube Arrays by Sol-gel TemplateMethod[J]. Indian Academy of Science,2006,29:705-708.
    12Gong D, Grimes C A, Varghese O K, et al. Titanium Oxide Nanotube ArraysPrepared by Anodic Oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334.
    13Grimes C A. Synthesis and Application of Highly Ordered Arrays of TiO2Nanotubes[J]. Journal of Materials Chemistry,2007,17:1451-1457.
    14Sen S, Mahanty S, Roy S, et al. Investigation on Sol-gel Synthesized Ag-dopedTiO2Cermet Thin Films[J]. Thin Solid Films,2005,474:245-249.
    15Tang Z, Zhang J, Cheng Z, et al. Synthesis of Nanosized Rutile TiO2Powder atLow Temperature[J]. Materials Chemistry and Physics,2002,77:314-317.
    16Park N G, Lagemaat J V D, Frank A J. Comparison of Dye-sensitized Rutile-and Anatase-based TiO2Solar Cells[J]. Journal of Physical Chemistry B,2000,104:8989-8994.
    17Yu J G, Wang B. Effect of Calcination Temperature on Morphology andPhotoelectrochemical Properties of Anodized Titanium Dioxide NanotubeArrays[J]. Applied Catalysis B: Environmental,2010,94:295-302.
    18Luís A M, Neves M C, Mendonca M H, et al. Influence of CalcinationParameters on the TiO2Photocatalytic Properties[J]. Materials Chemistry andPhysics,2011,125:20-25.
    19刘博,孔伟,叶波等.升温速率对二氧化钛纳米晶形貌的影响[J].无机材料学报,2010,25:906-910.
    20Sreekantan S, Hazan R, Lockman Z. Photoactivity of Anatase-rutile TiO2Nanotubes Formed by Anodization Method[J]. Thin Solid Films,2009,518:16-21.
    21Xiao N, Li Z H, Liu J W, et al. Effects of Calcination Temperature on theMorhology, Structure and Photocatalytic Activity of Titanate Nanotube ThinFilms[J]. Thin Solid Films,2010,519:541-548.
    22Jaroenworaluck A, Regonini D, Bowen C R, et al. A Microscopy Study of theEffect of Heat Treatment on the Structure and Properties of Anodised TiO2Nanotubes[J]. Applied Surface Science,2010,256:2672-2679.
    23Varghese O K, Dong D W, Paulose M, et al. Crystallization andHigh-temperature Structure Stability of Titanium Oxide Nanotube Arrays[J].Journal of Materials Research,2003,18(1):156-165.
    24Yan J Y, Song H H, Yang S B, et al. Effect of Heat Treatment on theMorphology and Electrochemical Performance of TiO2Nanotubes as AnodeMaterials for Lithium-ion Batteries[J]. Materials Chemistry and Physics,2009,118:367-370.
    25Liao Y L, Que W X, Tang Z H, et al. Effect of Heat Treatment Scheme on thePhotocatalytic Activity of TiO2Nanotube Powders Derived by a FacileElectrochemical Process[J]. Journal of Alloys and Compounds,2011,509:1054-1059.
    26Ghicov A, Tsuchiya H, Macak J M. Titanium Oxide Nanotubes Prepared inPhosphate Electrolytes[J]. Electrochemistry Communications,2005,7(5):505-509.
    27Varghese O K, Gong D W, Paulose M, et al. Hydrogen Sensing Using TitaniaNanotubes[J]. Sensors and Actuators, B: Chem,2003,93(1-3):338-344.
    28Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water UsingTitania Nanotube Arrays[J]. Nano Letters,2005,5(1):191-195.
    29Ruan C, Paulose M, Varghese O K, et al. EnhancedPhotoelectrochemical-response in Highly Ordered TiO2Nanotube-arraysAnodized in Boric Acid Containing Electrolyte[J]. Solar Energy Materials andSolar Cells,2006,90:1283-1295.
    30Mor G K, Carvalho M A, Varghese O K, et al. A Room-temperatureTiO2-nanotube Hydrogen Sensor Able to Self-clean Photoactively fromEnvironmental Contamination[J]. Journal of Materials Research,2004,19:628-634.
    31Bauer S, Kleber S, Schmuki P. TiO2Nanotubes: Tailoring the Geometry inH3PO4/HF Electrolytes[J]. Electrochemistry Communications,2006,8:1321-1325.
    32Zhang Y Y, Fu W Y, Yang H B, et al. Synthesis and Characterization of P-dopedTiO2Nanotubes[J]. Thin Solid Films,2009,518:99-103.
    33Quan X, Yang S G, Ruan X L, et al. Preparation of Titania Nanotubes and TheirEnvironmental Applications as Electrodes[J]. Environmental Science andTechnology,2005,39:3770-3775.
    34Paulose M, Varghese O K, Mor G K. Unprecedented Ultra-high Hydrogen GasSensitivity in Undoped Titania Nanotubes[J]. Nanotechnology,2006,17(2):398-402.
    35Cai Q, Paulose M, Varghese O K. The Effect of Electrolyte Composition on theFabrication of Self-organized Titanium Oxide Nanotube Arrays by AnodicOxidation[J]. Journal of Materials Research,2005,20:230-236.
    36Narayanan R, Kwon T Y, Kim K H. Anodic TiO2from Stirred Na2SO4/NaFElectrolytes: Effects of Applied Voltage and Stirring[J]. Materials Letters,2009,63:2003-2006.
    37Tsuchiya H, Macak J M, Taveira L, et al. Self-organized TiO2NanotubesPrepared in Ammonium Fluoride Containing Acetic Acid Electrolytes[J].Electrochemistry Communications,2005,7:576-580.
    38Liang H C, Li X Z. Effects of Structure of Anodic TiO2Nanotube Arrays onPhotocatalytic Activity for the Degradation of2,3-dichlorophenol in AqueousSolution[J]. Journal of Hazardous Materials,2009,162:1415-1422.
    39Macak J M, Aldabergerova S, Schmuki P. Smooth Anodic TiO2Nanotubes[J].Angewandte Chemie International Edition,2005,44:7463-7465.
    40Yoriya S, Prakasam H E, Varghese O K, et al. Initial Studies on the HydrogenGas Sensing Properties of Highly-ordered High Aspect Ratio TiO2Nanotube-arrays20mm to222mm in Length[J]. Sensor Letters,2006,4:334-339.
    41Yoriya S, Paulose M, Varghese O K, et al. Fabrication of Vertically OrientedTiO2Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes[J]. Journal ofPhysical Chemistry C,2007,111:13770-13776.
    42Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO2Nanotube Arrays to134μm in Length[J]. Journal of Physical Chemistry B,2006,110:16179-16184.
    43Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO2NanotubeArrays up to220μm in Length: Use in Water Photoelectrolysis andDye-Sensitized Solar Cells[J]. Nanotechnology,2007,18:065707-065717.
    44Prakasam H E, Shankar K, Paulose M, et al. A New Benchmark for TiO2Nanotube Array Growth by Anodization[J]. Journal of Physical Chemistry C,2007,111(20):7235-7241.
    45Paulose M, Prakasam H E, Varghese O K. TiO2Nanotube Arrays of1000μmLength by Anodization of Titanium Foil: Phenol Red Diffusion[J]. Journal ofPhysical Chemistry C,2007,111(41):14992-14997.
    46Xie Z B, Blackwood D J. Effects of Anodization Parameters on the Formationof Titania Nanotubes in Ethylene Glycol[J]. Electrochimica Acta,2010,56:905-912.
    47Raja K S, Gandhi T, Misra M. Effect of Water Content of Ethylene Glycol asElectrolyte for Synthesis of Ordered Titania Nanotubes[J]. ElectrochemistryCommunications,2007,9:1069-1076.
    48Wei W, Berger S, Hauser C, et al. Transition of TiO2Nanotubes to Nanoporesfor Electrolytes with Very Low Water Contents[J]. ElectrochemistryCommunications,2010,12:1184-1186.
    49Sun L D, Zhang S, Sun X W, et al. Effect of Electric Field Strength on theLength of Anodized Titania Nanotube Arrays[J]. Journal of ElectroanalyticalChemistry,2009,637:6-12.
    50Kim D, Schmidt-Stein F, Hahn R, et al. Gravity Assisted Growth ofSelf-organized Anodic Oxide Nanotubes on Titanium[J]. ElectrochemistryCommunications,2008,10:1082-1086.
    51Mohapatra S K, Misra M, Mahajan V K, et al. A Novel Method for theSynthesis of Titania Nanotubes Using Sonoelectrochemical Method and ItsApplication for Photoelectrochemical Splitting of Water[J]. Journal of Catalysis,2007,246:362-369.
    52Chanmanee W, Watcharenwong A, Chenthamarakshan C R. Titania Nanotubesfrom Pulse Anodization of Titanium Foils[J]. ElectrochemistryCommunications,2007,9:2145-2149.
    53Lu K, Tian Z P, Geldmeier J A. Polishing Effect on Anodized Titania NanotubeFormation[J]. Electrochimica Acta,2011,56:6014-6020.
    54Huang L, Peng F, Yu H, et al. The Influence of Ultrasound on the Formation ofTiO2Nanotube Arrays[J]. Materials Research Bulletin,2010,45:200-204.
    55Xie Y L, Li Z X, Xu H, et al. Fabrication of TiO2Nanotubes with ExtendedPeriodical Morphology by Alternating-current Anodization[J]. ElectrochemistryCommunications,2012,17:34-37.
    56Antony R P, Mathews T A, Dasgupta S, et al. Rapid Breakdown AnodizationTechnique for the Synthesis of High Aspect Ratio and High Surface AreaAnatase TiO2Nanotube Powders[J]. Journal of Solid State Chemistry,2011,184:624-632.
    57Yang Y, Wang X H, Li L T. Synthesis and Growth Mechanism of Graded TiO2Nanotube Arrays by Two-step Anodization[J]. Materials Science andEngineering B,2008,149:58-62.
    58管东升,方海涛,逯好峰等.阳极氧化法TiO2纳米管阵列的制备与掺杂[J].化学进展,2008,20(12):1868-1879.
    59Wang Y, Wu Y C, Qin Y Q, et al. Rapid Anodic Oxidation of Highly OrderedTiO2Nanotube Arrays[J]. Journal of Alloys and Compounds,2011,509:L157-L160.
    60Lin J, Chen J F, Chen X F. Facile Fabrication of Free-standing TiO2NanotubeMembranes with Both Ends Open via Self-detaching Anodization[J].Electrochemistry Communications,2010,12:1062-1065.
    61Jha H, Roy P, Hahn R, et al. Fast Formation of Aligned High-aspect Ratio TiO2Nanotube Bundles That Lead to Increased Open Circuit Voltage When Used inDye Sensitized Solar Cells[J]. Electrochemistry Communications,2011,13:302-305.
    62Lin C J, Yu W Y, Chien S H. Transparent Electrodes of Ordered Open-endTiO2-nanotube Arrays for Highly Efficient Dye-sensitized Solar Cells[J].Journal of Materials Chemistry,2010,20:1073-1077.
    63杨旭,曲轶,范翊等.阳极氧化法制备Y型TiO2纳米管[J].发光学报,2012,33(3):269-274.
    64Yoriya S, Grimes C A. Self-Assembled TiO2Nanotube Arrays by Anodizationof Titanium in Diethylene Glycol: Approach to Extended Pore Widening[J].Langmuir,2010,26(1):417-420.
    65So S, Lee K Y, Schmuki P. Ultrafast Growth of Highly Ordered Anodic TiO2Nanotubes in Lactic Acid Electrolytes[J]. Journal of the American ChemicalSociety,2012,134:11316-11318.
    66Ishibashi K, Yamaguchi R, Kimura Y, et al. Fabrication of Titanium OxideNanotubes by Rapid and Homogeneous Anodization in Perchloric Acid/EthanolMixture[J]. Journal of the Electrochemical Society,2008,155(1): K10-K14.
    67Tao J L, Zhao J L, Wang X X, et al. Fabrication of Titania Nanotube Arrays onCurves Surface[J]. Electrochemistry Communications,2008,10:1161-1163.
    68Liu Z Y, Subramania V, Misra M. Vertically Oriented TiO2Nanotube ArraysGrown on Ti Meshes for Flexible Dye-Sensitized Solar Cells[J]. Journal ofPhysical Chemistry C,2009,113:14208-14033.
    69Mor G K, Varghese O K, Paulose M, et al. A Review on Highly Ordered,Vertically Oriented TiO2Nanotube Arrays: Fabrication, Material Properties, andSolar Energy Applications[J]. Solar Energy Materials&Solar Cells,2006,90:2011-2075.
    70Su Y T, Johansson C B, Jeong Y, et al. The Electrochemical Oxide GrowthBehavior on Titanium in Acid and Alkaline Electrolytes[J]. MedicalEngineering&Physics,2001,23(5):329-346.
    71Zalar A, Lier J V, Mittemeijer E J, et al. Interdiffusion at TiO2/Ti, TiO2/Ti3Aland TiO2/TiAl Interfaces Studied in Bilayer Structures[J]. Surface and InterfaceAnalysis,2002,34:514-518.
    72Mor G K, Varghese O K, Paulose M, et al. Fabrication of Tapered,Conical-shaped Titania Nanotubes[J]. Journal of Materials Research,2003,18(11):2588-2593.
    73Raja K S, Misra M, Paramguru K. Formation of Self-ordered Nano-tubularStructure of Anodic Oxide Layer on Titanium[J]. Electrochimica Acta,2005,51(1):154-165.
    74Mor G K, Varghese O K, Paulose M, et al. Fabrication of Hydrogen Sensorswith Transparent Titanium Oxide Nanotube-array Thin Films as SensingElements[J]. Thin Solid Films,2006,496(1):42-48.
    75Xiao X F, Liu R F, Tian T. Preparation of Bioactive Titania Nanotube Arrays inHF/Na2HPO4Electrolyte[J]. Journal of Alloys and Compounds,2008,466:356-362.
    76Tao J L, Zhao J L, Tang C C, et al. Mechanism Study of Self-organized TiO2Nanotube Arrays by Anodization[J]. New Journal of Chemistry,2008,32:2164-2168.
    77Kang S H, Kim J Y, Kim H S, et al. Formation and Mechanistic Study ofSelf-ordered TiO2Nanotubes on Ti Substrate[J]. Journal of Industrial andEngineering Chemistry,2008,14:52-59.
    78Yin L L, Ji S L, Liu G D, et al. Understanding the Growth Behavior of TitaniaNanotubes[J]. Electrochemistry Communications,2011,13:454-457.
    79Yoriya S, Grimes C A. Self-assembled Anodic TiO2Nanotube Arrays:Electrolyte Properties and Their Effect on Resulting Morphologies[J]. Journalof Materials Chemistry,2011,21:102-108.
    80Liang Y Q, Cui Z D, Zhu S L, et al. Study on the Formation Micromechanismof TiO2Nanotubes on Pure Titanium and the Role of Fluoride Ions inElectrolyte Solutions[J]. Thin Solid Films,2011,519(15):5150-5155.
    81Fahim N F, Morks M F, Sekino T. Electrochemical Synthesis of Silica-dopedHigh Aspect-ratio Titania Nanotubes as Nanobioceramics for ImplantApplications[J]. Electrochimica Acta,2009,54:3255-3269.
    82Lei L C, Su Y L, Zhou M H, et al. Fabrication of Multi-non-metal-doped TiO2Nanotubes by Anodization in Mixed Acid Electrolyte[J]. Materials ResearchBulletin,2007,42(12):2230-2236.
    83Ghicov A, Schmidt B, Kunze J, et al. Photoresponse in the Visible Range fromCr Doped TiO2Nanotubes[J]. Chemical Physics Letters,2007,433(4-6):323-326.
    84Zhang W Y, Li G Z, Li Y N, et al. Fabrication of TiO2Nanotube Arrays onBiologic Titanium Alloy and Properties[J]. Transactions of Nonferrous MetalsSociety of China,2007,17(S1): S692-S695.
    85Sun L, Li J, Wang C L, et al. An Electrochemical Strategy of Doping Fe3+intoTiO2Nanotube Arrays Films for Enhancemen in Photocatalytic Activity[J].Solar Energy Materials&Solar Cells,2009,93:1875-1880.
    86Sun L, Li J, Wang L, et al. Ultrasound Aided Photochemical Synthesis of AgLoaded TiO2Nanotube Arrays to Enhance Photocatalytic Activity[J]. Journal ofHazardous Materials,2009,171:1045-1050.
    87Zhang Y H, Yang Y N, Xiao P, et al. Preparation of Ni Nanoparticle-TiO2Nanotube Composite by Pulse Electrodeposition[J]. Materials Letters,2009,63:2429-2431.
    88Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic Properties of AgNanoparticles Loaded TiO2Nanotube Arrays Prepared by Pulse CurrentDeposition[J]. Electrochimica Acta,2010,55:7211-7218.
    89兰宇卫,周立亚,童张法等. TiO2纳米管阵列的制备与稀土掺杂改性研究[J].中国稀土学报,2011,29(3):337-343.
    90Ghicov A, Macak J M, Tsuchiya H. Ion Implantation and Annealing for anEfficient N-doping of TiO2Nanotubes[J]. Nano Letters,2006,6(5):1080-1082.
    91Shankar K, Tep K C, Mor G K, et al. An Electrochemical Strategy toIncorporate Nitrogen in Nanostructured TiO2Thin Films: Modification ofBandgap and Photoelectrochemical Properties[J]. Journal of Physics D: AppliedPhysics,2006,39(11):2361-2366.
    92Kim D, Fujimoto S, Schmuki P, et al. Nitrogen Doped Anodic TiO2NanotubesGrown from Nitrogen-containing Ti Alloys[J]. ElectrochemistryCommunications,2008,10(6):910-913.
    93Grigorov K G, Oliveira I C, Maciel H S, et al. Optical and MorghologicalProperties of N-doped TiO2Thin Films[J]. Surface Science,2011,605:775-782.
    94Vitiello R P, Macak J M, Ghicov A, et al. N-Doping of Anodic TiO2NanotubesUsing Heat Treatment in Ammonia[J]. Electrochemistry Communications,2006,8(4):544-548.
    95Hahn R, Ghicov A, Salonen J, et al. Carbon Doping of Self-organized TiO2Nanotube Layers by Thermal Acetylene Treatment[J]. Nanotechnology,2007,
    18(10):105604-105608.
    96Shankar K, Paulose M, Mor G K, et al. A Study on the Spectral Photoresponseand Photoelectrochemical Properties of Flame-annealed TitaniaNanotube-arrays[J]. Journal of Physics D: Applied Physics,2005,38(18):3543-3549.
    97Hu X Y, Zhang T C, Jin Z. Fabrication of Carbon-modified TiO2NnotubesArrays and Their Photocatalytic Activity[J]. Materials Letters,2008,62:4579-4581.
    98Yang H, Pan C X. Synthesis of Carbon-modified TiO2Nanotubes Arrays forEnhancing the Photocatalytic Activity under the Visible Light[J]. Journal ofAlloys and Compounds,2010,501: L8-L11.
    99Wang H Y, Yang C Y, Wei J H, et al. Effective Photocatalytic Properties of NDoped Titanium Dioxide Nanotubes Arrays Prepared by Anodization[J].Reaction Kinetics Mechanisms and Catalysis,2012,106(2):341-353.
    100Tang X H, Li D Y. Sulfur-doped Highly Ordered TiO2Nanotubular Arrays withVisible Light Response[J]. The Journal of Physical Chemistry C,2008,112(14):5405-5409.
    101Chen X Q, Zhang X W, Lei L C. Electronic Sructure and PhotocatalysisProperties under Visible Irradiation of F-doped TiO2Nanotube Arrays[J].Journal of Inorganic Materials,2011,26(4):369-374.
    102Zhang S S, Peng F, Wang H J, et al. Electrodeposition Preparation of AgLoaded N-doped TiO2Nanotube Arrays with Enhanced Visible LightPhotocatalytic Performance[J]. Catalysis Communication,2011,12:689-693.
    103Zhou X S, Peng F, Wang H J, et al. Preparation of B, N-codoped NanotubeArrays and Their Enhanced Visible Light Photoelectrochemical Performance[J].Electrochemistry Communications,2011,13(2):121-124.
    104Liu H J, Liu G G, Zhou Q X. Preparation and Characterization of Zr DopedTiO2Nanotube Arrays on the Titanium Sheet and Their EnhancedPhotocatalytic Activity[J]. Journal of Solid State and Chemistry,2009,182:3238-3242.
    105Su Y L, Zhang X W, Han S, et al. F-B-codoping of Anodized TiO2NanotubesUsing Chemical Vapor Deposition[J]. Electrochemistry Communications,2007,9(9):2291-2298.
    106Li Q, Shang J K. Self-Organized Nitrogen and Fluorine Co-doped TitaniumOxide Nanotube Arrays with Enhanced Visible Light PhotocatalyticPerformance[J]. Environmental Science and Technology,2009,43:8923-8929.
    107吴奇,苏钰丰,孙岚等. Fe、N共掺杂TiO2纳米管阵列的制备及可见光光催化活性[J].物理化学学报,2012,28(3):635-640.
    108钟福新,林莎莎,朱义年等. La/Fe共掺杂TiO2纳米管阵列光电催化降解制糖废水[J].环境科学学报,2011,31(7):1450-2455.
    109Chen S, Paulose M, Ruan C, et al. Electrochemically Synthesized CdSNanoparticle-modified TiO2Nanotube-array Photoelectrodes: Preparation,Characterization and Application to Photoelectrochemical Cells[J]. Journal ofPhotochemistry and Photobiology A Chemistry,2006,177(2-3):177-184.
    110Lin C J, Yu Y H, Liou Y H. Free-standing TiO2Nanotube Array FilmsSensitized with CdS as Highly Active Solar Light-driven Photocatalysts[J].Applied Catalysis B: Environmental,2009,93:119-125.
    111Si H Y, Sun Z H, Zhang H L. Photoelectrochemical Response fromCdSe-sensitized Anodic Oxidation TiO2Nanotubes[J]. Colloids and Surfaces A,2008,313:604-607.
    112Seabold J A, Shankar K K, Wilke R H T, et al. Photoelectrochemical Propertiesof Heterojunction CdTe/TiO2Electrodes Constructed Using Highly OrderedTiO2Nanotube Arrays[J]. Chemistry of Materials,2008,20(16):5266-5273.
    113Shen Q, Sato T, Hashimoto M, et al. Photoacoustic and PhotoelectrochemicalCharacterization of CdSe-sensitized TiO2Electrodes Composed of Nanotubesand Nanowires[J]. Thin Solid Films,2006,499:299-305.
    114Kosanovic T, Karoussos D, Bouroushian M. CdSe Electrodeposition on Anodic,Barrier or Porous Ti Oxides. A Sensitization Effect[J]. Journal of Solid StateElectrochemistry,2010,14(2):241-248.
    115Xie Y B, Zhou L M, Huang C J, et al. Fabrication of Nickel Oxide-embeddedTitania Nanotube Array for Redox Capacitance Application[J]. ElectrochimicaActa,2008,53:3643-3649.
    116Kuang S Y, Yang L X, Luo S L, et al. Fabrication, Characterization andPhotoelectrochemical Properties of Fe2O3Modified TiO2Nanotube Arrays[J].Applied Surface Science,2009,255:7385-7388.
    117Zhang Z H, Yuan Y, Liang L H, et al. Preparation and PhotoelectrocatalyticActivity of ZnO Nanorods Embedded in Highly Ordered TiO2Nanotube ArraysElectrode for Azo Dye Degradation[J]. Journal of Hazardous Materials,2008,158:517-522.
    118Kang S H, Kim J Y, Kim Y Y, et al. Surface Modification of Stretched TiO2Nanotubes for Solid-state Dye-sensitized Solar Cells[J]. Journal of PhysicalChemistry C,2007,111:9614-9623.
    119Xie Y L, Li Z X, Xu Z G, et al. Preparation of Coaxial TiO2/ZnO NanotubeArrays for High-Efficiency Photo-Energy Conversion Applications[J].Electrochemistry Communications,2011,13:788-791.
    120Hou Y, Li X Y, Zou X J, et al. Photoeletrocatalytic Activity of a Cu2O-LoadedSelf-organized Highly Oriented TiO2Nanotube Array Electrode for4-chlorophenol Degradation[J]. Environmental Science and Technology,2009,43(3):858-863.
    121Park H, Yang D J, Kim H G, et al. Fabrication of MgO-coated TiO2Nanotubesand Application to Dye-sensitized Solar Cells[J]. Journal of Electroceramics,2009,23:146-149.
    122Wang Q, Zhu K, Neale N R, et al. Constructing Ordered SensitizedHeterojunctions: Bottom-up Electrochemical Synthesis of p-typeSemiconductors in Oriented n-TiO2Nanotube Arrays[J]. Nano Letters,2009,9(2):806-813.
    123Chen S F, Zhao W, Liu W, et al. Preparation, Characterization and ActivityEvaluation of p-n Junction Photocatalyst p-ZnO/n-TiO2[J]. Applied SurfaceScience,2008,255:2478-2484.
    124Zhang J, Tang X H, Li D Y. One-step Formation of Crystalline TiO2Nanotubular Arrays with Intrinsic p-n Junctions[J]. Journal of PhysicalChemistry C,2011,115:21529-21534.
    125Kim J H, Zhu K, Yan Y F, et al. Microstructure and Pseudocapacitive Propertiesof Electrodes Constructed of Oriented NiO-TiO2Nanotube Arrays[J]. NanoLetters,2010,10:4099-4104.
    126Jiang L C, Zhang W D. Charge Transfer Properties and PhotoelectrocatalyticActivity of TiO2/MWCNT Hybrid[J]. Electrochimica Acta,2010,56:406-411.
    127Hesabi Z R, Allam N K, Dahmen K, et al. Self-Standing Crystalline TiO2Nanotubes/CNTs Heterojunction Membranes: Synthesis and Characterization[J].Applied Materials Interface,2011,3:952-955.
    128Quaranta S, Gozzi D, Tucci M, et al. Efficiency Improvement and FullCharacterization of Dye-sensitized Solar Cells with MWCNT/anatase SchottkyJunctions[J]. Journal of Power Sources,2012,204:249-256.
    129Bouazza N, Ouzzine M, Eder D, et al. TiO2Nanotube and CNT-TiO2HybridMaterials for the Photocatalytic Oxidation of Propene at Low Concentration[J].Applied Catalysis B: Environmental,2009,92:377-383.
    130Lin J, Zong R L, Zhou M, et al. Photoelectric Catalytic Degradation ofMethylene Blue by C60-modified TiO2Nanotube Array[J]. Applied Catalysis B:Environmental,2009,89:425-431.
    131Nazeeruddin M K, Kay A, Gr tzel M, et al. Conversion of Light to Electricityby Cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate) Ruthenium(Ⅱ) ChangeTransfer Sensitizers(X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2Electrodes[J]. Journal of the American Chemical Society,1993,115(14):6382-6390.
    132Cahen D, Hodes G, Gr tzel M, et al. Nature of Photovoltaic Action inDye-Sensitized Solar Cells[J]. Journal of Physical Chemistry B,2000,104:2053-2059.
    133Cozzoli P D, Comparelli R, Fanizza E, et al. Photocatalytic Synthesis of SilverNanoparticles Stabilized by TiO2Nanorods: A Semiconductor/MetalNanocomposite in Homogeneous Nonpolar Solution[J]. Journal of theAmerican Chemical Society,2004,126:3868-3879.
    134Park J H, Kim S, Bard A J. Novel Carbon-Doped TiO2Nanotube Arrays withHigh Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters,2006,6(1):24-28
    135Xie Y B. Photoelectrochemical Application of Nanotubular TitaniaPhotoanode[J]. Electrochimica Acta,2006,51(17):3399-3406.
    136Paulose M, Shankar K, Varghese O K, et al. Application of Highly-ordered TiO2Nanotube-arrays in Heterojunction Dye-sensitized Solar Cells[J]. Journal ofPhysics D: Applied Physics,2006,39(21):2498-2503.
    137Grimes C A, Ong K G, Varghese O K, et al. A Sentinel Sensor Network forHydrogen Sensing[J]. Sensors,2003,3(3):69-82.
    138Mor G K, Varghese O K, Paulose M, et al. A Self-cleaning, Room-temperatureTitania-nanotube Hhydrogen Gas Sensor[J]. Sensor Letters,2003,1(1):42-46.
    139Varghese O K, Gong D W, Paulose M, et al. Extreme Changes in the ElectricalResistance of Titania Nanotubes with Hydrogen Exposure[J]. AdvancedMaterials,2003,15(7-8):624-627.
    140O’Regan B C, Durrant J R, Sommeling P M, et al. Influence of the TiCl4Treatment on Nanocrystalline TiO2Films in Dye-sensitized Solar Cells.2.Charge density, Band Edge Shifts, and Quantification of Recombination Lossesat Short Circuit[J]. Journal of Physical Chemistry C,2007,111(37):14001-14010.
    141Roy P, Kim D, Paramasivam I, et al. Improved Efficiency of TiO2nanotubes inDye Sensitized Solar Cells by Decoration with TiO2Nanoparticles[J].Electrochemistry Communications,2009,11:1001-1004.
    142Parvez M K, Yoo G M, Kim J H, et al. Comparative Study of Plasma andIon-beam Treatment to Reduce Vacancies in TiO2and RecombinationReactions in Dye-Sensitized Solar Cells[J]. Chemical Physics Letters,2010,495:69-72.
    143Yip C T, Mak C S K, Djurisic A B, et al. Dye-sensitized Solar Cells Based onTiO2Nanotube/porous Layer Mixed Morphology[J]. Applied Physics A,2008,92:589-593.
    144Kim J T, Kim S H. Surface Modification of TiO2Electrode by VariousOver-layer Coating and O2Plasma Treatment for Dye sensitized solar cells[J].Solar Energy Materials and Solar Cells,2011,95:336-339.
    145Wang J, Lin Z Q. Dye-sensitized TiO2Nanotube Solar Cells with MarkedlyEnhanced Performance via Rational Surface Engineering[J]. Chemistry ofMaterials,2010,22:579-584.
    146Kim D H, Ghicov A, Albu S P, et al. Bamboo-type TiO2Nanotubes: ImprovedConversion Efficiency in Dye-sensitized Solar Cells[J]. Journal of theAmerican Chemical Society,2008,130(49):16454-16455.
    147Zhu W, Liu X, Liu H Q, et al. An Efficient Approach to Control theMorphology and the Adhesion Properties of Anodized TiO2Nanotube Arraysfor Improved Photoconversion Efficiency[J]. Electrochimica Acta,2011,56:2618-2626.
    148Hsieh C S, Liou T S. Analysis of Orthogonal Array Experiments Using theMultivariate Orthogonal Regression Method[J]. Quality Engineering,2001,13:449-455.
    149Hsieh C S, Zhu H, Wei T Y, et al, Applying the Experimental StatisticalMethod to Deal the Preparatory Conditions of Nanometric-sized TiO2Powdersfrom a Two-emulsion Process[J]. Journal of the European Ceramic Society,2008,28:1177-1183.
    150Shankar K, Mor G K, Fitzgerald A, et al. Cation Effect on the ElectrochemicalFormation of Very High Aspect Ratio TiO2Nanotube Arrays inFormamide-Water Mixtures[J]. Journal of Physical Chemistry C,2007,111(1):21-26.
    151Li G, Liu Z Q, Lu J, et al. Effect of Calcination Temperature on theMorphology and Surface Properties of TiO2Nanotube Arrays[J]. AppliedSurface Science,2009,255:7323-7328.
    152Sohn Y S, Smith Y R, Misra M, et al. Electrochemically AssistedPhotocatalytic Degradation of Methyl Orange Using Anodized TitaniumDioxide Nanotubes[J]. Applied Catalysis B: Environmental,2008,84:372-378.
    153Zhang H Z, Banfield J F. Phase Transformation of NanocrystallineAnatase-to-rutile via Combined Interface and Surface Nucleation[J]. Journal ofMaterials Research,2000,15(2):437-448.
    154Chrysicopoulou P, Davazoglou D, Trapalis Chr, et al. Optical Properties ofVery Thin (<100nm) Sol-gel TiO2Films[J]. Thin Solid Films,1998,323:188-193.
    155Zhao X C, Lin H, Li X, et al. The Effect of Compression on Electron Transportand Recombination in Plastic TiO2Photoanode[J]. Electrochimica Acta,2011,56:6401-6405.
    156李国,胡志强,高岩等.染料敏化太阳能电池对电极的研究进展[J].材料导报,2007,21(12):16-19.
    157Karst N, Rey G, Doisneau B, et al. Fabrication and Characterization of AComposite ZnO Semiconductor as Electron Transporting Layer inDye-Sensitized Solar Cells[J]. Materials Science and Engineering B,2011,176:653-659.
    158Lan J L, Wang Y Y, Wan C C, et al. The Simple and Easy Way to ManufactureCounter Electrode for Dye-sensitized Solar Cells[J]. Current Applied Physics,2010,10(2): S168-S171.
    159Itagaki M, Nakano Y, Shitanda I, et al. Faradaic Impedance to Analyze ChargeRecombination in Photoelectrode of Dye-Sensitized Solar Cell[J].Electrochimica Acta,2011,56:7975-7983.
    160Xie Z B, Adams S, Blackwood D J, et al. The Effects of AnodizationParameters on Titania Nanotube Arrays and Dye-Sensitized Solar Cells[J].Nanotechnology,2008,19:405701-405706.
    161Zhu K, Neale N R, Miedaner A, et al. Enhanced Charge-collection Efficienciesand Light Scattering in Dye-sensitized Solar Cells Using Oriented TiO2Nanotubes Arrays[J]. Nano Letters,2007,7:69-74.
    162Tsoi S, Fok E, Sit J C, et al. Superhydrophobic, High Surface Area,3-D SiO2Nanostructures Through Siloxane-based Surface Functionalization[J].Langmuir,2004,20(24):10771-10774.
    163Park K H, Dhayal M. High Efficiency Solar Cell Based on Dye SenstizedPlasma Treated Nano-structured TiO2Films[J]. ElectrochemistryCommunications,2009,11:75-79.
    164Wang Q, Moser J E, Gr tzel M. Electrochemical Impedance SpectroscopyAnalysis of Dye-sensitized Solar Cells[J]. Journal of Physical Chemistry B,2005,109:14945-14953.
    165Kern R, Sastrawan R, Ferber J, et al. Modeling and Interpretation of ElectricalImpedance Spectra of Dye Solar Cells Operated Under Open-circuitConditions[J]. Electrochimica Acta,2002,47:4213-4225.
    166Fabregat-Santiago F, Garcia-Canadas J, Palomares E, et al. The Origin of SlowElectron Recombination Processes in Dye-Sensitized Solar Cells with AluminaBarrier Coating[J]. Journal of Applied Physics,2004,96:6903-6907.
    167Kim Y, Yoo B J, Vittal R, et al. Low-temperature Oxygen Plasma Treatment ofTiO2Film for Enhanced Performance of Dye Sensitized Solar Cells[J]. Journalof Power Sources,2008,175:914-919.
    168Chen S F, Zhao W, Liu W, et al. Preparation, Characterization and ActivityEvaluation of p-n Junction Photocatalyst p-ZnO/n-TiO2[J]. Applied SurfaceScience,2008,255:2478-2484.
    169Zhang Z H, Yuan Y, Liang L H, et al. Preparation and PhotoelectrocatalyticActivity of ZnO Nanorods Embedded in Highly Ordered TiO2Nanotube ArraysElectrode for Azo Dye Degradation[J]. Journal of Hazardous materials,2008,158:517-522.
    170Kumara G R A, Okuya M, Murakami K, et al. Dye-sensitized Solid-state SolarCells Made from Magnesiumoxide-coated Nanocrystalline Titanium DioxideFilms: Enhancement of the Efficiency[J]. Journal of Photochemistry andPhotobiology A,2004,164:183-185.
    171Alarcon H, Boschloo G, Mendoza P, et al. Dye-sensitized Solar Cells Based onNanocrystalline TiO2Films Surface Treated with Al3+Ions: Photovoltage andElectron Transport Studies[J]. Journal of Physical Chemistry B,2005,109:18483-18490.
    172郑红娟,赵志伟,张琳琪等. ZnO-TiO2纳米复合材料的制备及光催化性能研究[J].功能材料,2010,41(12):2120-2123.
    173王暖霞,孙承华,胡秀杰等.两步法合成ZnO/TiO2异质结构[J].材料工程,2008,10:350-352.
    174Kim K E, Jang S R, Park J, et al. Enhancement in the Performance ofDye-sensitized Solar Cells Containing ZnO-covered TiO2Electrodes Preparedby Thermal Chemical Vapor Deposition[J]. Solar Energy Materials and SolarCells,2007,91:366-370.
    175Pang S, Xie T F, Zhang Y, et al. Research on the Effect of Different Sizes ofZnO Nanorods on the Efficiency of TiO2-based Dye-sensitized Solar Cells[J].Journal of Physical Chemistry C,2007,111:18417-18422.
    176Mane R S, Lee W J, Pathan H M, et al. Nanocrystalline TiO2/ZnO Thin Films:Fabrication and Application to Dye-Sensitized Solar Cells[J]. Journal ofPhysical Chemistry B,2005,109:24254-24259.
    177Wang Q, Ito S, Gr tzel M, et al. Characteristics of High EfficiencyDye-sensitized Solar Cells[J]. Journal of Physical Chemistry B,2006,110:25210-25221.
    178周武艺,唐绍裘,张世英等.制备不同稀土掺杂的纳米氧化钛催化剂及其光催化活性[J].硅酸盐学报,2004,32(10):1203-1208.
    179Yin J B, Zhao X P. Facile Synthesis and the Sensitized Luminescence ofEuropium Iions-doped Titanate Nanowires[J]. Materials Chemistry and Physics,2009,114:561-568.
    180Hafea H, Wu J H, Lan Z, et al. Enhancing the Photoelectrical Performance ofDye-Sensitized Solar Cells Using TiO2: Eu Nanorods[J]. Nanotechnology,2010,21:415201-415206.
    181Gafoor A K A, Thomas J, Musthafa M M, et al. Effects of Sm3+Doping onDielectric Properties of Anatase TiO2Nanoparticles Synthesized by aLow-temperature Hydrothermal Method[J]. Journal of Electronic Materials,2011,40:2152-2158.
    182Saif M, Abdel-Mottaleb M S A. Titanium Dioxide Nanomaterial Doped withTrivalent Lanthanide Ions of Tb, Eu and Sm: Preparation, Characterization andPotential Applications[J]. Inorganica Chimica Acta,2007,360:2863-2874.
    183Xu C Y, Zhang P X, Yan L. Blue Shift of Raman Peak from Coated TiO2Nanoparticles[J]. Journal of Raman Specroscopy,2001,32:862-865.
    184Ohsaka T. Temperature Dependence of the Raman Spectrum in Anatase TiO2[J].Journal of the Physical Society of Japan,1980,48:1661-1668.
    185Frindell K L, Bartl M H, Robinson M R, et al. Visible and Near-IRLuminescence via Energy Transfer in Rare Earth Doped Mesoporous TitaniaThin Films with Nanocrystalline Walls[J]. Journal of Solid State Chemistry,2003,172:81-88.
    186Jing F L, Harako S, Komuro S, et al. Luminescence Properties of Sm3+-dopedTiO2Thin Films Prepared by Laser Ablation[J]. Journal of Physics D: AppliedPhysics,2009,42:085109-085115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700