高速铁路路基模型试验系统研究与动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国列车运行速度不断提高,对铁路路基也提出了更高的要求,充分了解路基的动力响应是高速铁路路基设计和保障铁路运输安全高效的需要。大比例的物理模型试验己成为高速铁路无砟轨道路基结构动力性能研究的重要手段。本文针对目前模型试验的不足建立了高速铁路无砟轨道1:1轨道-路基动力学模型试验系统,并通过数值仿真分析了各因素对高速铁路路基动力响应的影响。主要研究的成果如下:
     1.针对目前小比例模型试验导致模型试验结果与现场实测存在较大差距的情况,建立了1:1轨道-路基动力学实尺模型试验系统。该系统由反力及动力加载系统,数据测试及采集系统和高速铁路路基模型三部分组成。该系统可以模拟不同因素,例如车型、运行速度、轨道结构类型及状态、环境因素等对高速铁路路基动力响应及累计变形的影响。
     2.针对高速铁路路基基床表层以下填料难以就地取材,采用试验的方法确定了不良铁路路基填料的改良方案。试验结果表明:(1)随着粗颗粒的增加,最大干密度先增大后减小、最优含水率与之成线性减小;(2)在三轴剪切过程中,填料碎石含量高、低围压下存在剪涨的趋势,碎石含量低、高围压下存在剪缩的趋势;(3)相同碎石含量的填料内摩擦角随着围压的增加而减小,相同围压下内摩擦角随着碎石含量的增加而增大,但当碎石含量大于60%时,内摩擦角的增加速率明显降低甚至不增加。在综合分析各试验结果的基础上,确定碎石掺量为60%的改良料作为路基模型的路基填料。模型填筑施工后检测结果证明改良的填料满足高速铁路路基填筑要求。
     3.针对目前模型试验只能考虑单轮或者单轴加载,忽略了动荷载的叠加效应,设计了高速铁路模型试验的动力加载装置。该装置的设计基于高速铁路无砟轨道主要由扣件传力这一本质现象,采用多作动器联动来模拟列车动荷载。该动力加载模拟装置既能提供不同轴重,不同列车运行速度下的动力荷载,又考虑了相邻车厢相邻转向架不同轮对之间的动荷载的叠加效应。
     4.采用有限元分析软件系统分析了高速列车作用下各因素对路基动力响应的影响。分析表明:(1)路基中竖直动应力和竖向动位移随深度呈指数趋势衰减。动应力、动位移经过基床表层分别衰减为约60%、40%,到达基床底面后仅剩余10%左右;(2)路基中基床表层和基床底层的动应力和竖向动位移幅值随列车轴重和行车速度的增加而线性增加,而基床底面(路基深3m处)基本未受影响。(3)混凝土支承层厚度取0.2~0.4m都可满足设计要求,但厚者安全,支承层可采用低标号混凝土以节省造价。基床底层厚度应取2m以上。
Higher requirements were needed to the design of subgrade of the railway while the speed of the train continuously increased. Fully understanding the dynamic response of the subgrade was the need for the design of high speed railway subgrade and ensuring safety and high efficiency of the railway transportation. Large scale model test has been the important analysis method to research the dynamic characteristics of the high speed railway subgrade. In this paper, aiming at the disadvantages of the recent model tests,1:1track-subgrade dynamic model test system has been established and how each factor effect the dynamic response of the subgrade under the action of high-speed train has been analysed. The main research results are as follows:
     1. Aiming at big difference between the small scale model test and in-situ monitering,1:1track-subgrade dynamic model test system was established, which was consist of3parts, counter-force and dynamic loading system, data testing and colletion system and high speed railway subgrade model. The system can be used for simulating how each factor affect the dynamic response and accumulated deformation of the subgrade, such as the type the train, velocity of the train, the type of the track, environment factor and so on.
     2. Aiming at difficulty in find proper filling in site, experiment research was carried out to determine the improvement plan of unfitted subgrade filling. Test results show that:(1)with the increase of percentage of the coarse particles, maximum dry density firstly increased and then decreased, and the optimum moisture content linearly decreased;(2) in the process of triaxial shear test, high gravel content filling trend to dilate while shearing under the low confining pressure, low gravel content filling trended to shrank while shearing under the high confining pressure;(3) for the same gravel content filling, the internal friction Angle trended to decrease as the confining pressure increase, and under the some confining pressure the internal friction angle trended to increase as the gravel content increase. However, when the gravel content is larger than60%, the rate of the internal friction angle significantly decreased and even no increase. Based on the comprehensive analysis of the results of tests, gravel content is determined by60%. And this improvement filling was adopted to construct the subgrade in the model test. The detected results after model test construction proved that the improved filling met the high speed railway subgrade filling requirements.
     3. Aiming at the phenomenon that the current model test only use single wheel or single axis to apply loading ignoring the stress superimposition, dynamic loading device was designed for the high speed railway model test. The design was based on essence phenomenon that the fastening conduct the force in the ballastless track of high speed railway, several actuators was set to simulate the train loading. The dynamic loading simulation devices not only could provide dynamic load of different axle load at different speed, but also could consider the superimposition effect of different wheels of adjacent bogie of adjacent car.
     4. Finite element analysis software was adopted to analyze that how each factor effect the dynamic response of the subgrade under the action of high-speed train. Analysis showed that:(1) vertical dynamic stress and vertical dynamic displacement in the subgrade exponentially attenuated with depth. Through the upper layer of the subgrade, dynamic stress and dynamic displacement respectively attenuated about40%,60%, and only10%left when reaching the bottom of the subgrade;(2) vertical dynamic stress and vertical dynamic displacement amplitude linearly increased as train axle load and train speed increased in the upper and bottom layer of the subgrade. However it was seemed that the bottom of the subgrade (3m deep in subgrade) was unaffected;(3) adopting0.2-0.4m for thickness of concrete bearing layer can meet the design requirements, definitely the thicker is safer, low strength concrete can be used for bearing layer to save the cost. The thickness of the bottom layer of the subgrade should be taken more than2m.
引文
[1]Timoshenko S. Method of Analysis Static and Dynamical Stresses in Rail[J]. Proc. of the 2nd International Congress of Applied Mechanics, Zurich,1927.
    [2]J. T Kenney J, Pasadena, Calif. Steady-State vibration of beam on elastic foundation for moving Load[J]. Journal of Applied Mechanics,1954, (11): 359-364.
    [3]P M. Mathews. Vibrations of a beam on elastic foundation [J]. ZAAM. Z. angew. Math. Mech,1958, (38):104-115.
    [4]Eason, G. The stresses produced in a semi-infinite solid by a moving Surface force [J]. Int. J. Eng. Sci,1965, (2):581-609.
    [5]Fryba, L. Vibration of solids and structures under moving loads[J]. noordhoff international publishing, Groningen, The Netherlands.1972.
    [6]Filippov, LG. Method of solving equations of motion of viscoelastic media[J]. Mekhnika Kompozitnykh Materialov,1973,9(3):429-435.
    [7]Jones D. V. Petyt M. Ground vibration in the vicinity of a strip load A two-dimensional half-space model [J]. Journal of Sound and Vibration,1991, 147(1):154-166.
    [8]Jones D. V. Petyt M. Ground vibration in the vicinity of a strip load. An elastic layer on a rigid foundation[J]. Journal of Sound and Vibration, 1992,152(3):501-515.
    [9]Jones D. V. Petyt M. Ground vibration in the vicinity of a strip load:an elastic layer on an elastic half-space [J]. Journal of Sound and Vibration, 1993,161(1):1-18.
    [10]Jones D. V., Pety M. Ground vibration in the vicinity of are rectangular load on a half-space[J]. Journal of Sound and Vibration,1993,166(1) 141-159.
    [11]Krylov V and Ferguson C. Generation of low frequency ground vibrations from railway trains. Applied Acoustics[J],1994,42(3):199-213.
    [12]Krylov V. Generation of ground vibration by superfast trains [J]. Applied Acoustics,1995, (44):149-164.
    [13]Dieterman H. A. and Metrikine A. V. The equivalent stiffness of a half-space interacting with a beam. Critical velocities of a moving load along the beam[J]. European J. Mech. A/Solids,1995,15(1):67-90.
    [14]Dieterman H. A, Metrikine A. V. Steady-state displacements of a beam on an elastic half-space due to a uniformly moving constant load[J]. European Journal of Mechanics, A/solids,1997,16(2):294-306.
    [15]Matsuura, Akio. Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks[J]. Structural Engineering/Earthquake Engineering,1998,15(1):62-72.
    [16]Grundmann H, Lieb M, Trommer E. The response of a layered half-space to traffic loads moving along its surface [J]. Archive Appl. Mech.1999,69: 54-67.
    [17]Kaynia A, Madshus C, Zackrisson P. Ground vibration from high speed trains:prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE,2000,126(6): 531-537.
    [18]Amir M Kaynia, Chirstian Madshus, Peter Zackrission. Ground Vibration from High-Speed Trains:Prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6):531-537.
    [19]Jones, C J C, Thompson, D J, and Petyt, M. Studies using a combined finite element and boundary element model for vibration propagation from railway tunnels[J]. In Proceedings the Seventh International Congress on Sound and Vibration, Garmish-Partenkirchen,2000,27032710.
    [20]Hirokazu Takemity, Shuhei Satonaka and wei-Ping xie, Train Track-Ground Dynamics Due to High Speed Moving Source and Ground Vibration Transmission[J]. Structural Eng/Earthquake Eng, JSCE,2001,18(2): 299-309.
    [21]Dinkel J, Bitzenbauer J. Dynamic interaction between a moving vehicle and an infinite structure excited by irregularities-Fourier transforms solution[J]. Archive of Applied Mechanics,2002,72(2):199-211.
    [22]Kim, Seong-Min. Vibration and stability of axial loaded beams on elastic foundation under moving harmonic loads[J]. Engineering Structures,2004, 26(1):94-105.
    [23]杨英豪,王杰贤.列车运行时振波在土中的传递[J].西安建筑科技大学学报,1995,27(3):329-334.
    [24]孙璐,邓学钧.匀速运动的线源荷载激励下无限长梁动力分析[J].应用数学和力学,1998,19(4):341-347.
    [25]张昀青.列车荷载作用下周围物体的动力响应解[J].铁道学报,2003,25(4):84-88.
    [26]蒋建群,周华飞等.弹性半空间体在移动集中荷载作用下的稳态响应[J].岩土工程学报,2004,26(4):440-444.
    [27]谢伟平,于艳丽,李红兵.高速移动荷载下轨道系统振动模拟的数值算法[J].武汉理工大学学报,2001,23(12):57-59.
    [28]谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学学报,2003,24(1):23-27.
    [29]谢伟平,王国波,于艳丽.移动荷载作用下基于薄层单元法的土动力分析[J].华中科技大学学报,2004,2:8-11.
    [30]刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-103.
    [31]王常晶,陈云敏.列车荷载在地基中引起的应力响应分析[J].岩石力学与工程学报,2005,24(7):I 178-1187.
    [32]Dawn T. M. Stanworth C. G. Ground vibrations from passing trains [J]. Journal of Sound and Vibration,1979,8:354-62.
    [33]Jorgen J. Ground Vibration from Rail Trafic. Journal of Low Frequency. Noise and Vibration,1987,6(3):96-103.
    [34]Madshus C, Bessason B, Harvik L. Prediction model for low frequency vibration from high speed railways on soft ground [J]. Journal of Sound and Vibration,1996,193(1):194-203.
    [35]Madshus C, Kaynia A M. High-speed railway lines on soft ground dynamic behavior at critical train speed[J], Journal of Sound and Vibration,2000, 231(3):689-701.
    [36]Hendry M, Hughes D, Barbour L, et al. Train induced dynamic response of railway track and embankments over soft peat foundations[C]. Proceedings 59thCanadian Geotechnical Conference, Vancouver:Canadian Geotechnical Society,2006.
    [37]Fujikake T. A prediction method for the propagation of ground vibration from railway trains[J]. Journal of Sound and Vibration,1986,111(2): 357-360.
    [38]SUNAGA MAKOTO. Vibration behavior of roadbed on soft grounds under train load [J] Quartly Report of RTRI,1990(31):29-35.
    [39]Okumura Kuno, K. Statistical analysis of field data of railway noise and vibration collected in an urban area[J]. Applled Acoustics,1991,33(4): 262-80.
    [40]Takemiya H. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics,2005,131(7):699-711.
    [41]杨璨文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,(02):49-57.
    [42]茅玉泉.交通运输车辆引起的地面振动特性和衰减[M].兵器工业部第六设计研究院,1987.
    [43]王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报,2000,22,(5)增:79-81.
    [44]铁道科学研究院.京秦客运通道提速改造工程第一次实车运行试验研究报[R].北京:铁道科学研究院,2000.
    [45]钟辉虹,汤康民,黄茂松.铁路粘土路基动力特性试验研究[J].西南交通大学学报,2002,37(5):488-490.
    [46]孙常新,梁波,杨泉.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报(自然科学版),2003,22(4):110-112.
    [47]李献民.高速铁路加筋过渡段静动力特性数值分析及试验研究[D].长沙:中南大学,2006.
    [48]陈雪华.高速铁路无碴轨道过渡段路基的动力特性研究[D].长沙:中南大学,2006.
    [49]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学,2005.
    [50]田海波,许恺.时速250km客运专线路基动力响应研究试验[J].铁道标准设计,2006,(02):3-6.
    [51]朱忠林,马伟斌,韩自力.新建铁路路基改良土动力学试验研究[J].中国铁路,2007,(05):51-53.
    [52]董亮,赵成刚,蔡德均,等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J].土木工程学报,2008,41(10):81-86.
    [53]童发明,王永和,何群.改良土填筑过渡段基床底层的动力特性分析[J].中南大学学报(自然科学版),2009,40(6):1704-1711.
    [54]张协崇.客运专线涵-涵过渡段动力特性试验研究及仿真分析[D].长沙:中南大学,2009.
    [55]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].北京:铁道部科学研究院,2002.
    [56]李佳.遂渝铁路无砟轨道路隧过渡段实车测试及路基结构FEM计算[D].成都:西南交通大学,2008.
    [57]周镇勇.武广客运专线路基动力响应特性试验及数值模拟分析[D].长沙:中南大学,2010.
    [58]Gobela C H, Weisemanna U C, Kirschner R A. Effectiveness of a reinforcing geogrid in a railway subbase under dynamic loads[J]. Geotexiles and Geomembranes,1994(13):91-99.
    [59]曹新文,蔡英,梁波,等.高速铁路路基基床动力特性的模型试验研究[C].第五届全国土动力学学术会议论文集,1998,(6):192-195.
    [60]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].2001,21(8):2-4.
    [61]卿启湘.高速铁路无碴轨道-软岩路基系统动力特性研究[D].长沙:中南大学,2005.
    [62]林青.水泥稳定级配碎石基床结构的动力特性分析[D].成都:西南交通大学,2006.
    [63]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,2007,37(2):48-49.
    [64]詹永祥,蒋关鲁,牛国辉,等.高速铁路无碴轨道桩板结构路基模型试验研究[J].西南交通大学学报,2007,42(4):400-403.
    [65]冯立臣,蒋关鲁,王志猛,等.客运专线土质路基无砟轨道基床动态特性的模型试验研究[J].铁道建筑,2008,(08):78-81.
    [66]陈睿.无碴轨道桩板结构和桩网结构路基离心模型试验研究[D].成都:西南交通大学,2007.
    [67]Hanazato, Toshikazu, Ugai, Keizo, ect. Three-dimensional analysis of traffic-induced ground vibrations [J]. Journal of Geotechnical Engineering, 1991,117(8):1132-1151.
    [68]Oscarsson J, Dahlberg T. Dynamic Train/TrackBallast Interaction computer Models and Full-scale Experiments [J]. Vehicle System Dynamics, 1998,28(Supp 1.):72-84.
    [69]Auersch L. Vehicle-track interaction and Soil Dynamics [J]. Vehicle System Dynamics,1998,28(Suppl.):552-558.
    [70]Shanhu, J. T. Rao, N. S. V. Kameswara, Yudhbir, Parametric study of resilient response of tracks with a sub-ballast layer. Canadian Geotechnical Joumal,1999,36(6):1137-1150.
    [71]Maffeis, A, Scandella, L, Stupazzini, M, Vanini, M. Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard[J], Sweden Soil Dynamics and Earthquake Engineering,2003, 23(6):424-433.
    [72]Hall, Lars. Simulations and analyses of train-induced ground vibrations Dynamics and Earthquake Engineering,2003,23(5):402-413.
    [73]Oscarsson J. Dynamic Train-track-ballast Interaction with Properties[C]. 17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark,2001.
    [74]Ekevid, Torbjorn Wiberg, Nils Erik. Wave propagation related to high-speed train a scaled boundary FE-approach for unbounded domains[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(36):3947-3964.
    [75]Takemiya H. Fei G. and Sukeyasu Y.2-D Transient Soil-surface foundation interaction and wave propagation by time domain BEM[J]. Earthquake Engineering and Structural Dynamics,1994,23:931-945.
    [76]Takemiya H. and Sukeyasu Y. Transient response of rigid strip foundations on a half-space/stratum soil due to impulsive loads [J]. Computer Methods and Advances in Geomechanics。1994,2:992-998.
    [77]Takemiya H. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct [J]. Soil Dynamics and Earthquake Engineering,2004,24(1):69-87.
    [78]Javad Sadeghi, Hossein Askarinejad. Development of nonlinear railway track model applying modified plane strain technique[J]. Journal of Transportation engineering,2010,12:1068-1074.
    [79]Shahu J T, Rao N S, V Kameswara Yudhbir. Parmetric study of resilientrse Ponseoftraeks with a sub-ballasrlayer[J]. Canadian Geotechnieal Journal, 1999,36 (6):1137-1150.
    [80]Verbic B. Investigating the dynamic behavior of rigid track[J]. Railway Gazette International,1997,153(9):584-586.
    [81]Diehl R J, Nowack R, Holzl G. Solutions for acoustical problems with ballastless track [J]. Journal of Sound and Vibration,2002,31 (3):899-906.
    [82]Esveld C. Modern Railway Track(Second Edition)[M]. Delft MRT Production, 2001.
    [83]Van Lier S. The vibro-acoustic modeling of slab track with embedded rails[J]. Journal of Sound and Vibration,2000,231(3):804-817.
    [84]Man A P D E. Dyna track a survey of dynamic railway track properties and their quality[M]. Dissertation TU Delft, DUP-Science,2002.
    [85]Markine V L, Man A P DE, Jovanovic S, Esveld C. Modelling and optimisation of an embedded rail structure [A]. Proceedings of Innovations in the Design and Assessment of Railway Track[C]. Trade Show and Workshops. Delft University of Technology, Delft, The Netherlands.
    [86]Okuda H, Asanuma K, Matsumoto N, et al. Dynamic load, resistance and environmental performance of floating ladder track[J]. QR of RTRI,2004, 45(3):149-155.
    [87]Tanable M, Wakui H, et al. Computational model of a Shinkansen train running on the railway structure and the industrial applications[J]. Journal of Materials Processing Technology,2003, (140):704-710.
    [88]Cui F, Chew C H. The effectiveness of floating slab track system[J]. Receptance methods Applied Acoustics,2000, (61):441-453.
    [89]雷晓燕.高速列车对道砟的动力响应.铁道学报,1997,19(1):113-121.
    [90]雷晓燕,陈水生.高速铁路轨道结构空间动力分析.铁道学报,2000,22(5):76-80.
    [91]Wu, S. F, Zhou, Z. Simulation of vehicle pass-by noise radiation Transactions of the ASME. Journal of Vibration and Acoustics,1999,121(2): 197-203.
    [92]李军世,李克川.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [93]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(1):83-88.
    [94]梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2000,22(1):64-71.
    [95]Liang Bo, etc.. Dynamic Analysis of the Vehicle-Subgrade Model of Vertical Coupled System[J]. Journal of Sound and Vibration.2001(1):79-93.
    [96]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].北京:北京交通大学,2000.
    [97]毛利军,雷晓燕.车辆-轨道耦合系统随机振动分析.华东交通大学学报,2001,18(2):6-12.
    [98]苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].成都:西南交通大学,2001.
    [99]娄平,曾庆元.移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J].交通运输工程学报,2003,(2):1-6.
    [100]许俊超,童小东,潘卫东.高速铁路路基结构的动力有限元分析[J].路基工程,2006.5:20-22.
    [101]王天亮.高速铁路路基基床的静动力特性分析[D].石家庄:石家庄铁道学院,2006.
    [102]肖晓骥.客运专线土质路基无砟轨道动力特性研究[D].北京:北京交通大学,2007.
    [103]何群.客运专线全风化花岗岩改良土隧-隧过渡段动力特性及稳定性研究[D].长沙:中南大学,2007.
    [104]黄瑛.高速铁路路基动态响应分析及模型实验装置研制[D].长沙:中南大学,2009.
    [105]胡萍,王永和,卿启湘.过渡段路基刚度变化规律的试验研究[J].石家庄铁道学院学报(自然科学版),2009,22(2):22-26.
    [106]杨英豪,王杰贤.列车行驶时振波在土中的传递[J].西安建筑科技大学学报,1995,27(3):329-334.
    [107]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):54-64.
    [108]王于.轨道过渡段动力学性能分析及设置条件[D].成都:西南交通大学,1998.
    [109]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响[D].北京:铁道科学研究院,2001.
    [110]毛建红Rheda-2000无砟轨道结构竖向动力分析[D].长沙:中南大学,2005.
    [111]刘亚敏.博格板式无砟轨道的竖向动力分析[D].长沙:中南大学,2006.
    [112]赫丹,向俊,郭高杰等.砂浆刚度和阻尼对高速列车-板式轨道时变系统振动的影响[J].铁道科学与工程学报,2006,(3):26-29.
    [113]赫丹,向俊,曾庆元等.轨道刚度变化对高速列车-板式轨道系统振动响应的影响分析[J].西安建筑科技大学学报,2006,38(4):559-563.
    [114]Arpad Kezdi著,张起森等译.稳定土道路[M].北京:人民交通出版社,1989.
    [115]张忠.水泥改良土填料试验研究初探[J].研究与设计,2010,(4):18-20.
    [116]卢肇均.地基处理手册[M].北京:中国建筑工业出版社.1988.281-295.
    [117]孙立川,韩杰.水泥加固土无侧限抗压强度影响因素分析及预测[J].地基处理,1994(4):31-37.
    [118]胡萍,王永和,卿启湘.软岩改良土特性室内试验研究[J].湖南工业大学学报,2007,21(2):96-99.
    [119]法国经济发展指导合作部编,陈道才等编译,潘文革等校.国外道路手册[M].北京:人民交通出版社,1980.104-168.
    [120]Bell F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology,1996,412(4):222-237.
    [121]Osula D 0 A. Lime stabilization of clay minerals and soils[J]. Engineering Geology,1996,42(1):71-80.
    [122]Locat J, Tremblay H. Mechanical and Hydraulic Behavior of a Soft Inorganic Clay Treated with Llime[J]. Canadian Geotechnical Journal,1996,33(4): 653-659.
    [123]Al-Abdul Wahhab HI, Asi, I M. Improvement of Marl and Dune Sand for Highway Construction in Arid Areas[J]. Building and Environment,1997,32(3): 271-279.
    [124]解松芳,郭跃华.石灰改改良膨胀土试验研究[J].内蒙古农业大学学报,2008,29(4):180-182.
    [125]陆益成.高液限粘土石灰改良强度特征与应用[J].道路工程,2009,(12):80-82.
    [126]刘林芽,高柏松.黏土改良的石灰剂量随时间变化规律的研究[J].铁道建筑,2007,(8):47-49.
    [127]贺建清,张家生.石灰改良软土路基填料饱水强度特征性研究[J].矿冶工程,2004,24(4):18-21.
    [128]杨广庆,荀国利.高速铁路路基改良土的有关问题[J].铁道标准设计,2003,(5):14-16.
    [129]毛世福.武广客运专线泥质粉砂岩填料物理改良研究[J].铁道建筑技术,2009,(4):1-6.
    [130]范云,汪英珍.细砂填料改良技术的试验研究[J].岩土力学,2003,24(6)964-968.
    [131]赵明,张铮.秦沈客运专线辽中路段路堤填料的改良[J].路基工程,2001,(2):49-51.
    [132]孙冀.砂砾改良高液限红粘土的试验研究[J].中国西部科技,2008,23(7)22-24.
    [133]王晓明.客运专线路基填料改良试验研究[J].铁道工程学报,2010,(3):23-27.
    [134]屈泽刚,陈志华.风积沙路基填筑料的物理改良研究[J].铁道建筑技术,2010,(3):138-140.
    [135]韩宝明,李学伟.高速铁路概论[M].北京:北京交通大学出版社,2008.
    [136]刘金升.高速铁路高路堤稳定性分析及工后沉降预测[D].成都:西南交通大学,2005.
    [137]宋焕宇.粗粒土斜坡高路堤变形性状与稳定性研究[D].武汉:华中科技大学,2007.
    [138]Jamiolkowski. New Developments in Field and Laboratory Testing of Soils [J]. Soils and Foundations,1992,32(3):62-67.
    [139]闫勋念.粗粒土力学特性三轴试验与模拟研究[D].南京:河海大学,2006.
    [140]梁波,孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报,2006,39(9):117-122.
    [141]刘成宇.土力学[M].北京:中国铁道出版社,2005.
    [142]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soil[J].ASCE, JSMFD,1970,96(5):1629-1652.
    [143]刘祖德.土石坝变形计算的若干问题[J].岩土工程学报,1983,5(1):1-13.
    [144]刘萌成,高玉峰,刘汉龙等.堆石料变形与强度特性的大型三轴试验研究[J].岩石力学与工程学报,2003,22(7):1104-1111.
    [145]张兵,高玉峰,毛金生.堆石料强度和变形性质的大型三轴试验及模型对比研究C[J].防灾减灾工程学报,2008,28(1):122-126.
    [146]迟明杰,赵成刚,李小军.砂土剪胀机理的研究[J].土木工程学报,2009,42(3):99-104.
    [147]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [148]LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, ASCE,1969,95(4):859-878.
    [149]LYSMER J, KUHLEMEYER R L. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99(5):421-427.
    [150]JIAO Y Y, ZHANG X L, ZHAO J, et al. Viscous boundary of DDA for modeling stress wave propagation in jointed rock[J]. Rock Mechanics and Mining Sciences,2007,44: 1070-1076.
    [151]Heidari A H, Guddati M N. Highly accurate absorbing boundary conditions for wide-angle wave equations[J]. Geophysics,2006,71(3):S85-S97.
    [152]Engquist B, Majda A. Absorbing boundary conditions for numerical solution of wave[J]. Mathematics of Computation,1977,31(9):629-651.
    [153]ALTEMAN Z S, JR KARAL F C. Propagation of elastic waves in layered media by finite-difference methods[J]. Bulletin of the Seismological Society of America,1968, 58(1):367-398.
    [154]Ang H S, Newmark N M. Development of a transmitting boundary for numerical wave motion calculation(Report 2631)[R]. [s.1.]:Defense Atomic Support Agency,1972.
    [155]朱月红,齐海,贾丽萍.有限元-人工透射法对权重耦合AOTF的计算[J].河北师范大学学报(自然科学版),2006,30(1):40-42.
    [156]DEEKS AJ, RANDOLPH MF. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25-42.
    [157]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55--64.
    [158]铁道科学院铁路建筑研究所.轨道、路基、桥梁荷载图式协调[C].京沪高速铁路综合技术研究报告之六.北京:中国铁道出版社,1998.
    [1591王炳龙.高速铁路路基工程[M].北京:中国铁道出版社,2007.
    [160]李怒放.动态变形模量Evd标准的应用与展望[J].铁道标准设计,2003,(6):37-40.
    [161]孔艳艳.静态变形模量与动态变形模量相关性分析[J].铁道标准设计,2010,(9):38-42.
    [162]王从贵.动态变形模量Evd与地基系数K30的相关性研究[J].路基工程,2004,(2):3-7.
    [163]董秀文,谢强.Evd与变形模量Ev2相关关系的试验研究[J].路基工程,2006,(6):42-45.
    [164]张光宗.武广客运专线粗粒土路基压实质量过程控制研究[D].北京:北京交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700