马铃薯块茎低温糖化机理及转化酶抑制子基因的克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯是世界第四大粮食作物,用途广泛,其加工产品薯片和炸薯条是风靡全球的食品。为了抑制常温贮藏产生的块茎失水皱缩、病害传播、发芽等现象及延长加工周期,常将马铃薯块茎贮藏在低温条件下。但低温常使块茎中的淀粉加速转化为还原糖,高温油炸加工时,还原糖与块茎中游离的氨基酸发生反应,严重影响炸片或炸条的色泽和品质。块茎“低温糖化”是个复杂的数量性状,涉及淀粉—糖代谢的多种路径,调节和反馈因子多,因此“低温糖化”的机理研究是马铃薯加工品质改良的重要基础工作。本研究拟探索不同温度贮藏条件下马铃薯淀粉—糖代谢的主要酶类与还原糖含量的动态变化关系,明确其主要的调控因子。在此基础上,结合前人的研究结果,分离克隆淀粉—糖代谢关键酶的调控基因,并通过转化马铃薯进行功能验证,以进一步揭示马铃薯块茎淀粉—糖代谢的分子机理,为改良马铃薯加工品质提供理论依据和技术基础。研究取得的主要结果如下:
     1.以不同贮藏温度条件下的鄂马铃薯1号(E1)和鄂马铃薯3号(E3)品种为材料,对贮藏块茎还原糖、总糖含量及淀粉-糖代谢中酶活性变化规律进行研究,以明确马铃薯炸片色泽指数的主要影响因素。结果表明,贮藏期间低温是促进块茎还原糖累积的主要影响因素,还原糖含量与炸片色泽具有极显著直线正相关关系。进一步分析表明,在4℃贮藏条件下,腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、尿昔二磷酸葡萄糖焦磷酸化酶(UGPase)和蔗糖合成酶活性(SuSy)与块茎还原糖含量呈显著负指数相关,酸性转化酶(Acid Inv)和碱性转化酶(Alkaline Inv)活性与块茎还原糖的积累呈显著直线正相关,是淀粉—糖代谢过程中影响块茎“低温糖化”的主要因子。
     2.转化酶抑制子是一类同源性较低的蛋白质家族,通过转化酶抑制子的调控可能达到抑制转化酶活性,进而调控还原糖积累的效果。本研究根据已报道的烟草转化酶抑制子序列设计特异引物,通过RT-PCR法在烟草T1系中成功分离到液泡转化酶抑制子基因Nt-inhh全长cDNA。序列分析表明,该基因编码区与报道的Nt-inhh基因完全一致。通过构建35S和块茎特异的patatin启动子调控下含有Nt-inhh基因cDNA的表达载体转化马铃薯。分析转基因植株块茎在4℃和20℃贮藏一个月后还原糖含量与液泡酸性转化酶活性表明,Ⅵ活性下降幅度为22.7%(株系A-3)至78.7%(株系B-13),还原糖下降幅度为20%(株系A-17)至80.5(株系A-30),说明Nt-inhh cDNA在马铃薯中的表达成功抑制了液泡酸性转化酶的活性,导致还原糖含量降低。实验还进一步证实了低温贮藏块茎液泡酸性转化酶活性与还原糖含量呈正相关关系。
     3.转化酶抑制子是高等植物普遍存在的一类蛋白质家族,本研究用RT-PCR结合5'RACE方法从马铃薯栽培种JH块茎中克隆了转化酶抑制子St-inh cDNA。序列分析表明,St-inh基因编码区全长663bp,编码221个氨基酸。将St-inh基因克隆
The potato (Solarium tuberosum L.) is the fourth food crop with multiple uses in the world, of which potato chips and fries are fashionable. The harvested tubers of potato are stored at low temperature to prevent losses caused by spoilage spreading, sprouting and shrinkage, and to extend the processing period of industries. Cold storage, however, induces the accumulation of reducing sugar (RS) due to the conversion of starch to reducing sugar that can react with the free amino acid of tubers at high temperature frying. This results in a dark-coloured, bitter-tasting and undesirable product unfiting for human consumption. The statch-sugar conversion involves multiple metabolic pathway with multi-regulaing and -feedback regulating factors. Therefore, mechanism of "low temperature sweetening (LTS) " is a basic research for improving potato post-harvest quality. The aim of the present research reported is exploit the dynamic relationship between the content of RS and activities of the main enzymes involved in the starch-sugar conversion of the tubers stored at different temperatures and clarify the key factors affecting the accumulation of RS. Moreover under the basis of the present analysis and previous research, to clone the genes regulating of key factors and to elucidate its function by transformation in order to obtain further understanding of the starch-sugar conversion mechanism with purpose to provide academic evidences and technological supports for improving the processing quality of potato tubers. The main results obtained are as following:1. The experiment was designed, via storing potato tubers of cvs. E-Potato 1 and E-Potato 3 in different temperature, to explore the variation patterns of reducing sugar and total sugar (TS) contents and enzyme activities that involved in the pathway of starch-sugar metabolism aiming at to identify the main factors that influence the chip color. The results showed that low temperature in storage was a main factor that accelerated the accumulation of RS of the stored tubers and there was a very significant linear relationship existed between RS content and chip color index of the tubers. Further analysis elucidated that when tubers stored at 4℃, the activities of ADP glucose pyrophosphorylase (AGPase), UDP glucose pyrophosphorylase (UGPase) and sucrose synthase (SuSy) were negatively exponential to the RS content significantly while that of acid invertase and alkaline invertase were significantly linear to RS content. It suggested that these enzymes could play main roles in the cold sweetening of potato tubers through regulating starch-sugar metabolism.2. The invertase inhibitor is a protein family with low homology. Activity regulation of the invertase inhibitor to invertase may bu efficient to reduce the
    accumulation of the reducing sugars through its effect on the activities of invertases. A full cDNA sequence of vacuolar invertase inhibitor gene was amplified from leaves of tobacco Tl strain by RT-PCR and using the primers designed on the base of published sequence of NCBI. Nt-inhh (vacuolar invertase inhibitor), assession number in GenBank AY594179. Analysis of Blast showed that the cloned cDNA shares 100% homology with Nt-inhh of tobacco. The sense-orientation vectors containing Nt-inhh cDNA regulated by 35S or patatin promoter were constructed and introduced successfully into potato E3 by the PCR detection and northern blot analysis. The transgenic tubers were harvested and stored at 4°C or 20 "C for 1 month in order to analyse the variation in reducing sugar content and vaculoar invertase (VI) activity. The results showed that VI activity are inhibited by range from 22.7% (strain A-3) to 78.7% (strain B-13) and RS content decrease by range from 20% (strain A-17) to 80% (strain A-30). This experiment further identified that the activity of invertase was significantly linear to RS content.3. Invertase inhibitor is a protein family found in higher plant speices. A full length cDNA encoding invertase inhibitor was isolated by RT-PCR combined with 5' RACE from potato tubers of cv. JH and designated as St-inh. The encoding region of St-inh is of 663bp encoding a protein of 221 amino acids. The DNA fragment including St-inh cDNA was cloned into the vector pET28a (+) and expressed successfully in E. coli. Co-incubation of the proteins produced by St-inh in E. coli and the invertase extracts from potato tubers of cv. El and JH and tomato fruits showed that the invertase activities of potato tubers and tomato fruits decreased by 34.3%, 21% and 33.8% respectively. Moreover, the reaction between expression proteins and CWI and VI extracts from cv. E3 leaves resulted in the decrease of CWI and VI activities. These results indicated that products of St-inh protein had a function of invertase inhibitors. The analysises of the nucleotide and amino acid sequences using T-COFFEE demonstrated that St-inh cDNA was of over 95% homologous to Kunitz-type C and there was a typical domain of Kunitz-type protein [L, I, V, M]-X-D-X-[E, D, N, T, Y]-[D, G]-[R, K, H, D, E, N, Q]-X-[L, I, V, M]-X (5) -Y-X-[L, I, V, M]. Therefore, it was conjectured that St-inh could be a member of Kunitz- type gene family. Clustalw analysis for amino acid sequences showed that invertase inhibitor is a protein family with very low homology. St-inh has 14.2% to 21.0% homologous to Ara-inh^ Nt-inhh^ Nt-inh^ To-inh^ Pa-inh^ Ip-inh^ Ci-inh and Zm-inh, indicating that St-inh is a new invertase inhibitor gene from potato.4. Low temperature promoter (LTP) was isolated from E3 genomic DNA by PCR. Two Agrobacterium transformation vectors were constructed, which contained a sense St-inh gene under the regulation of 35S and LTP and introduced successfully into potato
    E3 by the PCR detection and northern blot analysis. The analysis of RS content and invertase activities from the tubers stored at 4°C and 20 °C for 1 month indicated that the maximal extent of RS decreased by 80.3% (Strain E-l) and VI activity decreased by 54.2% (strain D-7) with average reduction in RS content by 21.0% and VI activity by 19.0%. This experiments further identified that the activity of VI was significantly linear to RS content. The results reconfirmed that invertase is a main factor influencing low temperature sweetening which can be altered by regulating the expression of the invertase inhibitor, hence reducing the content of RS. Northern blot results revealed that the expression of St-inh increase especially in the the control of LTP but which did not lead to the difference of RS inhibition compared with 35S, suggesting that either constitutive or induced expression of St-inh had similar function in regulating RS accumulation of stored potato tubers.
引文
1.陈芳,胡小松。加工用马铃薯“低温糖化”机制的研究。食品科学,2000,21(3):19-22
    2.陈芳,胡小松。马铃薯块茎贮藏温度对其碳水化合物含量及炸片色泽的影响。园艺学报,2000,27(3):218-219
    3.金冬雁,黎孟枫等译。《分子克隆》实验指南(第二版)。<美>J.莎姆布鲁克 E.E弗里奇,T.曼尼阿蒂斯著。科学出版社,2002。
    4.李合生主编。植物生理生化实验原理和技术。北京:高等教育出版社,2000:194-201
    5.李克来,唐洪明,李天然译。马铃薯育种和良种繁育。(苏)C。M。布卡索夫A。R。卡美拉兹著。内蒙古马铃薯科学研究中心编辑室。1983,366-367
    6.潘瑞炽。植物的抗性生理。见:潘瑞炽主编,植物生理学(第四版)。北京,高等教育出版社,2001,279-296
    7.屈冬玉,谢开云,金黎平,卞春松。中国马铃薯产业入世后面临的挑战与应对策略。见“高新技术与马铃薯产业”(陈伊里、屈冬玉主编),哈尔滨工程大学出版社,2002,173-184。
    8.田振东。马铃薯晚疫病水平抗性相关基因片段筛选及克隆研究。华中农业大学博士学位论文,2003。
    9.王关林,方宏筠主编。植物基因工程。科学出版,2002.8。
    10.王合里。低温对马铃薯块茎呼吸及糖代谢的影响。马铃薯杂志,1999,13(3):133-135
    11.王新伟,洪乃武。不同来源马铃薯品种淀粉含量差异。马铃薯杂志,1997,11(3):148-149
    12.谢智明。马铃薯适于炸片品种及主要加工工艺参数的研究。马铃薯杂志 1992,6(4):212-216
    13.许国旺,杨军。代谢组学及其研究进展。色谱,2003,21(4):316-320
    14.周成业。浅谈我国马铃薯休闲食品的发展概况及市场前景。中国马铃薯,2002,16(6):369-371
    15. Abel G J W, Springer F, Willmitzer L, Kossmann J. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J., 1996, 10: 981-991
    16. ap Rees T, Burrell M, Entaistle T G, Hammend J B W, Kirk O, Kruger N J. Effects of low temperatures on respiratory metabolism of carbohydrates by plants. In: Long S. P. and Woodward F. Z. eds, Plants and Temperature, Society of Experimental Biology Seminar Series no 42, Cambridge University Press, Cambridge. 1988. 377-393.
    17. ap Rees T, Dixon W L, Pollock C J, Franks F. Low temperature sweetening of higher plants. In: Friend J. and Rhodes, M J C. eds, Recent Advances in the Biochemistry of Fruits and Vegetables. Academic Press, New York, NY. 1981. 41-61.
    18. Ballicora M A, Frueauf J B, Fu Y, Schurmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J. Biochem., 2000, 275: 1315-1320.
    19. Ballicora M A, Fu Y, Nesbitt N M, Preiss J. ADP-glucose pyrophosphorylase from potato tuber. Site-directed mutagenesis studies of the regulatory sites. Plant Physiol., 1998,118:265-274
    20. Ballicora M A, Laughlin M J, Fu Y, Preiss J. Adenosine 5'-diphosphate-glucose pyrophosphorylase from potato tuber. Plant PhysioL, 1995, 109: 245- 253
    21. Baroja-Fernandez E, Jose Munoz F, Zandueta-Criado A, Moran-Zorzano M T, Viale A M, Alonso-Casajus N, Pozueta-Romero J. Most of ADP-glucose linked to starch synthesis occurs outside the chloroplast in source leaves. PNAS, 2004, 101: 13080-13085
    22. Bate N J, Niu X, Wang Y, Reimann K S, Helentjaris T G An invertase inhibitor from maize localizes to the embryo-surrounding region during early kernel development. Plant PhysioL, 2004,134: 1-9
    23. Benfey P N, Ren L, Chua N H. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBOJ., 1990,9:1685-1696
    24. Blenkinnsop R W, Copp L J, Yada R Y, Marangoni AGA proposed role for the anaerobic pathway during low-temperature sweetening in tubers of Solanum tuberosum. PhysioL Plant, 2003,118: 206-212
    25. Blenkinsop R W, Copp L J, Yada R Y, Marangoni A G. Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Research International, 2002, 35: 651-655
    26. Boinerbale M W, Plaisted R L, Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988,120:1095-1103
    27. Bournay A S, Hedley P E, Maddison A, Waugh R, Machray G C. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucl. Acids Res., 1996, 24:2347-2351.
    28. Bracho G E, Whitaker J R. Purification and partial characterization of potato (Solanum tuberosum) invertase and its endogenous proteinaceous inhibitor. Plant PhysioL, 1990, 92: 386-394.
    29. Burton W G. Post-harvest physiology. In: Burton W G The Potato. 3rd ed. Longman Scientitic and Technical. Harlow. 1989: 423-522.
    30. Buso J A, Boiteux L S, Peloquin S J. Tuber yield and quality of 4x-2x (FDR) potato progenies derived from the wild diploid species Solarium berthaultii and Solarium tarijense. Plant Breeding, 2003, 122: 229-232
    31. Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor. Appl. Genet., 2001,102: 284-295
    32. Classen P A M, Budde M AW, van Calker M H. Increase in phosphorylase activity during cold-induced sugar accumulation in potato tubers. Potato Research, 1993, 36: 205-217
    33. Coffin R H, Yada R Y, Parkin K L, Grodzinski B, Stanley D W. Effect of low temperature storage on sugar concentrations and chip color of certain processing potato cultivars and selections. Journal of Food Science 1987, 52: 639-45.
    34. Colon L T, Sijpkes L, Hartmans K J. The cold stability of Solanum goniocalyx and S. phureja can be transferred to adapted diploid and tetraploid S. tuberosum germplasm. In: Louwes, K.M., H.A.J.M. Toussaint, and L.M.W. Dellaert(ed). Parental Line Breeding and selection in Potato Breeding. PUDOC Wageningen. The Netherlands. 1989.76-80
    35. Cottrell J E, Duffus C M, Paterson L, Mackay G R, Allison M J, Bain H. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L. Potato Research, 1993,36: 107-117
    36. Crete P. Expression and sequence requirements for nitrite reductase co-suppression. Plant Molecular Biology, 1999, 41:105-114
    37. Cunninghan C E . Inheritance of factors affecting potato chip color and their association with specific gravity. Am. Potato J., 1959,40: 253-256
    38. Dale M F B, Mackay G R. Inheritance of table and processing quality. In: Bradshaw JE and Mackay GR (eds). Potato Genetics, CAB Int., Wallingford. 1994. 285-315
    39. Davies H V, Viola R. Regulation of sugar accumulation in stored potato tubers. Postharvest News and Information, 1992, 3, 97N-100N
    40. Dehio C, Schell J. Identification of Plant Genetic Loci Involved in a Posttranscrip tional Mechanism for Meiotically Reversible Transgene Silencing. PNAS, 1994, 91: 5538-5542.
    41. Dixon W L, Franks F, Ree T A. Cold-lability of phosfofructokinase from potato tubers. Phytochemistry 1981,20: 969-972
    42. Dixon W L, Ree T A. Identification of the regulatory steps in glycolysis in potato
     tubers. Phytochemistry, 1980,19:1297-1301
    43. Dolferus R, Jacobs M, Peacock W J, Dennis E S. Differential interactions of promoters elements in stress responses of the Arabidopsis Adh gene. Plant Physiol., 1994,105: 1075-1087
    44. Doucette M S, Pritchard M K. ABA involvement in low temperature sweetening of potatoes. Acta Horticulturae, 2000, 343:165-197
    45. Douches D, Freyre R. Identification of genetic factors influencing chip color in diploid potato (Solatium spp.). Am. Potato!, 1994,71: 581-590
    46. Dunn G. A model for starch breakdown in higher plants. Phytochemistry, 1914, 13:1341-1346
    47. Edwards A, Borthakur A, Bornemann S, Venail J, Denyer K, Waite D, Fulton D, Smith A M, Martin C. Specificity of starch synthase isoforms from potato. Eur. J. Biochem., 1999, 266: 724-736
    48. Edwards A, Fulton D C, Hylton C M, Jobling S A, Gidley M, Rossner U, Martin C, Smith A M. A combined reduction in activity of starch synthase II and III of potato has novel effects on the starch of tubers. Plant J., 1999,17: 251-261
    49. Edwards A, Marshall J, Sidebottom C, Visser R G F, Smith A M, Martin C. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J., 1995, 8: 283-294
    50. Edwards K, Johnstone C, Thompson C A. simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res., 1991, 19: 1349-1358
    51. Ehlenfeldt M K, Lopez-Portilla, D F, Boe A, Johansen R H. Reducing sugar accumulation in progeny familities of cold chipping potato clones. Am. Potato J., 1990,67:83-91
    52. Ewing E E, Senesac A H, Sieczka J B. Effects of short periods of chilling and warming on potato sugar content and chipping quality. Am. Potato J., 1981, 58: 663- 647
    53. Farre E M, Geigenberger P, Willmitzer L, Trethewey RN.A possible role for pyrophophate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol., 2000,123: 375-379
    54. Farre E M, Tiessen A, Roessner U, Geigenberger P, Trethewey R N, Willmitzer L. Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol., 2001,127: 685-700
    55. Fernie A R, Roessner U, Trethewey R N, Willmitzer L. The contribution of
     plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta, 2001, 213: 418-426
    56. Fernie A R, Stitt T M, Willmitzer L, Geigenberger P. Altered metabolic fluxes result from shifts in metabolite levels in sucrose phosphorylase-expressing potato tubers. Plant Cell and Environment, 2002,25,1219-1232
    57. Fernie A R, Willmitzer L, Trethewey R N. Sucrose to starch: A transition in molecular plant physiology. Trends In Plant Science, 2002, 7: 35-41.
    58. Fiehn O. Metabolomics — the link between genotypes and phenotypes. Plant Molecular Biologyl, 2002,48: 155-171
    59. Finlay M, Dale B, Bradshaw J E. Progress in improving processing attributes in potato. Trends in Plant Science, 2003, 8: 310-312
    60. Flipse E, Suurs L, Keetels C J A M, Kossmann J, Jacobsen E, Visser R G F. Introduction of sense and antisense cDNA for branching enzyme in the amylose-free potato mutant leads to physico-chemical changes in the starch. Planta, 1996, 198: 340-347
    61. Freyre R, Douches D S. Isoenzymatic identification of quantitative traits in crosses between heterozygous parents: mapping tuber traits in diploid potato (Solanum spp.). Theor. Appl. Genet., 1994, 87: 764-772.
    62. Frueauf J B, Ballicora M A, Preiss J. ADP-glucose pyrophosphorylase from potato tuber: site-directed mutagenesis of homologous aspartic acid residues in the small and large subunits. Plant J., 2003,33: 503-511
    63. Fu Y, Ballicora M A, Leykam J F, Preiss J. Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J. Biolchem., 1998, 273: 25045- 25052
    64. Fu Y, Ballicora M A, Preiss J. Mutagenesis of the glucose-1- phosphate- binding site of potato tuber AGPase. Plant Physiol., 1998, 117: 989-996
    65. Fulton D C, Edwards A, Pilling E, Robinson H L, Fahy B, Seale R, Kato L, Donald A M, Geigenberger P, Martin C, Smith A M. Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. J. Biol. Chem., 2002, 277: 10834-10841
    66. Gebhardt C, Ritte E, Debener T, Walkemeier. RFLP analysis and linkage mapping in Solanum tuberosum.. Theor. Appl. Genet., 1989, 78: 65-75.
    67. Gebhardt C, Ritte E, Salamini F. RFLP map of the potato, pp. 319-336 in DNA- Based Markers in Plants, Advances in Cellular and Molecular Biology of Plants, 2001,Vol. 6, Ed. 2, edited by R. L. PHILLIPS and I. K. VASIL. Kluwer Academic Publishers, Dordrecht, The Netherlands
    68. Geigenberger P, Geiger M, Stitt M. High-temperature perturbation of starch synthesis is attributable to inhibition of ADP-Glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers. Plant Physiol., 1998, 117: 1307-1316
    69. Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Sonnewald U, Stitt M. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta, 1998, 205: 428-437
    70. Geigenberger P, Mueller-Roeber B, Stitt M. Contribution of adenosine 5'-diphospho-glucose pyrophosphorylase to the contrpl of starch synthesis is decreased by water stress in growing potato tuber. Planta, 1999, 209: 338-345
    71. Geigenberger P, Stamme C, Tjaden J, Schulz A, Quick P W, Betsche T, Kersting H J, Neuhaus H E. Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity. Plant Physiol., 2001, 123: 1667-1678
    72. Gichohi E G, Pritchard M K. Storage temperature and maleic hydrazide effects on sprouting, sugars and fry color of Shepody potatoes. Am. Potato J, 1995, 72: 737-747
    73. Glaczinski H, Heibges A, Salamini F, Gebhardt C. The proteinaceous inhibitor of soluble potato tuber invertase is a member of a gene family known as Kunitz-type proteinase inhibitors. Potato Res., 2003, 46: 233-245
    74. Gould W A. Evalution of potato cultivars before and after storage regimes for chipping. Am. Potato J., 1979, 56: 133-144
    75. Gounaris Y. Comparison of restriction patterns of mitochondrial DNA from low and high sugar accumulation cultivars/selections. J Plant Physiol, 1993, 141: 423-427
    76. Grassert V, Papenhagen F. Genetic aspects of breeding potato varieties for suitablity at low temperature. Potato Research, 1993, 36(2): 153-160
    77. Greene T W, Kavakli I H, Kahn M L, Okita T W. Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. PNAS, 1998, 95: 10322-10327
    78. Greiner S, Koster U, Lauer K, Rosenkranz H, Vogel R, Rausch T. plant invertase inhibitors: expression in cell culture and during plant development. Aust. J. Plant Physiol., 2000, 27: 807-814
    79. Greiner S, Krausgrill S, Rausch T. Cloning of a tobacco apoplasmic invertase inhibitor proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol., 1998, 116: 733—742.
    80. Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nature Biotech., 1999, 17: 708-711.
    81. Gruden D, Strukelj B, Ravnikar M, Poljsak-Prijatelj M, Mavric I, Brzin J, Pungercar J, Kregar I. Potato cysteine proteinase inhibitor gene family: molecular cloning, characterization and immuno-cytochemical localization studies. Plant Molecular Biology, 1997, 34: 317-323.
    82. Gupta S K, Sowokinos J R. Physcochemical and kinetic properties of unique isozymes of UDP-glc pyrophosphorylase that are associated with resistance to sweetening in cold-stored potato tubers. J. Plant Physiol., 2003, 160: 589-600
    83. Gupta S, Sowokinos J, Irene S. Isolation and Characterization of Cold Sweetening Resistant Isozymes of UGP-GLC Pyrophosphorylase (UGPase) from Potato (cv. Snowden). Am. Potato J., 2000, 77: 400-406
    84. Hajirezaei M R, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M. Transgenic potato plants with strongly decreases expression of pyrophosphate: fructose-6- phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta, 1994, 192: 16-30
    85. Hajirezaei M, Bornke F, Peisker M, Lerchi J, Sonnewald U. Decreased sucrose content triggers starch breakdown and respiration in stored potato (Solanum tuberosum). J. Exp. Bot., 2003, 382: 477-488
    86. Hamernik A J. Breeding 2x haploid x species hybrid potatoes that chip from 2°C storage, M.S., thesis. Univ. of Wisconsin-Madison. 1998.
    87. Hammond J B W., Burrell M M, Kruger N J. Effects of low temperature on the activity of phosphofructokinase from potato tubers. Planta, 1990, 180: 613-616
    88. Hanneman R E. Ability of wild and cultivated potato species to chip directly from 2 °C storage. Am Potato J, 1993, 70: 814(Abst.)
    89. Hanneman R E. Evaluation of wild species for new sources of germplasm that chip directly from cold storage. Am. Potato J,1996, 73: 360 (abstr.).
    90. Hayes R J, Thill C A. Genetic gain from early generation selection for cold chipping genotypes in potato. Plant Breeding, 2003,122:158-163
    91. Hayes R J, Thill C A. Selection for cold chipping genotypes from three early generations in a potato-breeding program. Euphytica, 2002, 128: 353- 362
    92. Hayes R J, Thill C A. Selection for Potato Genotypes from Diverse Progenies that Combine 4°C Chipping with Acceptable Yields, Specific Gravity, and Tuber Appearance. Crop Sci., 2002, 42: 1343-1349
    93. Hedley P E, Machray G C, Davies H V, Burch L, Waugh R. Potato {Solanum
     tuberosum) invertase-encoding cDNAs and their differential expression. Gene, 1994, 145:211-214
    94. Heibges A, Glaczinski H, Ballvora A, Salamini F, Gebhardt C. Structural diversity and genome organization of three families of kunitz-type enzyme inhibitors from potato (Solarium tuberosum L.). Molecular Genetics and Genomics, 2003, 269: 526-534.
    95. Heibges A, Salamini F, Gebhardt C. Functional comparison of homogous members of three groups of kunitz-type enzyme inhibitors from potato tubers {Solarium tuberosum L.). Molecular Genetics and Genomics, 2003, 269: 535—541.
    96. Heineke D, Sonnewald U, Bussis D, Gunter G, Leidreiter K., Wilke I, Raschke K, Willmitzer L, Heldt H W. Apoplast expression of Yeast-derived invertase in potato. Plant Physiol., 1992,100: 301-308
    97. Herbers K, Meuwly P, Frommer W B, Sonnewald U. Systemic acquired resistance mediated by ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell, 1996, 8: 793-803
    98. Hide G A, Welham S J, Read P J, Ainsley A E. Influence of stem canker on tuber yield, tuber size, reducing sugars and crisp color in cv. Record. Potato Research, 1994,37: 43-49
    99. Hill L, Reimholz R, Schroder R, Nielsen T H, Stitt M. The onset of sugar accumulation in sucrose synthesis and coincides with low levels of hexose phosphates, an activation of sucrose synthase, and the appearance of a new form of amylase. Plant Cell and Enviroment, 1996,19: 1223-1227
    100.Hood L F. Current concepts of starch structure. Food Carbohydrates, 1982, 13: 109-121
    101.Hoover R, Sosulski F. Studies on the functional characteristics and digestibility of starches from phaseolus vulgaris biotypes. Staerke, 1985, 37: 182-186
    102.Hothorn M, Angelo A D, Marquez J A, Greiner S, Scheffzek K. The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension. J. Mol. Biol, 2004a, 335: 987-995
    103.Hothorn M, Bonneau F, Stier G, Greiner S, Scheffzek K. Bacterial expression, purification and preliminary X-ray crystallographic characterization of the invertase inhibitor Nt-CIF from tobacco. Acta Cryst., 2003, D59: 2279-2282
    104.Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K. Structural insight into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004b,16: 3437-3447
    105.Hughes J G, Fuller T J. Fluctuations in sugars in cv. Record during extended storage
     at 10°C. Potato Research, 1984, 27: 229-236
    106 Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith A M, Martin C, Bustos R. Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell, 2003, 15: 133-149
    107.Hyde, R B, Walkof C. A potato seedling that chips from cold storage without conditioning. Am. Potato J., 1962,39: 266-270.
    108.Iglesias V A, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T, Matzke A J M Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco.Plant Cell, 1997,9: 1251-1264
    109.Iglesias VA, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A J M. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell ,1997, 9: 1251-1264.
    110.Isherwood F A. Mechanism of starch-sugar interconversion in Solanum tubersom.. Phytochemistry, 1976,15: 33-41
    111.Isherwood F A. Starch-sugar interconversion in Solanum tuberosum. Phytochemistry, 1973, 12: 2579-2591
    112.Ishikawa A, Ohta S, Matsuoka K, Hattori T, Nakamura K. A family of potato genes that encode kunitz-type proteinase inhibitors: structural comparisons and differential expression. Plant Cell Physiol., 1994, 35: 303-312.
    113.Isla M I, Vattuone M A, Ordonez M, Sampietro A R. Invertase activity associated with the walls of Solanum tuberosum tubers. Phytochemistry, 1999, 50: 525-534
    114.Jakuczun H, Zgorska K, Zimnochguzowska E. An investigation of the level of reduncing sugars in diploid potatoes before and after cold storage. Potato Res., 1995, 38:331-338
    115.Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997,9:5-19
    116. Jang J C, Sheen J. Sugar sensing in higher plants. Trends in plant science, 1997, 2: 208-214
    117.Jaynes T A, Nelson O E. An invertase inactivator in maize endosperm and factors affecting inactivation. Plant Physiol., 1971,47: 629-634
    118.Jelitto T, Sonnewald U, Willmitzer L, Hajirezaei M R, Stitt M. Inorgenic pyrophosphate content and metabolites in leaves and tubers of potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol: biochemical evidence that sucrose metabolism has been manipulated. Planta, 1992,188: 238-244
    119.Jewell S. The influence of defoliation date and harvest interval on the quality of
     potato for french fry production. Potato Research, 1989, 32: 431-438
    120.Ji Q, Oomen R J F J, Vincken J, Bolam D N, Gilbert H J, Suurs L C J M, Visser R G F. Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnology Journal, 2004, 2: 251-260
    121.JobIing S A, SchwaU G P, Westcott R J, Sidebottom C M, Debet M, Gidley M J, Jeffcoat R, Safford R. A minor form of starch branching enzyme in potato {Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J., 1999,18: 163-171
    122.Jobling S A, Westcott R J, Tayal A, Jeffcoal R, Schwall G. Production of a freeze- thaw-stable potato starch byu antisense inhibition of three starch synthases genes. Nature Biotech., 2002, 20: 295-299
    123.Jobling S. Improving starch for food and industrial applications. Current Opinion in Plant Biology, 2004, 7: 210-218
    124.Johnston M. Feasting, fasting and fermenting-glucose sensing in yeast and other cells. Trends Genet., 1999,15: 29-39
    125.Johnston S A, Dennijs T M, Peloquin S J, Hanneman J R. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet., 1980, 57: 5-9
    126.Kastle J H, Clark M E. On the occurrence of invertase in plants. Amer Chem J., 1903,181:707-711
    127.Kawata M, Matsumura Y, Oikawa T, Kimizu M, Fukumoto F, Kuroda S. Analysis of DNA extraction buffer components from plant tissue by polymerase chain reaction. Analytic Biochem., 2003, 318:314-317
    128.Khanbari O S, Thompson A K. Effects of amino acids and glucose on the fry color of potato crisps. Potato Research, 1993,36: 359-364
    129Kim H S, Jeon J H, Choi K H, Joung Y H, Lee B I, Joung H. Regulation of starch contents in potato {Solanum tuberosum L.) by manipulation of sucrose synthase gene. Journal of Japanese Society Horticulture Science, 2000, 69: 243-249.
    130.Kim SY, May G D, Park W D. Nuclear protein factors binding to a class I patatin promoter region are tuber-specific and sucrose-inducible. Plant Molecular Biology, 1994, 26:603-615
    131.Kirch H, van Berkel J., Glaczinski H, Salamini F, Gebhardt.C. Structural organizatio, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.). Plant Molecular Biology, 1997, 33: 897-909
    132.Koch K E. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Bio!., 1996,47: 509-540
    133.Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7: 1-12
    134.Kortstee A J, Vermeesch A M G, de Vries B J, Jacobsen E, Visser R G F. Expression of Escherichia coli branching enzyme in tubers of amylose-free potato leads to an increased branching degree of the amylopectin. Plant J., 1996,10: 83-90.
    135.Kossmann J, Abel G J W, Springer F, Lloyd J R, Willmitzer L. Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta, 1999, 208: 503- 511
    136.Kossmann J, Buttcher V, Abel G J W. Starch biosynthesis and modification of starch structure in transgenic plants. Macromol. Symp., 1997,120: 29-38
    137.Krause K P, Hill L, Reimholz R, Nielsen T H, Sonnewald U, Stitt M. Sucrose metabolism in cold-stored tubers with decreased expression of sucrose phosphate synthase. Plant Cell Physiol., 1998, 21: 285-299
    138.KrausgriII S, Greiner S, Koster U, Vogel R and Rausch T. In transformed tobacco cells the apoplasmic invertase inhibitor operates as a regulatory switch of cell wall invertase. Plant J., 1998, 13: 275-280
    139.Kuipers A G J, Jacobsen E, Visser R G F. Formation and Deposition of Amylose in the Potato Tuber Starch Granule Are Affected by the Reduction of Granule-Bound Starch Synthase Gene Expression. Plant Cell, 1994, 6: 43-52
    140.Kumar G N M, Knowles N R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato seed-tubers. Plant Physiol., 1993,102: 115 -124
    141.Kushman L J, Plaisted R L, Debet M The effect of wet soil and carbon dioxide on potato chip color and sugar content. Am. Potato J., 1959, 36: 450-456
    142.Lauer F, Shaw R. A possible genetic source for chipping potatoes from 40_F storage. Am. Potato!, 1970,47: 275-278.
    143.Leszkowiat M J, Barichello V, Yada R Y, Coffin R H, Loughheed E C, Stanley D W. Contribution of sucrose to nonenzymic browning in potato chips. Journal of Food Science, 1990,55:281-282
    144.Lin T P, Caspar T, Somerville C R, Preiss J. A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant physiol., 1988, 88: 1175-1181
    145.Lloyd J R, Blennow A, Burhenne K, Kossmann J. Repression of a novel isoform
     of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiol., 2004, 134:1347-1354
    146.Lloyd J R, Franziska S, Buleon A. The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta, 1999,209: 230- 238
    147.Lloyd JR, Landschutze V, Kossmann J Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem. J.,1999, 338: 515-521
    148Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Analytic Biochem., 1987,163:16-20
    149.LoiselIe F, Tai G C C, Christie B R. Genetic components of chip color evaluated after harvest, cold storage and reconditioning. Am. Potato J., 1990, 67: 633-646
    150.Lorberth R, Ritte G, Willmitzer L, Kossmann J. Inhibition of a starch- granule- bound protein leads to modified starch and repression of cold sweetening. Nature Biotech., 1998,16: 473-477.
    151.Maag W, Reust W. Storage and reconditioning of crisp potatoes. Kartoffelbau, 1992, 43: 443-448
    152Mackay G R, Mcnicol R J, Wilkinson M J, Timmons A M, Dubbels S The processing potential of tubers of the cultivated potato, Solanum tuberosum L, after storage at low temperature. Potato Research, 1990,33: 211-218
    153.Maddison A L, Hedley P E, Meyer R C, Aziz N, Davidson D, Machray G C. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol. Biol., 1999,41: 741-751
    154.Marquez G. Influence of reducing sugars and amino acids in the color development of fried potatoes. Journal of Food Science, 1986, 51:157-160
    155 Marshall J, Sidebottom C, Debet M, Martin C, Smith A M, Edwards A. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell, 1996,8: 1121-1135
    156.Matsushita K and Uritani I. Isolation and characterization of acid invertase inhibitor from sweet potato. J Chem., 1976, 79: 633-639
    157.Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M. Changes in sugar content and activity of vacuolar acid invertase during low- temperature storage of potato tubers from six Japanese cultivars. J. Plant Res., 2004, 117:131-137
    158 Menendez C M, Ritter E, Schafer-Pregl R, Walkemeier B, Kalde A, Salamini F,
     Gebhardt C. Cold Sweetening in Diploid Potato: Mapping Quantitative Trait Loci and Candidate Genes. Genetics, 2002, 162: 1423-1434.
    159.Mikkelsen R, Baunsgaard L, Blennow A. Functional characterization of α-glucan, water dikinase, the starch phosphorylating enzyme. Biochem. J., 2004, 377: 525-532
    160.Milbourne D, Meyer R C, Collins A J, Ramsay L D, Gebhardt C. Isolation, characterization and mapping of SSR loci in potato. Mol. Gen. Genet., 1998, 259: 233-245
    161.Miron D, Schaffer A A. Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill, and the sucrose accumulating Lycopersicon hirsutum Humb and Bonpl. Plant Physiol., 1991, 95: 623-627.
    162.Morell S, Ap Ree T. Control of the hexose content of potato tubers. Phytochemistry, 1986,25: 1073-1076.
    163.Muller-Rober B T, Kosamann J, Hannah L C, Willmitzer L, Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol. Gen. Genet., 1990,224:136-146
    164.Muller-Roeber B, Sonnewald U, Willmitzer L. Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation andexpression of tuber-storage protein genes. EMBO J., 1992,11, 1229-1238
    165.Neuhaus H E, Stitt M. Control analysis of photosynthate partitioning. Impact of reduced activity of ADP- glucose pyrophosphorylase or plastid pyrophosphorylase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Heynh. Planta, 1990, 182,445-454
    166.Novy R G, Secor G A, Farnsworth B L, Lorenzen J H, Holm E T, Preston D A, Gudmestad N G, Sowokinos J R. A white-skinned chipping cultivar with sweetening resistance. Am. J. Potato Res., 1998,75:101-105
    167.Oltmans S M, Novy R G Identification of potato (Solanum tuberosum L.) haploid x wild species hybrids with the capacity to cold-chip. Am. J. potato Res., 2002 ,79: 263-268
    168.0valle R, Keyes A C, Ewing E E, Quimby F W. Purification and characterization of the acid-stable proteinaceous inhibitor of potato tuber invertase by nonideal size exclusion chromatography. J. Plant Physiol., 1995, 147:.334-340
    169.Peloquin S J, Jansky S J S H, Yerk G L. Potato cytogenetics and germplasm utilization. Am. Potato J., 1989a, 66: 629-638
    170.Pereira A D S, Coffin R H, Yara R, Souza M V. Inheritance patterns of reducing
     sugar in potato tubers after storage 12°C and 4°C followed by reconditioning. Am. Potato J., 1993, 70: 71-76.
    171.Pettersson G, Ryde-Pettersson U. Metabolites controlling the rate of starch synthesis in the choroplast of the C_3 plants. Eur. J. Biochem., 1989, 179: 169-172
    172.Pollck C J, ap Ree T. Effect of cold on glucose metabolism by callus and tuber of Solarium tubersum. Phytochemistry, 1975, 14: 1903-1906
    173.Prange R K, Kalt W, Daniels-Lake B J, View C L, Page R Y, Walsh J R, Dean P, Coffin R H. Using ethylene as a sprout comtrol agent in stored 'Russet Burbank' potatoes. Journal of the American Society for Horticultural Science, 1998, 123: 436-439
    174.Preiss J, Sivak M N. Biochemistry, molecular biology and regulation of starch synthesis.Genetic Engineering, Vol, 20, edited by J.K.Setlow. Plenum Press, New York, 1998
    175. Pressey R. Invertase inhibitor from potatoes: purification, characterization, and reactivity with plant invertases. Plant Physiol, 1967,42: 1780-1786
    176.Pressey R. Invertase inhibitor in tomato fruit. Phytochemistry, 1994, 36: 543-546
    177.Pressey R. Invertase inhibitors from red beet, sugar beet, and sweet potato roots. Plant Physiol, 1968,43: 1430-1434
    178.Pritchard M K, Adam L R. Relationship between fry color and sugar concentration in stored Russet Burbank and Shepody potatoes. Am. Potato J., 1994, 71: 59-68
    179.Purcell P C, Smith A M, Halford N G. Antisense expression of a sucrose non- fermenting-1-related protein kinase sequence in potato results in decreases expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J., 1998,14: 195-202
    180.Rausch T, Greiner S. Plant protein inhibitors of invertases. Biochimica et Biophysica Acta, 2004,1696: 253-261
    181.Regierer B, Fernie A R, Springer F, Perez-Melis A, Leisse A, Koehi K, Willmitzer L, Geigenberger P, Kossamann J. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nature Biotech., 2002, 20: 1256-1260
    182.Ritte G, Lloyd J R, Eckermann N, Rottmann A, Kossmann, Steup M. The starch related Rl protein is an a-glucan, water dikinase. PNAS, 2002, 99: 7166-7171.
    183.Ritte G, Lorberth R, Steup M. Reversible binding of the starch-related Rl protein to the surface of transitory starch granules. Plant J.,2000, 21: 387-391. 184Ritte G, Scharf A, Eckermann N, Haebel S, Steup M. Phosphorylation of transitory starch is increased during degradation. Plant Physiol., 2004, 135: 2068-
     2077
    185.Ritte G, Steup M, Kossmann J, Lloyd J R. Determination of the starch-pho- sphorylating enzyme activity in plant extracts. Planta, 2003, 216: 798-801
    186.Rodriguez-Saona L E, Wrolstad R E. Influence of potato composition on chip color quality. American Potato Journal, 1997, 74: 87-106
    187.Roe M A, Faulks R M, Belstan J L. Role of reducing sugars and amino acids in fry color of chips from potatoes grown under different nitrogen regimes. J. Sci. Agric., 1990, 52: 207-221
    188Roessner U, Wagner C, Kopka J, Trethewey R N, Willmitzer L Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J., 2000, 23: 131-142
    189.Roessner U, Willmitzer L, Fernie A R Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Reports, 2002, 21: 189-196
    190.Roessner U, Willmitzer L, Fernie A R. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol., 2001, 127: 749-764
    191.Rommens C M, Ye J, Humara J M, Yan H, Richael C, Brinkerhoff W L, Swords K M M (2003) Precise breeding. U.S. Patent Application No. 221, 213
    192.Safford R, Jobling S A, Sidebottom C M, Westcott R J, Cooke D, Tober K J, Strongitharm B H, Russell A, Gidley M J. Consequences of antisense RNA inhibiton of starch branching enzyme activity on properties of potato starch. Carbohyd. Polym., 1998, 35: 155-168
    193.Salehuzzman S N I M, Vincken J, Van de Wal M, Straatman-Engelen I, Jacbosen E, Visser R G F. Expression of a cassava granule-bound starch synthase gene in the amylose-free potato only partially restores amylose content. Plant Cell Environ., 1999,22: 1311-1318
    194.Sander A, Krausgrill S, Greiner S, Weil M and Rausch T. Sucrose protects cell wall invertase but not vacuolar invertase against proteinaceous inhibitors. FEBS Lett., 1996,385: 171-175
    195.Schafer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L,Walkemeier B, Thelen H, Salamini F, Gebhardt C. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor. Appl. Genet., 1998, 97: 834-846
    196.Scheible W R, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 1997, 9: 783-798
    197.Schnerder A, Salamini F, Cebhardt C. Expression Patterns and Promoter Activity of the Cold-Regulated Gene ci27A of Potato. Plant Physiol., 1997,113: 335-345
    198.Schwall G P, Safford R, Westcott R J, Jeffcoat R, Tayal A, Shi Y, Gidley M J, Jobling S A. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nature Biotech, 2000,18: 551-554
    199.Schwimmer S, Makower V, Rorem E S. Invertase and invertase inhibitor in potato. Plant Physiol, 1961, 36: 313-316
    200.Scognamiglio M A, Ciardiello M A, Tamburrini M, Carratore V, Rausch T, Camardella L. The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor. Journal of Protein Chemistry, 2003,22: 363-369
    201 .Shekhar V V, Iritani W M. Starch to sugar interconversion in Solanum tuberosum L. Ⅱ: Influence of membrane permeability and fluidity. Am. Potato J., 1979, 56: 225- 234
    202.Shewfelt R L, Erickson M C. Role of lipid peroxidation in the mechanism of membrane-associated disorders in edible plant tissue. Trends Food Sci. Technol., 1991,2:152-154
    203.Shewmaker C K, Boyer C D, Wiesenborn D P, Thompson D B, Boersig M R, Oakes J V, Stalker D M. Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes (Solanum tuberosum) results in a highly branched starch. Plant Physiol., 1994,104: 1159-1166
    204.Sinha S, Dua V K, Sharma V P. Differences in sugars, chip color, specific gravity and yield of selected potato cultivars grown in Michigan. Am. Potato J., 1992, 69: 385-389
    205.Slattery C J, Kavakli I H, Okita T W. Engineering starch for increased quantity and quality. Trends in Plant Science, 2000, 5: 291-298.
    206.Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol. Plant Mol. Biol., 1997,48: 67-87
    207.Sowokinos j R, Lulai E C, Knoper J A. Translucent tissue defects in Solanum tuberosum L. 1. Alterations in amyloplast membrane integrity, enzyme activities, sugars and starch content. Plant Physiol, 1985, 78: 489-494.
    208.Sowokinos J R, Orr P H, Knoper J A, Vams J L. Influence of potato storage and handling stress on sugars, chip quality and interity of the starch (amyloplast) member. Am. Potato J., 1987, 64: 213-216
    209.Sowokinos J R, Preiss J. Pyrophosphorylase in Solanum tuberosum Ⅲ. purification, physical and catalytic properties of ADP glucose pyrophosphorylase in potatoes.
     Plant Physiol, 1982, 69: 1459-1466
    210.Sowokinos J R, Thomas C, Burrel M M. Pyrophosphorylase in potato V. Allelic polymorphism of UDP-glucose pyrophosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold. Plant Physiol., 1997, 113: 511-517
    211.Sowokinos J R, Vigdorovich V, Abrahamsen M. Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweetening. J. Plant Physiol, 2004, 161: 947-955
    212.Sowokinos J R. Biochemical and molecular control of cold-induced sweetening in potatoes. Am. J. Potato Res., 2001, 78: 221-236
    213.Sowokinos J. Effect of stress and senescence on carbon partitioning in stored potatoes. Am. Potato!, 1990a, 67: 849-857
    214.Sowokinos J. Stress-induced alteration in carbohydrate metabolism. In Molecular and Cellular Biology of the Potato (M.E. Vayda and W.D. Park, eds),.CAB International, Wallingford, Berkshire. 1990b, 137-158
    215.SpychaIla J P, Desborough S L. Superoxide dismutase, catalase and tocopherol content of stored potato tubers. Plant Physiol., 1990b, 94: 1214-1218
    216.Spychalla J P, Scheffler B E, Sowokinos J R, Bevan M W. Cloning, antisense RNA inhibition and the coordinated expression of UDP- Glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J. Plant Physiol, 1994, 144: 444-453
    217.Stark D M, Timmermann K P, Barry G F, Preiss J, Kishore G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophoshporylase. Science, 1992,258,287-292.
    218.Stevenson F J, Altelty R V. The potato-genetic and environmental variability. American Potato Journal, 1964, 41: 46-53
    219.Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environment, 1999,22:583-621
    220.Stuber C W. Mapping and manipulating quantitative traits in maize. Trends Genet., 1995,11:648-659.
    221.Sturm A, Chrispeels M J. cDNA cloning of carrot extracellular β -fructosidase and its expression in response to wounding and bacterial infection. Plant Cell, 1990, 2:1107-1115
    222.Sturm A. Invertases, primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol., 1999, 121: 1-8
    223.Sweetlove L, Muller-Rober B, Willmitzer L, Hill S A. The contribution of
     adenosine 5-diphosphoglucose pyrophosphorylase to the content of starch synthesis in potato tubers. Planta, 1999,209: 330-337.
    224.Tai G C C, Young D A. Early generation selection for important agronomic characteristics in a potato breeding population. Am. Potato J., 1984,61: 419-434
    225.Tanksley S D. Mapping polygenes. Annual review of genetics, 1993,27: 205-233
    226.Tauberger E, Hoffmann-Benning S, Fleischer-Notter H, Willmitzer L, Fisahn J. Impact of invertase overexpression on cell size, starch granule formation and cell wall properties during tuber development in potatoes with modified carbon allocation patterns. Journal of Experiment Botany, 1999, 50: 477-486.
    227.Thill C A, Peloquin S J. A breeding method for accelebrated development of cold chipping clones in potato. Euphytica, 1995, 84:73-80
    228.Thill C A, Peloquin S J. Inheritance of potato chip color at the 24 chromosome level. Am. Potato J., 1994, 71: 629-646.
    229.Thomas S, Fell D A. Design of metabolic control for large flux changes. J. Theor. Biol., 1996,182:285-298
    230.Thomashow M F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol., 2001,125: 89-93
    231.Tiessen A, Hendriks J H M, Stitt M, Branscheid A, Gibon Y, Farre E M, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox-modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14:2191-2213
    232.Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford N G, Geigenberger P. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J., 35:490-500
    233.Tjaden J, Mohlmann T, Kamptenkel K, Henrichs G, Neuhaus H E. Altered plastidic ATP/ADP-transporter activity influences potato {Solanum tuberosum L) tuber morphology, yield and composition of tuber starch. Plant J., 1998, 16: 531 -540
    234.Trethewey R N, Fernie A R, Bachmann A, Fleischer-Notter H, Geigenberger P, Willmitzer L Expression of a bacterial sucrose phosphorylase in potato tubers results in a glucose-independent induction of glycolysis. Plant, Cell & Environment, 2001, 24: 357-365
    235.Trethewey R N. Metabolite profiling as an aid to metabolic engineering in plants. Current Opinion in Plant Biology, 2004, 7: 196-201
    236.Uppal D S, Verma S C. Changes of reducing sugar and invertase activity in
     cold-stored potato tubers. Potato Research 1990, 33: 119-123
    237.van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato {Solarium tuberosum L.) tubers are sequence related to stress- responsive gene. Plant Physiol, 1994, 104: 445-452
    238.van den Berg R G, Miller J T, Spooner D M. Inventory of tuber-bearing Solanum species. Catalogue of potato germplasm. 1996. Potato Introduction Station, NRSP-6, Sturgeon Bay, Wisconsin, USA, pp110
    239.Veramendi J, Willmitzer L, Trethewey R N. In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Physiology & Biochemistry, 1999, 37: 693-697
    240.Visser R G F, Somhorst I, Kuipers G J, Ruys N J, Feenstra W J, Jacobsen E. Inhibition of the expression of the gene foe granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet, 1991,225: 289-296
    241.Walsh T A, Twitchell W P. Two Kunitz-type proteinase inhibitors from potato tubers. Plant Physiol., 1991, 97:15-18.
    242.Weil M, Krausgrill S, Schuster A and Rausch T. A 17KDa Nicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase. Planta, 1994, 193: 438-445
    243.Williams M E, Foster R, Chua N-H Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell, 1992, 4: 485-496
    244.Wismer W V, Marangoni A G, Yada R Y. Low temperature sweetening in roots and tubers. Hort. Rev., 1995, 27: 203-231
    245Wismer W V, Worthing W M, Yada R Y, Marangoni A G. Membrane lipid dynamics and lipid peroxidation in the early stages of low-temperature sweetening in tubers of Salanum tuberosum. Physiol Plant, 1998, 102: 396-410
    246.Wobus U, Weber H. Sugars as signal molecules in plant seed development. Biological Chemistry, 1999, 380: 937-944
    247.Workman M, Kerschner E, Harrtson M. The effect of storage factors on membrane permeability and sugar content of potatoes and decay bu Erwinia carotovora var, Atroseseptica and Fusarium roseum Var. Sambuecjinum. Am. Potato J., 1979, 53: 191-204
    248.Xiong X, Tai G C C, Seabrook J E A. Effectiveness of selection for quality traits during the early stage in the potato breeding population. Plant Breeding, 2002, 121: 441-444
    249.Yada R Y, Coffin R H, Baker K W, Leszkowiat M J. An electron microscopic examination of the amyloplast membranes from potato cultivar susceptible to low
     temperature sweetening. Can. Inst. Food Sci. Technol. J., 1990,23: 145-148
    250.Yu T S, Kofler H, Hausler R E, Hille D, Flugge U, Zeeman S C, Smith A M, Kossmann J, Lloyd J R, Ritte G, Steup M, Lue W-L, Chen J, Weber A. The Arabidopsis sexl mutant is defective in the Rl protein, a general regulator of starch degradation, and not in the chloroplastic hexose transporter. Plant Cell, 2001, 13: 1907-1918.
    251.Zhou D, Mattoo A, li N, Imaseki H, Solomos T. Complete Nucleotide Sequence of Potato Tuber Acid Invertase cDNA. Plant Physiol., 1994,106: 397-398
    252Ziegler T, Beck L. Exoamylase activity in vacuoles isolated from pea and wheat leaf protoplasts. Plant Physiol., 1986, 86: 1119-1121
    253.Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solatium tuberosum L.). Plant J., 1995, 7:97-107
    254.Zrenner R, Schuler K, Sonnewald U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta, 1996, 198: 246-252.
    255.Zrenner R, Willmitzer L, Sonnewald U. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta, 1993,190:247-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700