GPS非差精密单点定位模糊度固定理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密单点定位技术(Precise Point Positioning, PPP)可以利用单台接收机在全球范围内进行静态或动态独立定位,能够直接获得静态厘米级、动态分米到厘米级的高精度的坐标结果,它在地壳形变监测、高精度导航定位、低轨卫星定轨、GNSS气象、精密授时等领域得到了广泛的应用。实时性和高精度是精密定位的研究重点之一。随着实时轨道确定和实时精密钟差估计等核心技术的发展与进步,精密单点定位技术已经逐渐发展成为一种实时的高精度定位手段。传统的精密单点定位中,由于相位未校准延迟偏差中小数部分FCBs (Fractional-cycle biases)的影响,模糊度参数为实数解。国内外学者通过研究指出,精密单点定位在E方向的精度仍然可以通过模糊度的固定得到提高。利用区域或全球的参考站网络,估计能够恢复非差模糊度整数特性的产品,实现区域内流动站PPP模糊度固定是一项非常有意义的工作,同时也是国内外GNSS领域的一个研究热点。
     本文通过对PPP模糊度固定问题全面深入的研究指出,基于FCBs的PPP模糊度固定算法可以利用现有的精密轨道和精密钟差产品估计FCBs,流动站利用相应的精密轨道、精密钟差和FCBs产品就能够实现PPP模糊度固定。这种算法能够在现有的精密钟差估计方法和产品上展开,具有广泛的研究基础和发展空间。本文针对服务端FCBs估计和用户端PPP模糊度固定中存在的问题,提出有效的解决办法,并在“广域实时精密定位系统”的软件平台基础上,开发了一套从数据处理中心FCBs古计到用户端PPP模糊度固定的软件模块。利用实测数据验证了改进算法的正确性。在此基础上,针对目前关于精密单点定位的研究都是基于精密轨道和精密钟差产品的情况,探索和讨论了基于广播星历和区域钟差估计产品的精密单点定位的可行性和在一定范围内的有效性。
     本文的研究内容主要包括:
     1.系统地研究了精密单点定位模糊度固定的理论与技术。从最基本的函数模型出发,对导致模糊度非整数特性的各参数项及它们与其他待估参数之间的相互关系进行了详细的分析。
     2.依据造成非差模糊度非整数特性的相位未校准延迟小数部分FCBs与其他参数耦合性质的不同,首次系统地对国内外PPP模糊度固定算法进行了分类,并做了详细的对比分析。
     3.提出了一种附加M估计的FCBs估计方法。在PPP模糊度固定的实时应用中,由于一些因素的影响(如地震等),部分参考站的位置可能会发生突变,而服务端的参考站坐标并不能够实时更新,这就会导致部分参考站的模糊度估值存在较大的偏差。本文指出可以将含有较大偏差的浮点模糊度的小数部分当做粗差处理,引入稳健估计的理论,通过降低有偏差观测值的权比,排除有害观测值的影响,提高FCBs估计的稳健性。实验分析表明,与原有算法相比,该算法能降低可能的粗差的影响,可以降低PPP模糊度固定实时应用中参考站位置突变的影响。
     4.提出采用一种改进的LAMBDA模糊度搜索算法解算PPP的模糊度,以Bootstrapping成功率做为LAMBDA降相关的性能指标,当该指标满足一定条件时才尝试模糊度的搜索与固定。实验分析表明,改进的LAMBDA算法能够提高PPP模糊度固定的成功率。
     5.以“广域实时精密定位系统”的软件平台为基础,进一步精化了软件系统中的部分误差模型,并分析了相应的误差对窄巷模糊度估计的影响。采用改进FCBs估计方法与流动站模糊度固定算法,实现了一套从服务端FCBs产品估计到用户端模糊度固定的软件模块。
     6.提出了基于广播星历与区域钟差的精密单点定位方法。口前PPP及PPP模糊度固定的研究都是基于全球跟踪站观测数据解算的精密的卫星轨道和卫星钟差产品,而采用广播星历与区域钟差估计产品进行精密单点定位的研究开展的较少。本文分别从理论和实验验证两个方面对基于广播星历轨道与区域钟差估计产品的PPP模糊度实数解与固定解的精度及其适用范围进行了详细的分析。初步认为在半径300km的范围内,采用广播星历与区域钟差估计产品的模糊度实数解PPP能够达到与采用IGS最终产品相当的精度;在半径100km以内的范围,模糊度固定可以提高精密单点定位的精度。
     7.分别利用省级CORS网、中国大陆构造环境监测网络和模拟地震平台的动态实测数据,采用精密的卫星轨道和卫星钟差产品,对PPP模糊度固定算法进行了验证和分析。省级CORS网的实例分析表明,PPP模糊度固定解比浮点解在N、E、U三个方向上精度提高分别为23.7%、52.6%、26.6%;中国大陆构造环境监测网络数据的结果表明,PPP模糊度固定解在N、E、U方向上的提高分别为23.88%、38.64%和15.98%;地震平台动态数据N、E、U方向上的RMS分别从0.94cm、0.84cm、5.77cm提高到0.70cm、0.76cm3.60cm。采用市级CORS网数据对基于区域钟差的精密单点定位进行了验证,结果表明基于广播星历与区域钟钟差的PPP模糊度浮点解比采用IGS最终产品的定位精度高,固定解的精度比浮点解精度在N、E、U三个方向上进一步提高,分别为22.1%、46.4%、17.1%。
Precise Point Positioning (PPP) is a positioning technique processing the observations at solely a single receiver on a global scale by fixing precise satellite orbits and clocks. PPP can directly obtain centimeter-level accuracy coordinates for static positioning and decimeter to centimeter-level accuracy coordinates for dynamic modes. PPP has been widely used in the field of deformation monitoring, high-precision navigation and positioning, LEO satellite orbit determination, GNSS meteorology, precise time transferring and so on. Real-time and high precision are two of the main objectives of GNSS researches. With the development of real-time orbit determination and real-time clock estimation technology, PPP has gradually developed into a real-time high-precision positioning means. In the traditional PPP, because of the fractional part of the uncalibrated phase delays (FCBs), ambiguity parameters are estimated as real-valued constants. Scholars both at home and abroad pointed out that the accuracy of PPP at the E direction can still be improved by ambiguity fixing. The research of ambiguity-fixed PPP is a very rewarding work, and it is also a central issue of GNSS research all over the world.
     Through comprehensive and in-depth study, the author pointed out that ambiguity resolution of PPP based on FCBs can be achieved with existing precise orbit and clock products. Rovers use the corresponding precise orbit, precise clock and FCBs products can achieve ambiguity-fixed PPP. This algorithm can be carried out on the basis of existing clock estimation technology, thus it has a widely foundation and huge development space. This paper comes up with effective solutions on some problems of FCBs estimates and ambiguity resolution of rover stations. A module with functions of both FCBs estimation and PPP with integer ambiguities is developed based on the Wide Area Real-Time Differential GPS software platform. The correctness of the improved algorithm is verified with experiments. In addition, the researches of PPP are all based on precise orbit and clock products currently, this paper has explored and discussed the feasibility of PPP based on broadcast ephemeris and clock products estimated with regional networks, and the precision and certain feasible range is studied.
     The content of this study mainly includes:
     1. The theory and technology of ambiguity-fixed PPP are studied systematically. Starts from the basic function model, a detailed analysis of the relationship between parameters which lead the ambiguities to non-integer values and the other parameters are analyzed in detail.
     2. Based on the difference of the coupling characteristics between the fractional part of the uncalibrated phase delays (FCBs) and the other parameters, systematical classification for PPP ambiguity fixing algorithm both at home and abroad has been done. In addition, a detailed comparative analysis has been made.
     3. A new method with M Estimator is proposed to estimate the FCBs. In the applications of real-time ambiguity-fixed PPP, the coordinates of reference stations should be fixed when the server estimates the FCBs. Biases of the coordinates can cause biases to narrow-lane ambiguities. Due to the influence of some irresistible factors (such as earthquake), the positions of some reference stations may change, while the server can not update the coordinates promptly. This will cause large deviations in the ambiguity estimation of some reference stations. This paper points out that the float ambiguities with large deviations can be treated as gross errors. The robust estimation theory is introduced into the estimation of FCBs and the influence of harmful observations can be reduced by reducing the weight of harmful observations to improve the robustness of FCBs estimation. Experimental results show that, compared with the original algorithm, this algorithm can reduce the possible influence of gross errors and the problem that reference station coordinates have sudden changes in real-time applications of PPP ambiguity-fixed solution can be solved.
     4. An improved LAMBDA method was applied for the integer ambiguity resolution of PPP. This method uses bootstrapped probability as an indicator of the performance of LAMBDA decorrelation. The ambiguities are tried to be fixed only when the index of bootstrapping exceed the threshold. The results show that the improved LAMBDA method can improve the success rate of ambiguity resolution of PPP.
     5. Based on the Wide Area Real-Time Differential GPS software System, which is developed by GNSS Center of Wuhan University for providing real-time precise satellite orbit and clock products, error models which have not been included in current version are added. For example, phase center variations (PCV), horizontal gradients of troposphere delay and etc. Furthermore, the impacts on the narrow-lane ambiguities estimation when neglecting them are analyzed. Based on the improved methods, a module with functions of both FCBs estimation and ambiguity-fixed PPP is added into the Wide Area Real-Time Differential GPS software.
     6. Currently, the research of ambiguity-float and ambiguity-fixed PPP are all based on precise orbit and precision clock products estimated with observations of globally distributed tracking stations. However, there is hardly any research of PPP with broadcast ephemeris and clock products estimated with regional observations. In this paper, PPP with broadcast ephemeris and clocks estimated with regional networks is put forward. The precision and feasible range of ambiguity-float PPP and ambiguity-fixed PPP are verified both theoretically and experimentally. Preliminary view is that ambiguity-float PPP with broadcast ephemeris and clocks estimated with regional networks can achieve comparable result with PPP based on IGS final products within a region of300km radius. Ambiguity-fixed PPP based on broadcast (brdc) ephemeris and clock products estimated with regional observations is proposed within a region of100km radius.
     7. Data of Provincial CORS network, Continental Tectonic Environment Monitoring Network Project of China and seismic experiment is used to verify the improved algorithm and the capability of the software. Results based on data of CORS network at the provincial level show that the accuracy of ambiguity-fixed PPP improved about52.6%,23.7%and26.6%in the East, North and Up components respectively than ambiguity-float PPP. The improvements decrease to38.64%,23.88%and15.98%in the East, North and Up components when the large area is used. Results of the earthquake simulation experiment show that the RMS deduce from0.84cm,0.94cm and5.77cm to0.76cm,0.70cm and3.60cm in the East, North and Up components, respectively. PPP with broadcast ephemeris and clocks products estimated with regional networks is verified with Municipal CORS network. The precision of ambiguity-float PPP with broadcast ephemeris and clocks estimated with regional networks is higher than that with IGS final products, the ambiguity-fixed PPP solution has a further increment of22.1%,46.4%,17.1%in N, E and U directions, respectively.
引文
[1]Abdel-salam M. A hybrid solution to reduce the long convergence time in precise point positioning. In: Proceedings of ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, US,2004,2555-2562.
    [2]Abdel-salam M, Gao Y. Ambiguity resolution in precise point positioning:Preliminary results. In: Proceedings of ION GNSS 16th International Technical Meeting of the Satellite Division, Portland, US,2003, pp 1222-1228.
    [3]Agrotis L, P A San, J Dow, R Zandbergen, D Svehla, A Ballereau. "ESOC's RETINA System and the Generation of the IGS RT Combination". IGS Workshop,28 Jun.-2 Jul.2010, Newcastle Upon Tyne, UK.
    [4]Banville, S., Santerre, R., Cocard, M., Langley, R.B. Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution, Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego,2008, California, USA.
    [5]Bar-Sever YE, Kroger PM, Borjesson JA. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res,1998,103(B3):5019-5035.
    [6]Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP. Single receiver phase ambiguity resolution with GPS data. J Geod,2010,84(5):327-337.
    [7]Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km. Journal of Geophysical Research,1989,94(B8):10187-10203.
    [8]Blewitt G, Hammond W, Kreemer C, Plag H P. From Yucca Mountain local stability to global quaking: GPS point positioning strategies spanning the spatio-temopral spectrum. Paper presented at advances in GPS data processing and modeling for geodynamics, University College London,9-10 November.
    [9]Bisnath S, Gao Y, Current State of Precise Point Positioning and Future Prospects and Limitations. International Association of Geodesy Symposia 133,2007, Springer, Berlin.
    [10]Bisnath S, Gao Y. Current state of precise point positioning and future prospects and limitations. In: Sideris MG (ed) Observing our changing Earth, Springer-Verlag, Berlin Heidelberg,2007, pp 615-623.
    [11]Bochm J, Nicll AE, Trcgoning P, Schuh H. The Global Mapping Function (GMF):A new empirical mapping function based on data from numerical weather model data. Geophysical Research Lctters,2006,33(7):L07304.
    [12]Borno Mazen Al. Reduction in Solving Interger Least Square Problems. Quebec:McGill University, 2011.
    [13]Calais E, Han JY, DeMets C, Nocquet JM. Deformation of the North America plate interior from a decade of continuous GPS measurements. J Geophys Res,2006,111:B06402.
    [14]Calias E, Han JY, DeMets C, Nocquet JM. Deformation of the North American Plate interior from a decade of continuous GPS measurements.
    [15]Carcanague S, Julicn O, Vigncau W, Macabiau C. Undifferenced Ambiguity Resolution Applied to RTK. Proceedings of the ION GNSS 2011 Meeting, September 20-23,2011, Portland, Oregon. 663-678.
    [16]Cardellach E, Elosegui P, Davis JL.Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res,2007,112:B07405.
    [17]Chao, Y.C., Real Time Implementation of the Wide Area Augmentation System for the Global Positioning System with an Emphasis on Ionospheric Modeling.1997, Stanford University.
    [18]Chen K. Real-time precise point positioning and its potential applications. In:Proceedings of ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, US,2004, pp 1844-1854.
    [19]Chui, C.K. and G. Chen, Kalman Filtering:With Real-Time Applications 4th ed.2009:Springer.
    [20]Collins P. Isolating and Estimating Undifferenced GPS integer Ambiguities, Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, California,2008,720-732.
    [21]Collins P, Lahaye F, Heroux P, Bisnath S. Precise point positioning with ambiguity resolution using the decoupled clock model. In:Proceedings of ION GNSS 21st International Technical Meeting of the Satellite Division, Savannah, US,2008, pp 1315-1322.
    [22]Collins P, Bisnath S, Lahaye F, and Heroux P. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing, Navigation,2010,57(2):123-135.
    [23]Colombo OL. Evaluation of precise, kinematic GPS point positioning. In:Proceedings of ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, US,2004, pp 1423-1430.
    [24]Dach R, Hugentobler U, Fridez P, Meindl M. Bernese GPS software Version 5.0. Astronomical Institute, University of Bern,2007, Bern.
    [25]Davies, K. and G.K. Hartmann, Studying the ionosphere with the Global Positioning System. Radio Sci.,1997,32(4):p.1695-1703.
    [26]Delporte J, Mercier F, Laurichesse D, Galy O. GPS carrier-phase time transfer using single difference integer ambiguity resolution. International Journal of Navigation and Observation 2008:273785.
    [27]Dong, D., Bock, Y.,1989. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research, 94(B4):3949-3966.
    [28]Euler H.J., and Schaffrin B, On a measure of the discernibility between different ambiguity solutions in the static-kinematic GPS mode, in:Schwarz, K.P., Lachapelle, G., Kinematic Systems in Geodesy, Surveying and Remote Sensing,1990, IAG Symposium No.107. Springer- Verlag, New York:285-295.
    [29]Feng Y.M. and Li B.F., Wide area real time kinematic decimeter positioning with multiple carrier GNSS signal, SCIENCE CHINA Earth Sciences,2010,53(5):731-740.
    [30]Gabor MJ, Nerem RS. GPS carrier phase ambiguity resolution using satellite-satellite single difference. In:Proceedings of ION GNSS 12th International Technical Meeting of the Satellite Division, Nashville, US,1999, pp 1569-1578.
    [31]Gao Y, Shen X. Improving ambiguity convergence in carrier phase-based precise point positioning. In: Proceedings of ION GNSS 14th International Technical Meeting of the Satellite Division, Salt Lake City, US,2001, pp 1532-1539.
    [32]Gao, Y., Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products, Journal of Global Positioning Systems,2004,3(1-2),95-100.
    [33]Goad C C. Gravimetric tidal loading computed from integrated Green's functions. J. Geophys. Res.,5 May 10.1980,2679-2683.
    [34]Ge M, Gendt G, Dick G, Zhang FP. Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod,2005,79(1-3):103-110.
    [35]Ge M, Gendt G, Dick G, Zhang F P, Rothacher M. A new data processing strategy for huge GNSS global networks. J Goed,2006,80(4):199-203.
    [36]Gc M. R., Gendt G., Rothacher M., Shi C. and Liu J.N., Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations, Journal of Geodesy,2008,82(7):389-399.
    [37]Ge M. R., Zou X., Dick G., Jiang W.P., Wickert J., Liu J.N., An alternative Network RTK approach based on undifferenced observation corrections, ION GNSS 2010,2010 (Oral report).
    [38]Gendt G, Dick G, Reigber CH, Tomassini M, Liu Y, Ramatschi M. Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J Meteo Societ Jap,2008, 82(1B):360-370
    [39]Geng J.H., Teferle F.N., Shi C, Meng X, Dodson A.H., and Liu J.N. Ambiguity resolution in precise point positioning with hourly data, GPS Solutions,2009,13,263-270.
    [40]Geng J.H., F.N. Teferle, X. Meng and A.H. Dodson, Towards PPP-RTK:Ambiguity resolution in real-time precise point positioning, Advances in Space Research,2010a,47:1664-1673.
    [41]Geng J H, Meng X·L, Dodson A H, Teferle F N.Integer ambiguity resolution in precise point positioning:method comparison. J Geod,2010b,84:569-581.
    [42]Geng J H. Rapid Integer Ambiguity Resolution in GPS Precise Point Positioning. Nottingham, University of Nottingham,2010c.
    [43]Gerhard Wubbena, Andreas Bagge. RTCM Message Type 59-FKP for transmission of FKP. Geo++(?) White Paper Nr.2002.01
    [44]Griffths J, Ray JR. On the precision and accuracy of IGS orbits. J Geod,2009,83(3-4):277-287.
    [45]Grewal, M.S. and A.P. Andrews, Kalman Filtering:Theory and Practice Using MATLAB.3rd ed. 2008:Wiley-IEEE Press.
    [46]Hajj, G.A., R. Ibanez-Meier, E.R. Kursinski, et al., Imaging the ionosphere with the global positioning system. International Journal of Imaging Systems and Technology,1994,5(2):174-187.
    [47]Han S, Rizos C. A new method for constructing Multi-satellite Ambiguity Combinations for Improved Ambiguity Resolution. Proceedings of ION GPS 1995, California,1995(2):1145-1153.
    [48]Hauschild A, Montenbruck O. Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut,2009,13(3): 173-182.
    [49]Hernandez-Pajares M, Juan JM, Sanz J, Or_us R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A. The IGS VTEC maps:A reliable source of ionospheric information since 1998. J Geod, 2009,83(3-4):263-275.
    [50]Herring T.A., King R.W., and McClusky S.C. GAMIT Reference Manual, GPS Analysis at MIT, Release 10.3.2006, Mass. Inst. of Technol. Cambridge, MA.
    [51]IERS Standards (1989), IERS Technical Note 3, (ed. D.D.McCarthy).
    [52][IGSMAIL-5927]:Status of IGS Real Time Pilot Project[OL]. http://igscb.jpl.nasa.gov/mail/igsmail/ 2009/msg00052.html,2009.
    [53]Jan Dousa. The impact of errors in predicted GPS orbits on zentih troposphere delay estimation. GPS Solut(2010) 14:229-239.
    [54]Jee, G., H.B. Lee, Y.H. Kim, et al., Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data:Ionospheric perspective. J. Geophys. Res.,2010, 115(A10):p.A10319.
    [55]Jin, S.G., O.F. Luo, and C. Ren, Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates, Adv. Space Res.,2010,46(2):190-195.
    [56]John R. Rauch und Warmeabzug bei Branden in grossen Raeumen, Technik und Management im Brandschutz,1998,38(1):21-25.
    [57]Jonge de,Tiberius P J C. The LAMBDA method for integer ambiguity estimation:implementation aspects[J]. Delft Geodetic Computing Centre LGR Series,1996, (12):562.
    [58]Joosten P, Tiberius C. LAMBDA:FAQs. GPS Solut,2002,6(1-2):109-114.
    [59]Kim D, Serrano L, Langley R. Phase wind-up analysis:Assessing real-time kinematic performance. GPS World,2006,17(9):58-64.
    [60]King MA, Penna NT, Clarke PJ. Validation of ocean tide models around Antarctica using onshore GPS and gravity data. J Geophys Res,2005,110:B08401.
    [61]Klobuchar, J.A., A First-Order, Worldwide Ionospheric. Time Delay Algorithm.1975.
    [62]Komjathy, A., L. Sparks, A.J. Mannucci, et al., An assessment of the current WAAS algorithm in the South American region, in Institute of Navigation (ION) 2002 National Technical Meeting.2002, Portland, OR, USA.
    [63]Kouba, J. A GUIDE TO USING INTERNATIONAL GNSS SERVICE (IGS) PRODUCTS. URL: http://igscb.jpl.nasa.gov/components/usage.html.last Updated:14 May,2009.
    [64]Kouba, J., and P. Hcroux, Precise Point Positioning using IGS Orbit and Clock Products, GPS Solutions,5,2001,12-28.
    [65]Kouba J. Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod,2009,83(3-4):199-208.
    [66]Laurichesse D, Mercier F. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In:Proceedings of ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth, US,2007, pp 839-848.
    [67]Laurichesse D, Mercier F, Berthias JP, Bijac J. Real time zero-difference ambiguities fixing and absolute RTK. In:Proceedings of ION National Technical Meeting, San Diego, US,2008a, pp 745-755.
    [68]Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L. Zero-difference ambiguity fixing for spaceborne GPS receivers. In:Proceedings of ION GNSS 21st International Technical Meeting of the Satellite Division, Savannah, US,2008b, pp 758-768.
    [69]Laurichesse D, Mercier F, Berthias JP. Real time precise GPS constellation orbits and clocks estimation using zero-difference integer ambiguity fixing. In:Proceedings of ION International Technical Meeting, Anaheim, US,2009a, pp 664-672.
    [70]Laurichesse D, Mercicr F, Berthias JP. Zero-difference integer ambiguity fixing on single frequency receivers. In:Proceedings of ION GNSS 22nd International Technical Meeting of the Satellite Division, Savannah, US,2009b, pp 2460-2469.
    [71]Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L. Integer ambiguity resolution on undiffcrenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation:Journal of the Institute of Navigation,2009c,56(2):135-149.
    [72]Laurichesse D. The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator. Proceedings of the ION GNSS 2011 Meeting, September 20-23,2011, Portland, Oregon.654-662.
    [73]Li Z, Gao Y. Driect Construction of High Dimension Ambiguity Transformation for the Lambda Method. Proceeding of KIS97. Banff,1997,409-416.
    [74]Liu J.N., and Ge M.R., PANDA Software and Its Preliminary Result of Positioning and Orbit Determination, Wuhan University Journal of Natural Sciences,2003,8 (2):603-609.
    [75]Li X.X., Zhang X.H. and Ge M.R. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution, Journal of Geodesy,2011,85(3):151-158.
    [76]Li, X. Improving real-time PPP ambiguity resolution with ionospheric characteristic consideration. In: Proceedings of ION GNSS 2012,17-21 September, Nashville, USA,2012.
    [77]McCarthy DD, Petit G. IERS 2003 Conventions. IERS Conventions Center,2004.
    [78]Mercier F, Laurichesse D. Zero-difference ambiguity blocking properties of satellite/receiver widelane biases. In:Proceedings of European Navigation Conference, Toulouse, France,2008.
    [79]Mervart L, Lukes Z, Rocken C, Iwabuchi T. Precise point positioning with ambiguity resolution in real-time. In:Proceedings of ION GNSS 21st International Technical Meeting of the Satellite Division, Savannah, US,2008, pp 397-405.
    [80]Morujao DB, Mendes VB. Investigation of instantaneous carrier phase ambiguity resolution with the GPS/GALILEO combination using the general ambiguity search criterion. Journal of Global Positioning System,2008,7(1):35-45.
    [81]Rizos C. The research challenges of IAG Commission 4 "Positioning & Applications". Paper presented at VI Hotine-Marussi symposium of theoretical and computational geodesy, Wuhan 29 May-2 June,2006.
    [82]Saastaminen J. Contribution to the Theory of Atmospheric refraction. Bulletion Geod-esique,1973, 107, pp.13-14.
    [83]Shi C, Zhao Q.L., Geng J.H., Lou Y.D., Ge M.R., and Liu J.N. Recent development of PANDA software in GNSS data processing, ICEODPA 2008 Proc. of SPIE Vol.7285:72851S.
    [84]Tang W.M., Meng X.L., Shi C, and Liu J.N. "Assessment of a Long Range Reference Station Ambiguity Resolution Algorithm for Network RTK GPS Positioning", Survey Review, England. APR 2010,42,132-145.
    [85]Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation. Journal of Geodesy,1995(a),70(1-2):65-82.
    [86]Teunissen P. J. G., de Jonge P. J, Tiberius C. C. J. M. The LAMBDA method for fast GPS surveying. Proceedings of International Symposium 'GPS technology applications', Bucharest, Romania,1995(b), September 26-29, pp.203-210.
    [87]Teunissen,P.J.G.,P.J.De Jonge,C.C.J.M. Tiberius. Performance of the Lambda Method for Fast GPS Ambiguity Resolution. Navigation:Journal of The Institute of Navigation,1997a,44(3):373-383.
    [88]Teunissen P.J.G., de Jonge PJ, Tiberius CCJM. The least-squares ambiguity decorrelation adjustment: Its performance on short GPS baselines and short observation spans. J Geod,1997b,71(10):589-602.
    [89]Teunissen P.J.G. Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod, 1998,72(10):606-612.
    [90]Teunissen P.J.G. An optimality Property of the Integer Leat-squares Estimator. Journal of Geodesy. 1999,73(11):587-593.
    [91]Teunissen P.J.G., Odijk D., and Zhang B, PPP-RTK:Results of CORS network-based PPP with integer ambiguity resolution, Journal of Aeronautics, Astronautics and Aviation, Series A,2010,42(4):223-230.
    [92]Wang M, Gao Y. GPS un-differenced ambiguity resolution and validation. In:Proceedings of ION GNSS 19th International Technical Meeting of the Satellite Division, Fort Worth, US,2006, pp 292-300.
    [93]Wang M, Gao Y. An investigation on GPS receiver initial phase bias and its determination. In: Proceedings of ION National Technical Meeting, San Diego, US,2007, pp 873-880.
    [94]Weber G, Mervart L, Lukes Z, Rocken C, Dousa J. Real-time clock and orbit corrections for improved point positioning via NTRIP. In:Proceedings of ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth, US,2007, pp 1992-1998.
    [95]Wei Erhu, Hua Chai, Zhiguo An. VRS Virtual Observations Generation Algorithm, Journal of Global Positioning Systems,2006, Vol.5, No.1-2:76-81.
    [96]Wu J. T.; Wu S. C.; Hajj G. A.; Bertiger W. I.; Lichten S. M. Effects of antenna orientation on GPS carrier phase. IN:Astrodynamics 1991; Proceedings of the AAS/AIAA Astrodynamics Conference, Durango, CO, Aug.19-22,1991. Pt.2 (A92-4325118-13). San Diego, CA, Univelt, Inc.,1992, p. 1647-1660.
    [97]Wubbena G, Schmitz M, Bagge A, PPP-RTK:Precise Point Positioning using state-space representation in RTK networks, ION GNSS,2005,2584-2594.
    [98]Xu P. Random Simulation and GPS Decorrelation. Journal of Geodesy,2001,75(7):408-423.
    [99]Yuan Y. and Ou J., Differential Areas for Differential Stations (DADS):A New Method of Establishing Grid Ionospheric Model. Chinese Science Bulletin,2002,47(12):1033-1036.
    [100]Zhang B., Teunissen P.J.G., Odijk D., A novel un-differenced PPP-RTK concept, Journal of Navigation,2011,64(S1).
    [101]Zou Xuan, Ge Maorong, Tang Weiming, Shi Chuang, Liu Jingnan. URTK:Undifferenced Network RTK positioning, GPS Solutions,2012.
    [102]Zou Xuan, Tang Weiming, Ge Maorong, Liu Jingnan, Cai Heng, A New Network RTK based on Transparent Reference Selection in Absolute Positioning Mode, Journal of Surveying Engineering, 2012,doi:10.1061/(ASCE)SU.1943-5428.0000090.
    [103]Zou Xuan, Tang Weiming, Ge Maorong, Liu Jingnan. Equivalence of Existing Network RTK Methods under the PPP Mode, IUGG 2011 (Oral report).
    [104]Zou Xuan, Tang Weiming, Shi Chuang, Liu Jingnan. A New Ambiguity Resolution Method for PPP Using CORS Network and its Real-time Realization, Lecture Notes in Electronic Engineering--China Satellite Navigation Conference 2012 Proceedings.
    [105]Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M. and Webb F.H., Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res,1997,102(B3): 5005-5017.
    [106]陈俊勇.全球导航卫星系统进展及其对导航定位的改善[J].大地测量与地球动力学,2009(2):1-3
    [107]陈小明.高精度GPS动态定位的理论与实践[D].武汉:武汉测绘科技大学,1997.
    [108]崔希璋,於宗俦,陶本藻等.广义测量平差[M].武汉:武汉大学出版社,2001.
    [109]党亚民,陈俊勇,张燕平.新疆地区现今地壳运动[J].武汉大学学报(信息科学版),2003,28133-136.
    [110]高星伟,陈锐志,赵存梅.网络RTK算法研究与实验[J].武汉大学学报(信息科学版),200934(11):1350-1353.
    [111]黄珹,胡小工,程宗颐.利用非差资料的精密点位方案解算区域GPS网[J].天文学报,2001,42(3):248-258.
    [112]黄丁发,周乐粥,李成钢,熊永良.增强参考站网络RTK算法模型及其实验研究[J].武汉大学学报(信息科学版),2009,34(11):1344-1349.
    [113]葛茂荣.GPS卫星精密定轨理论及软件研究[D].武汉:武汉测绘科技大学,2005.
    [114]耿涛,赵齐乐,刘经南,杜瑞林.基于PANDA软件的实时精密单点定位研究[J].武汉大学学报·信息科学版,2007,32(4):312-315.
    [115]姜卫平,邹璇,唐卫明.基于CORS网络的单频GPS实时精密单点定位新方法[J].地球物理学报,2012,55(5):1549-1556.
    [116]李浩军,王解先,陈俊平,胡从玮,王虎.基于GNSS网络的实时精密单点定位及精密分析[J].地球物理学报,2010,53(6):1302-1307.
    [117]李星星,张小红,李盼.固定非差整数模糊度的PPP快速精密定位定轨[J].地球物理学报,2012,55(3):833-840.
    [118]李征航,黄劲松,GPS测量与数据处理[M].2005,武汉:武汉大学出版社.
    [119]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].武汉:武汉大学出版社,2009.
    [120]宁津生,王正涛.测绘学科发展综述[J].测绘科学,2006(1):9-16
    [121]刘基余,GPS 卫星导航定位原理与方法[M].北京:科学出版社.2003.
    [122]刘经南,陈俊勇,张燕平等.广域差分GPS原理和方法[M].北京:测绘出版社,1999.
    [123]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报(信息科学版),200227(3):234-240
    [124]刘经南,于兴旺,张小红.基于格论的GNSS模糊度解算[J].测绘学报,2012,41(5):636-644.
    [125]楼益栋,导航卫星实时精密定轨与钟差确定[D].武汉:武汉大学测绘学院,2008.
    [126]罗孝文,欧吉坤.中长基线GPS网络RTK模糊度快速解算的一种新方法[J].武汉大学学报(信息科学版),2007,32(2):156-159.
    [127]施闯,楼益栋,宋伟伟,蔡华.广域实时精密定位原型系统及初步结果[J].武汉大学学报(信息科学版),2009,34(11):1271-1274.
    [128]宋伟伟.广域实时精密定位系统关键技术及其应用研究[D].武汉:武汉大学,2011.
    [129]唐卫明.大范围长距离GNSS网络RTK技术研究及软件实现[D].武汉:武汉大学,2006.
    [130]唐卫明,孙红星,刘经南,附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度的确定[J],武汉大学学报(信息科学版),2005,30(5):444-446.
    [131]王新洲,陶本藻,邱卫宁,姚宜宾.高等测量平差[M].北京:测绘出版社,2006.
    [132]巍子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998
    [133]吴北平.GPS网络RTK定位原理与数学模型研究[D].武汉:中国地质大学,2003.
    [134]叶世榕,GPS非差相位精密单点定位理论与实现[D].武汉大学,2002.
    [135]张宝成,欧吉坤,袁运斌,钟世明.基于GPS双频原始观测值的精密单点定位算法及应用.测绘学报,2010,39(5):478:483.
    [136]张宝成,欧吉坤.论精密单点定位整周模糊度解算的不同策略[J].测绘学报,2011,40(6):710-716.
    [137]张宝成,欧吉坤,蒋振伟.精密单点定位整周模糊度快速固定[J].地球物理学报,2012,55(7):2203-2210.
    [138]张守建,GNSS非差模式的卫星精密定轨及快速精密定位理论与方法[D].武汉大学,2009
    [139]张小红.动态精密单点定位(PPP)的精度分析[J].全球定位系统,2006,1:7-11.
    [140]张小红,李星星,郭斐,李盼,王磊.基于服务系统的实时精密单点定位技术及应用研究[J].地球物理学报,2010,53(6):1308-1314.
    [141]张小红,非差模糊度整数固定解PPP新方法及实验.武汉大学学报信息科学版,2010,35(6):657-660.
    [142]郑作亚,党亚民,卢秀山,郭金运,阳凡林.GPS精密单点定位中影响收敛时间的因素及措施分析[J].大地测量与地球动力学,2009,29(5):107-111.
    [143]周乐韬,黄丁发,徐锐,高淑照.一种网络RTK新技术——增强参考站[J].武汉大学学报(信息科学版),2008,33(1):76-80.
    [144]周扬眉.GPS精密定位的数学模型数值算法及可靠性理论[D].武汉:武汉大学测绘学院,2003.
    [145]祝会忠.基于非差改正数的长距离单历元GNSS网络RTK算法研究.武汉:武汉大学,2012.
    [146]邹璇,唐卫明,葛茂荣,刘经南.基于非差观测的网络实时动态定位方法及其在连续运行基准站跨网服务中的应用[J].测绘学报,2011,40:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700