单晶硅纳米磨损的湿度/速度效应及防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技开创了21世纪人类生活的新时代,其发展不仅将促使人类认知的革命,也是人类实现可持续发展的重要保证。目前,信息、生物、先进制造、航空航天等高新技术领域的微型化趋势极大地促进了微/纳机电系统(M/NEMS)的发展,催生出批高性能微纳机电系统。然而,由于尺寸和表面效应,黏着和磨损等纳米摩擦学问题成为困扰M/NEMS成功研制和长期可靠服役的关键因素。
     磨损按照材料去除机理的不同,大致可分为机械磨损和摩擦诱导的化学磨损两大类。相对应纯机械磨损,摩擦化学磨损在大气环境中更容易发生且对材料造成的损伤程度更严重,对M/NEMS的危害也更大。因此,本文针对硅基M/NEMS制造和运行中的纳米磨损问题,首先利用二氧化硅球形探针深入探讨了单晶硅材料的纳米磨损行为和机理,通过改变针尖滑动速度和环境湿度实现了单晶硅对水诱导摩擦化学磨损的屏蔽;最后使用原子力显微镜和纳米压痕/划痕仪系统考察了超薄DLC涂层对单晶硅(100)纳米磨损和纳动磨损的防护能力。本论文通过对单晶硅纳米磨损及其防护的系统研究,得到的主要结论如下:
     (1)发现了微观摩擦过程中的磨合现象,揭示了其摩擦磨损机制。纳米尺度下,单晶硅/二氧化硅摩擦副在大气环境下表现为典型的磨合过程,摩擦系数和磨损率随循环次数的增加呈先急剧降低而后保持平稳的变化趋势。与宏观条件下机械作用对粗糙表面的平滑机制不同,纳米尺度下硅/二氧化硅摩擦副的磨合过程主要归因于单晶硅表面氧化层的去除以及二氧化硅针尖表面的疏水化。
     (2)揭示出针尖滑动速度和湿度对单晶硅纳米磨损的影响规律。单晶硅表面的纳米磨损与二氧化硅针尖的滑动速度以及环境湿度密切相关。尽管单晶硅在干燥空气下具有优异的机械磨损抵抗力,但水分子参与的摩擦化学反应导致单晶硅表面极易发生严重磨损。在不同湿度的空气环境中,单晶硅的磨损率随针尖滑动速度的增加呈指数级降低直至稳定;在不同滑动速度下,磨损率随湿度增加表现为先逐渐增大,而当湿度30%后保持平稳。分析表明,单晶硅磨损体积随滑动速度和环境湿度的变化主要归因于接触界面间吸附水膜厚度和结构的改变。
     (3)大气环境中实现了单晶硅对摩擦化学磨损的屏蔽,并阐明其原因。潮湿空气中单晶硅/二氧化硅配副在滑动过程中的摩擦化学反应并不总会发生。在高速度/低湿度或低速度/高湿度条件下,单晶硅基体在滑动过程中表现为无磨损或轻微磨损现象。在低湿度/高速度环境下(<30%),单晶硅与二氧化硅接触界面在速度足够快时来不及形成吸附液桥,导致摩擦化学反应难以发生。在其它实验条件下,二氧化硅针尖与单晶硅接触界面间主要发生以下两类化学反应:①单晶硅/二氧化硅配副间相连硅烷醇的脱水反应,在这个过程中单晶硅表面出现持续磨损;②单晶硅样品或二氧化硅针尖接触表面相邻硅烷醇的脱水反应,其结果导致单晶硅表面在100次循环滑动后只出现轻微损伤或无损伤。
     (4)揭示出超薄DLC涂层对单晶硅纳米磨损和纳动磨损的防护机制。通过系统研究不同厚度DLC涂层对单晶硅机械磨损和摩擦化学磨损的影响规律,证明厚度仅为2nm的超薄DLC涂层能够有效防护单晶硅基体的纳米磨损。当使用金刚石针尖时,超薄DLC涂层由于良好的机械性能能够有效阻止单晶硅表面隆起结构的产生。当使用二氧化硅针尖时,DLC涂层因优异的化学稳定性能够有效阻隔单晶硅/二氧化硅配副与水分子接触,防止单晶硅表面摩擦化学磨损的发生。另外,在纳动运行中,超薄DLC涂层因表面能较低,能够显著降低潮湿环境中单晶硅/二氧化硅配副间的黏着效应,有效缓解纳动中的高摩擦磨损,同时使纳动分区向低位移幅值方向移动。
Nanotechnology has created a new era of human life in21st century. The development of nanotechnology can not only promote the revolution of human cognition, but also be an important guarantee of achievement for human sustainable development. Presently, the miniaturization trend in information, biotechnology, advanced manufacturing, aerospace and other high-tech fields has greatly promoted the development of micro/nano-electromechanical system (M/NEMS), which motivated the appearance of a larger number of high-performance M/NEMS. Due to the surface and size effects in nanoscale, the nanotribology problems, such as adhesion and wear, have become the critical factors to limit the manufacture and long-term reliable work of M/NEMS.
     According to the different mechanism of material removal, the wear can be divided into two main kinds, including mechanical wear and tribochemical wear. Compared with the pure mechanical wear, the tribochemical wear is more prone to occur in air and is easier to induce material loss and device failure in M/NEMS applications. Based on these problems, the nanowear of monocrystalline silicon (100), the main material used in M/NEMS, as well as its protection were investigated by diamond tip and SiO2microspheric tips with an atom force microscope (AFM). Firstly, the nanowear phenomena and mechanism of silicon in humid air were intensively studied. Combining these results, the self-protection against the tribochemical wear of silicon was achieved by optimizing the sliding speed and the relative humidity (RH). Subsequently, the wear resistance of ultrathin diamond-like carbon (DLC) coating on silicon substrate was verified by using AFM and nano hardness/scratch tester (NHT/NST). Based on these systematical investigations, the main conclusions can be summarized as following:
     (1) The running-in phenomenon during micro friction process was discovered and the related mechanism was proposed. The nanowear of the Si(100)/SiO2pair exhibited a typical running-in process in humid air. During running-in process, both the friction force of the Si(100)/SiO2pair and the wear rate of silicon rapidly reduced to constant as the sliding cycle increased. Different from the macroscale mechanism of flattening rough asperities on counter surfaces by mechanical actions, the running-in process of the Si(100)/SiO2pair in nanoscale was dominated by the removal of the native oxide layer on silicon substrate as well as the dehydroxylation of the SiO2contact surface.
     (2) The sliding speed and related humidity (RH) dependent nanowear of Si(100) was revealed. The nanowear of Si(100) strongly depends on the sliding speed of SiO2tip and RH. Although the Si(100) surface was mechanically robust in dry conditions, the water-induced tribochemical reactions made it susceptible to wear in humid air. Normally, the wear volume of silicon exponentially decreased to constant at a critical speed with the increase of sliding speed, and increased with RH to the stable value at the transition RH of30%. The results indicated that the transformation of wear rate on silicon surface was mainly attributed to the variation of the thickness and structure of adsorbed water layer between SiO2tip and silicon interface as the sliding speed or RH varied.
     (3) The self-protection of Si(100) surface against tribochemical wear was achieved in humidity and the related mechanism was clarified. The nanowear of Si(100) rubbed with SiO2was not ubiquitous, which was highly sensitive to sliding speed and RH. The tribochemical reaction of Si/SiO2pair was restrained and there was almost wearless on silicon substrate surface under the conditions of relatively high v/low RH or low v/high RH. At low RH (<30%), since the water meniscus (bond bridges) had no enough time to be formed between SiO2tip and silicon interface, the tribochemical reaction could not happen when the sliding speed was large enough. Under other conditions, two chemical reactions could take place at sliding interface in humid conditions:(1) dehydration reaction between silanol groups on Si substrate and those on counter-surface, which led to wear;(2) dehydration reactions between adjacent silanol groups on each solid surface, which led to low-friction and low-wear state.
     (4) The wear resistance mechanism of ultrathin DLC coating on Si(100) was revealed. DLC coating with only2nm in thickness was enough to protect the silicon substrate against mechanical wear and tribochemical wear in nanoscale. When the nanowear test was conducted by a diamond tip, the ultrathin DLC coating could completely prevent the formation of hillock on silicon substrate. When the tests were preformed by SiO2tips, the ultrathin DLC coating with high chemical inertness isolated the direct contact between Si(100)/SiO2pair and water so that it could restrain the water-induced tribochemical wear of silicon substrate. Furthermore, in nanofretting, owing to its excellent surface property, the ultrathin DLC coating could greatly decrease the capillary effect between silicon substrate and SiO2tip in humid air. As a result, it could effectively alleviate the friction and wear in nanoscale and expand the stick regime of Si/SiO2pair into a lower value of displacement amplitude.
引文
[1].温诗铸,黄平.摩擦学原理[M].第4版.清华大学出版社,2012:5-9.
    [2]. C. H. Scholz. Earth quakes and friction laws [J]. Nature.1998,391:37-42.
    [3]. O. B. David, S. M. Rubinstein, J. Fineberg, Slip-stick and the evolution of frictional strength [J]. Nature.2010,463(7):76-79.
    [4].国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告[M].北京:科学出版社,2010.
    [5].谢友柏,张嗣伟.摩擦学科及工程应用现状与发展战略研究[M].高等教育出版社,2009:I-III.
    [6].温诗铸.纳米摩擦学研究进展[J].机械工程学报.2007,43:10.
    [7].温诗铸,黎明.机械学发展战略研究[M].清华大学出版社,2003.
    [8]. B. Bhushan. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/ BioNEMS materials and devices [J]. Microelectron. Eng.2007,84:387-411.
    [9]. B. Bhushan. Modern Tribology Handbook [M]. CRC Press:New York,2001.
    [10].田文超.微机电系统(MEMS)原理、设计和分析[M].西安电子科技大学出版社,2009.
    [11].王亚珍,朱文坚.微机电系统(MEMS)技术及发展趋势[J].机械设计与研究.2004,20:1.
    [12].王莹.MEMS将迎来第三次发展浪潮[J].电子产品世界.2010.
    [13].王国彪.纳米制造前沿综述[J].科学出版社.2009:15-17.
    [14].余家欣.单晶硅的切向纳动研究[D].西南交通大学博士毕业论文.2011:1-2.
    [15].周智勇.MEMS传感器开创汽车主动安全系统的新时代[J].电子产品世界.2008,(2):37-42.
    [16].吕良,邓中亮,刘玉德等.基于MEMS技术的汽车传感器研究进展[J].电工技术学报,2007,22(4):77-84.
    [17]. F. Ayazi, K. Najafi. High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology [J]. J. Microelectromech. S.,2000,9(3):288-294.
    [18].吴雄.汽车MEMS传感器的应用及发展[J].传感器世界.2002.7-10.
    [19]. M. Tanaka. An industrial and applied review of new MEMS devices features [J]. Microelectron. Eng.2007,84:1341-1344.
    [20]. J. Bryzek. Impact of MEMS technology on society [J]. Sensors and actuators,1996,56:1~9.
    [21]. B. Bhushan. Tribology Issues and Opportunities in MEMS [M]. Kluwer Academic, Dordrecht, Netherlands,1998.
    [22]. E. J. Garcia, J. J. Sniegowski. Surface micromachined microengine [J]. Sensor. Actuat. A 1995,48: 203-214.
    [23]. D. M. Tanner, W. M. Miller, K. A. Peterson, et al. Frequency dependence of the lifetime of a surface micromachined microengine driving a load [J]. Microelectron. Reliab.1999,39:401-414.
    [24]. S. S. Mani, J. G. Fleming, J. A. Walraven, J. J. Sniegowski, M. P. de Beer, L. W. Irwin, D. M. Tanner, D. A. LaVan, M. T. Dugger, J. Jakubczak, W. Miller. Effect of W Coating on Microengine Performance [C]. Proc.38th Annual Inter. Reliability Phys. Symp., IEEE, New York,2000, 146-151.
    [25]. M. G. Hankins, P. J. Resnick, P. J. Clews, T. M. Mayer, D. R. Wheeler, D. M. Tanner, R. A. Plass. Vapor deposition of amino-functionalized self-assembled monolayers on MEMS [C]. Proc. SPIE, vol.4980, SPIE, Bellingham, Washington,2003,238-247.
    [26]. D. J. Fonseca, M. Sequera. On mems reliability and failure mechanisms [J]. International Journal of Quality, Statistics, and Reliability.2011,820243-7.
    [27]. H. Fujita, T. Ishida, T. Sato, S. Nabeya. MEMS-in-TEM for Nano Tribology [J]. J. Phys:Conf. Ser. 2010.258:012004.
    [28]. A. D. Romig Jr, M.T. Dugger, P.J. McWhorter. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability [J]. Acta. Mater.2003,51:5837.
    [29]. D. M. Tanner, J. A. Walraven, L. W. Irwin, M. T. Dugger, N. F. Smith, W. P. Eaton, W. M. Miller, S. L. Miller. The effect of humidity on the reliability of a surface micromachined microengine [C]. Annual Inter. Reliability Phys. Symp., IEEE, San Diego, U.S.A.,1999,189-197.
    [30]. D. H. Alsem, E. A. Stach, M. T. Dugger, M. Enachescu, R. O. Ritchie. An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air [J]. Thin Solid Films. 2007,515:3259-3266.
    [31]. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig. Ultrahigh density, high data-rate NEMS based AFM data storage system [J]. Microelec. Eng.1999,46:11-27.
    [32]. B. Bhushan, Handbook of Micro/Nanotribology [M], Second ed., CRC Press:Florida,1999.
    [33]. R. Astrom, R. Mutikainen, H. Kuisma, A. H. Hakola. Effect of alkylsilane coating on sliding wear of silica-silicon contacts with small amplitude motion [J]. Wear.2002,253:739-745.
    [34]. S. H. Kim, D. B. Asay, M. T. Dugger. Nanotribology and MEMS [J]. Nanotoday.2007,2(5):22-29.
    [35]. T. A. Smallwood, K. C. Eapen, S. T. Patton, J. S. Zabinski. Performance results of MEMS coated with a conformal DLC [J]. Wear.2006,260:1179-1189.
    [36]. K. C. Eapen, S. A. Smallwood, J. S. Zabinski. Lubrication of MEMS under vacuum [J]. Surf. Coat. Technol.2006,201:2960-2969.
    [37]. D. B. Asay, M. T. Dugger, J. A. Ohlhausen, S. H. Kim. Macro-to nanoscale wear prevention via molecular adsorption [J]. Langmuir,2008,24(1):155-9.
    [38]. S. H. Shen, Y. G. Meng. Adhesive and corrosive wear at microscales in different vapor environments [J]. Friction.2013,1(1):72-80.
    [39]. I. S. Forbes, J. I. B. Wilson. Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study [J]. Thin Solid Films.2002,420-421:508-514.
    [40]. R. Bandorf, H. Luthje, C. Henke, J. Wiebe, J.-H. Sick, R. Kuster. Different carbon based thin films and their microtribological behaviour in MEMS applications [J]. Surf. Coat. Technol.2005, 200(5-6):1777-1782.
    [41]. B. Zhou, L. Wang, N. Mehta, S. Morshed, A. Erdemir, O. Eryilmaz, B. C. Prorok. The mechanical properties of freestanding near-frictionless carbon films relevant to MEMS [J]. J. Micromech. Microeng.2006,16:1374.
    [42]. A. L. Barnette, S. H. Kim. Coadsorption of n-propanol and water on SiO2:study of thickness, composition, and structure of binary adsorbate layer using attenuated total reection in frared(ATR-IR) and sum frequency generation (SFG) vibration spectroscopy [J]. J. Phys. Chem. C. 2012,116:9909-9916.
    [43]. A. L. Barnette, D. B. Asay, D. Kim, B. D. Guyer, H. Lim, M. J. Janik, S. H. Kim. Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments [J]. Langmuir 2009,25(22):13052-13061.
    [44]. S. H. Shen, Y. G. Meng. A novel running-in method for improving life-time of bulk-fabricated silicon MEMS devices [J]. Tribol. Lett.2012,47:273-284.
    [45]. B. J. Yu, L. M. Qian, H. S. Dong, J. X. Yu, Z. R. Zhou. Friction-induced hillocks on monocrystalline silicon in atmosphere and in vacuum [J]. Wear.2010,268:1095-1102.
    [46]. L. T. Zhuravlev. The surface chemistry of amorphous silica. Zhuravlev model [J]. Colloids Surf. A Physicochem. Eng. Asp.2000,173:1-38.
    [47]. G. Vigil, Z. H. Xu, S. Steinberg, J. Israelachvili. Interaction of silica surfaces [J]. J. Colloid. Interface. Sci.1994,165:367-385.
    [48]. J. X. Yu, L. M. Qian, B. J. Yu, Z. R. Zhou. Effect of surface hydrophilicity on the nanofretting behavior of Si(100) in atmosphere and vacuum [J]. J. Appl. Phys.2010,108:034314.
    [49]. J. X. Yu, S. H. Kim, B. J. Yu, L. M. Qian, Z. R. Zhou. Role of tribochemistry in nanowear of single-crystalline silicon [J]. ACS Appl. Mater. Interfaces.2012,4 (3):1585-1593.
    [50]. J. A. G. Taylor, J. A. Hockey. Heats of immersion in water of characterized silicas of varying specific surface area [J]. J. Phys. Chem.1966,70:2169-2172.
    [51]. L. A. Ignat'eva, V. I. Kvlividze, V. F. Kiselev. Bound water in dispersed systems [M], Issue 1, Moscow State University Press, Moscow,1970, p.56.
    [52]. E. F. Vansant, P. Van Der Voort, K. C. Vrancken, Characterization and chemical modification of the silica surface [M], Elsevier, Amsterdam,1995.
    [53]. B. Bhushan, V. N. Koinkar. Microtribological studies of doped single-crystal silicon and polysilicon films for MEMS devices [J]. Sens Actu-A.1996,57:91-102.
    [54]. B. Bhushan, J. N. Israelachvili, U. Landman. Nanotribology:friction, wear, lubrication at the atomic scale [J]. Nature.1995,374:607-616.
    [55]. R. Ribeiro, Z. Shan, A. M. Minor, H. Liang. In situ observation of nano-abrasive wear [J]. Wear. 2007,263:1556-1559.
    [56]. J. X. Yu, L. M. Qian, B. J. Yu, Z. R. Zhou. Nanofretting behaviors of monocrystalline silicon (100) against diamond tips in atmosphere and vacuum [J]. Wear.2009,267:322-329.
    [57]. B. J. Yu, H. S. Dong, L. M. Qian, Y. F. Chen, J. X. Yu, Z. R. Zhou. Friction-induced nanofabrication on monocrystalline silicon [J]. Nanotechnology.2009,20:465303.
    [58]. R. Kaneko, T. Miyamoto, Y. Andoh. Microwear [J]. Thin Solid Films,1996,273:105-111.
    [59]. J. X. Yu, L. M. Qian, B.J. Yu, Z. R. Zhou. Nanofretting behavior of monocrystalline silicon (100) against SiO2 microsphere in vacuum [J]. Tribol. Lett.2009,34:31-40.
    [60]. B. J. Yu, L. M. Qian, H. S. Dong, J. X. Yu, Z. R. Zhou. Friction-induced hillocks on monocrystalline silicon in atmosphere and in vacuum [J]. Wear.2010,268:1095-1102.
    [61]. B. J. Yu, X. Y. Li, H. S. Dong, Y. F. Chen, L. M. Qian, Z. R. Zhou. Towards a deeper understanding of the formation of friction-induced hillocks on monocrystalline silicon [J]. J. Phys:Appl. Phys. 2012,45:145301.
    [62]. I. Zarudi, W. C. D. Cheong, J. Zou, L. C. Zhang. Atomistic structure of monocrystalline silicon in surface nano-modification [J]. Nanotechnology.2004,15:104-107.
    [63]. W. C. D. Cheong, L. C. Zhang. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation [J]. Nanotechnology.2000,11:173.
    [64]. T. D. B. Jacobs, R. W. Carpick. Nanoscale wear as a stress-assisted chemical reaction [J]. Nature Nanotechnol.2013,8:108.
    [65]. J. Liu, D. S. Grierson, N. Moldovan, J. Notbohm, S. Li, P. Jaroenapibal, S. D. O'Connor, A. V. Sumant, N. Neelakantan, J. A. Carlisle, K. T. Turner, R. W. Carpick. Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes [J]. Small.2010,6:1140-1149.
    [66]. A. P. Merkle, L. D. Marks. Liquid-like tribology of gold studied by in situ TEM [J]. Wear.2008, 265:1864-1869.
    [67]. Bernd Gotsmann and Mark A. Lantz. Atomistic Wear in a Single Asperity Sliding Contact [J]. P. R. L.101,125501 (2008).
    [68]. H. Bhaskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M. A. Lantz, M. Despont, P. Jaroenapibal, R. W. Carpick, Y. Chen, K, Sridharan. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon [J]. Nature Nanotechnol.2010,5:181.
    [69]. J. J. Liu, J. K. Notbohm, R. W. Carpick, K. T. Turner. Method for Characterizing Nanoscale Wear of Atomic Force Microscope Tips [J]. ACS Nano.2010,4(7):3763.
    [70]. V. Vahdat, D. S. Grierson, K. T. Turner, R. W. Carpick. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes [J]. ACS Nano 2013,7:3221-3235.
    [71]. I. S. Y. Ku, T. Reddyhoff, A. S. Holmesb, H. A. Spikes. Wear of silicon surfaces in MEMS [J]. Wear. 2011,271:1050-1058.
    [72]. D. M. Tanner, W. M. Miller, K. A. Peterson, M. T. Dugger, W. P. Eaton, L. W. Irwin, D. C. Senft, N. F. Smith, P. Tangyunyong, S. L. Miller. Frequency dependence of the lifetime of a surface micromachined microengine driving a load [J]. Microelectron. Reliab.1999,39:401-414.
    [73]. N. Maluf. An introduction to microelectromechanical systems engineering [J]. Meas. Sci. Technol. 2002,13(2),701.
    [74]. M. Varenberg, I. Etsion, E. Altus. Theoretical substantiation of the slip index approach to fretting [J]. Tribol. Lett.2005,19(4):263-264.
    [75]. K. H. Chung, Y. H. Lee, D. E. Kim. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip [J]. Ultramicroscopy.2005,102:161-171.
    [76]. W. Maw, F. Stevens, S. C. Langford, J. T. Dickinson. Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy [J]. J. Appl. Phys.2002,92,9(1):5103-5109.
    [77]. X. C. Li, J. J. Lu, S. R. Yang. Effect of counter part on the tribological behavior and tribo-induced phase transfer mation of Si [J]. Tribol. Int.2009,42:628-633.
    [78]. K. Mizuhara, S.M. Hsu. Tribochemical reaction of oxygen and water on silicon surfaces [J]. Tribol. Ser.1992,21:323.
    [79]. X. C. Lia, J. J. Lua, B. Liu, S. R. Yang. Tribological behavior and phase transformation of single-crystal silicon in air [J]. Tribol. Int.2008,41:189-194.
    [80]. B. Bhushan. Nanotribology and nanomechanics-an introduction [M], Springer-Verlag, Heidelberg, Germany,2005.
    [81]. B. Bhushan, H. Liu, S.M. Hsu. Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects [J]. ASME J. Tribol.2004,126583-590.
    [82]. B. Bhushan, D. R. Tokachichu, M. T. Keener, S. C. Lee, Morphology and adhesion of biomolecules on silicon based surfaces [J]. Acta Biomateriala.2005,1:327-341.
    [83]. B. J. Yu, L. M. Qian, J. X. Yu, Z. R. Zhou. Effects of tail group and chain length on the tribological behaviors of self-assembled dual-layer films in atmosphere and in vacuum [J]. Tribol. Lett.2009, 34:1-10.
    [84]. A. Erdemir, O. L. Eryilmaz, I. B. Nilufer, G. R. Fenske. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas [J]. Surf. Coat. Technol.2000,133-134:448-454.
    [85]. S. Sundararajan, B. Bhushan. Micrornanotribology of ultra-thin hard amorphous carbon coatings using atomic forcerfriction force microscopy [J]. Wear.1999,225-229:678-689.
    [86]. T. Spalvins, H. E. Sliney, Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted screen cage ion plating [J]. Surf. Coat. Technol.1994,68/69:482-488.
    [87]. K. Holmberg, H. Ronkainen, A. Matthews. Tribology of thin coatings [J]. Ceram. Int.2000,26: 787-795.
    [88]. B. Bhushan, D. Hansford, K. K. Lee. Surface Modication of Silicon and polydimethylsiloxane surfaces with vapor-phase-depos-ited ultrathin fluorosilane biomedical microdevices [J], J. Vac. Sci. Technol. A.2006,24:1197-1202.
    [89]. K. K. Lee, B. Bhushan, D. Hansford, Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications [J]. J. Vac. Sci. Technol. A.23: 804-810.
    [90]. C. Casiraghi, J. Robertson, A. C. Ferrari. Diamond-like carbon for data and beer storage [J]. Materialtoday.2007,10(1-2):45-53.
    [91]. A. K. Menon, B. K. Gupta. Nanotechnology:a data storage perspective [J]. Nano Struct. Mater. 1999,11(8):965-9.
    [92]. C. F. Zhang, T. Y. Ma, M. Zhong, J. B. Luo, Y. Z. Hu, X. L. Hu, H. Wang. Research on the protection film and anti adsorption moleculer film on the surface of magnetic head and disk [J]. Digital Manufacture Science.2007,5 (2):32-66.
    [93]. J. Fontaine, M. Belin, T. L. Mogne, A.Grill. How to restore superlow friction of DLC:the healing effect of hydrogen gas [J]. Tribol. Int.2004,37:869-877.
    [94]. C. Donnet, J. Fontaine, A. Grill, T. LeMogne, The Role of Hydrogen on the Friction Mechanism of Diamond-Like Carbon Films [J]. Tribol. Lett.2000,9(3-4):137-142.
    [95]. A. Erdemir, Design criteria for superlubricity in carbon films and related microstructures [J]. Tribol. Int.2004,37:577.
    [96]. A. A. Voevodin, A. W. Phelps, J. S. Zabinski, M. S. Donley. Friction induced phase transformation of pulsed laser deposited diamond-like carbon [J]. Diam. Relat. Mater.1996,5:1264-1269.
    [97]. C. Jaoul, O. Jarry, P. Tristant, T. Merle-Mejean, M. Colas, C. Dublanche-Tixier, J.-M. Jacquet. Raman analysis of DLC coated engine components with complex shape:Understanding wear mechanisms [J]. Thin Solid Films.2009,518:1475-1479.
    [98]. B. Bhushan. Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5nm:recentdevelopments [J]. Diam. Relat. Mater.1999,8: 1985-2015.
    [99]. S. Sundararajan, B. Bhushan, Micro/nano tribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy [J]. Wear.1999,225-229:678-689.
    [100]. M. Zhong, C. H. Zhang, J. B. Luo, X. C. Lu. The protective properties of ultra-thin diamond like carbon films for high density magnetic storage devices [J]. Appl. Surf. Sci.2009,256:322-328.
    [101].L. Chen, M. C. Yang, C. F. Song, B. J. Yu, L. M. Qian. Is 2 nm DLC coating enough to resist the nanowear of silicon [J]. Wear.2013,302(1-2):909-917.
    [102]. J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng. R.2002,27:129-281.
    [103]. A. C. Ferrari. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun.2007,143:47-87.
    [104].N. Paik. Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source [J]. Surf. Coat. Technol.2005,200:2170-2174.
    [105]. X. H. Kong, S. Wang, H. P. Zhao, Y. D. He. Preparation of diamond-like carbon films by cathodic micro-arc discharge in aqueous solutions [J]. Thin Solid Films 2009, TSF-27086:4.
    [106]. R. A. Nevshupa, M. Scherge, S. I-U. Ahmed. Transitional microfriction behavior of silicon induced by spontaneous water adsorption [J]. Surf. Sci.2002,517:17-28.
    [107]. F. J. Rubio-Sierra, W. M. Heckl, R. W. Stark. Nanomanipulation by Atomic Force Microscopy [J]. AdV. Eng. Mater.2005,7:193-196.
    [108]. J. C. Rosa, M. Wendel, H. Lorenz, J. P. Kotthaus, M. Thomas, H. Kroemer. Direct patterning of surface quantum wells with an atomic force microscope [J]. Appl. Phys. Lett.1998,73:2684-2686.
    [109]. T. H. Fang, W. J. Cheng. Effects of AFM-based nanomachining process on aluminum surface [J]. J. Phys. Chem. Solids 2003,64:913-918.
    [110].C. K. Wen, M. C. Goh. AFM nanodissection reveals internal structural details of single collagen fibrils [J]. Nano Lett.2004,4:129-132.
    [111].X. D. Li, H. S. Gao, C. J. Murphy, K. K. Caswell. Nanoindentation of silver nanowires [J]. Nano Lett.2003,3:1495-1498.
    [112]. X. D. Li, H. S. Gao, C. J. Murphy, L. F. Guo. Nanoindentation of Cu2O Nanocubes [J]. Nano Lett. 2004,4:1903-1907.
    [113]. X. Nie, L. Tung, J. C. Jiang, L. Spinu, E. I. Meletis. Multifunctional Co-C nanocomposite [J]. Thin Solid Films 2002,415:211-218.
    [114].R. W. Carpick, E. E. Flater, K. Sridharan. The effect of surface chemistry and structure on nano-scale adhesion and friction [J]. Polymeric. Mater.2004,90:197-198
    [115].R. W. Carpick, N. Agraft, D. F. Ogletree, and M. Salmeron. Variation of the interfacial shear strength and adhesion of a nanometer-sized contact [J]. Langmuir 1996,12,3334-3340.
    [116]. S. Achanta, T. Liskiewicz, D. Drees, J.-P. Celis. Friction mechanisms at the micro-scale [J]. Tribol. Inter.2009,42:1792-1799.
    [117]. A. Torii, M. Sasaki, K. Hane, S. Okuma. A method for determining the spring constant of cantilevers for atomic force microscopy [J]. Meas. Sc. Technol.1996,7:179-184.
    [118].M. Varenberg, I. Etsion, G. Halperin. An improved wedge calibration method for lateral force in atomic force microscopy [J]. Rev. Sci. Instrum.2003,74:3362-3367.
    [119].J. B.Peter. ASM Handbook [M]. ASM International,1992:16.
    [120]. I. Nogueira, A. M. Dias, R. Gras, R. Progri. An experimental model for mixed friction during running-in [J]. Wear.2002,253:541-549.
    [121]. J. H. Horng, M. L. Len, J. S. Lee. The contact characteristics of rough surfaces in line contact during running-in process. Wear.2002,253:899-913.
    [122]. G. Masouros, A. Dimarogonas, K. Lefas. A model for wear and surface roughness transients during the running-in of bearings [J]. Wear.1977,45:375-382.
    [123]. X. D. Wang, J. X. Yu, L. Chen, L. M. Qian, Z. R. Zhou. Effects of water and oxygen on the tribochemical wear of monocrystalline Si(100) against SiO2 sphere by simulating the contact conditions in MEMS [J]. Wear.2011,271:1681-1688.
    [124]. K. Mizuhara, S. M. Hsu. Tribochemical reaction of oxygen and water on silicon surfaces [J]. Tribol. Ser.1992,21:323-328.
    [125]. L. Chen, S. H. Kim, X. D. Wang, L. M. Qian. Running-in process of Si-SiOx/SiO2 pair at nanoscale — sharp drop of friction and wear rate during initial cycles [J]. Friction.2013,1:81-91.
    [126]. S. Fouvry, P. Kapsa, H. Zahouani, L. Vincent. Wear analysis in fretting of hard coatings through a dissipated energy concept [J]. Wear.1997,203-204:393-403.
    [127]. L. Tristani, E. M. Zindine, L. Boyer, G. Klimek. Mechanical modeling of fretting cycles in electrical contacts [J]. Wear.2001,249:12-19.
    [128]. L. M. Qian, Z. Zhoua, Q Sun, W. Yan. Nanofretting behaviors of NiTi shape memory alloy [J]. Wear.2007,263:501-507.
    [129].N. Tambe, B. Bhushan. Friction model for the velocity dependence of nanoscale friction [J]. Nanotechnology.2005,16:2309-2324.
    [130]. S. Lafaye, C. Gauthier, R. Schirrer. The ploughing friction:analytical model with elastic recovery for a conical tip with ablunted spherical extremity [J]. Tribol. Lett.2006,21(2):95-99.
    [131]. A. Opitz, Ahmed S. I.-U., J. A. Schaefer, M. Scherge. Firiction of thin water films:a nanotribological study [J]. Surf. Sci.2002,504:199-207.
    [132]. X. D. Xiao, L. M. Qian. Investigation of humidity-dependent capillary force [J]. Langmuir 2000,16: 8153-8158.
    [133].G. Vigil, Z. H. Xu, S. Steinberg, J. Israelachvili. Interaction of silica surfaces [J]. J. Colloid. Interface. Sci.1994,165:367-385.
    [134]. A. L. Barnette, D. B. Asay, M. J. Janik, S. H. Kim. Adsorption isotherm and orientation of alcohols on hydrophilic SiO2 under ambient conditions [J]. J. Phys. Chem. C.2009,113 (24):10632-10641.
    [135]. K. Mizuhara, S. M. Hsu. Tribochemical reaction of oxygen and water on silicon surfaces. Tribol. Ser.1992,21:323.
    [136]. J. Israelachvili, Intermolecular and surface forces [M].2nd ed.; Academic Press Inc.:San Diego, 1992.
    [137].F. M. Orr, L. E. Scriven. Comments on The capillary binding force of a liquid bridge [J]. A. P. J. Fluid Mech.1975,67:723.
    [138]. E. Hsiao, M. J. Marino, S. H. Kim. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries [J]. J. Colloid Interface. Sci.2010, 352(2):549-557.
    [139].M. J. Marino, E. Hsiao, Y. S. Chen, O. L. Eryilmaz, A. Erdemir, S. H. Kim. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air [J]. Langmuir.2011,27:12702-12708.
    [140].F. Katsuki. Single asperity tribochemical wear of silicon by atomic force microscopy [J]. J. Mater. Res.2009,24:173-178.
    [141]. T. Zhu, J. Li, X. Lin, S. Yip. Stress-dependent molecular pathways of silica-water reaction [J]. J. Mech. Phys. Solids.2005,53:1597-1623.
    [142]. A. I. oanid, M. Dieaconu, S. Antohe. A semiempirical potential model for h-terminated functionalized surface of porous silicon [J]. Dig. J. Nanomater. Bios.2010,5(4):947-957.
    [143]. H. Goto, K. Hirose, M. Sakamoto, K. Sugiyama, K. Inagaki, H. Tsuchiya, I. Kobata, T. Ono, Y. Mori. Chemisorption of OH on the H-terminated Si(001) surface [J]. Comput. Mater. Sci.1999,14: 77-79.
    [144]. O. Lichtenberger, J. Woltersdorf. On the atomic mechanisms of water-enhanced silicon wafer direct bonding [J]. Mater. Chem. Phys.1996,44:222-232.
    [145].L. Bocquet, E. Charlaix, S. Ciliberto. J. Crassous. Moisture-induced ageing in granular media and the kinetics of capillary condensation [J]. Nature 1998,393:24-31.
    [146]. E. Riedo, F. Levy, H. Brune, Phys. Rev. Lett. Kinetics of capillary condensation in nanoscopic sliding friction [J].2002,88(18):185505(4).
    [147]. H. Mohrbacher, B. Blanpain, J. P. Celis, J. R. Roos, Low amplitude oscillating sliding wear on chemical vapour deposited diamond coatings [J]. Diam. Relat. Mater.1993,2:879-884.
    [148]. R. Szoszkiewicz, E. Riedo. Nucleation time of nanoscale water bridge [J]. Phys. Rev. Lett.2005,95: 135502-4.
    [149]. K. E. Petersen. Silicon as a mechanical material [J]. IEEE,1982,70:5.
    [150]. J. Y. Chen, I. Ratera, J. Y. Park, M. Salmeron. Velocity dependence of friction and hydrogen bonding effects [J]. Phys. Rev. Lett.2006,96,236102.
    [151]. A. Feng, B. J. Mccoy, Z. A. Munir, D. E. Cagliostro. Water adsorption and desorption kinetics on silica insulation [J]. J. colloid interface sci.1996,180:276-284.
    [152].L. R. Snyder, J. W. Ward. The Surface Structure of Porous Silicas [J]. J. Phys. Chem.1966,70, 3941-3952.
    [153].L. R. Snyder, J. J. Kirkland. Introduction to modern liquid chromatography [M], second ed, wiley, New York 1979,183-212.
    [154]. R. H. Doremus. Transport of oxygen in silicate glasses [J]. J. Non-Cryst. Solids 2004,349: 242-247.
    [155]. T. A. Weber, F. H. Stillinger. Molecular dynamics study of ice crystallite melting [J]. J. Phys. Chem.1983,87:4277-4281.
    [156]. F. M. Fowkes. Addition ofintermolecular forces at interfaces. J. Phys. Chem.1963,67:2538-2541.
    [157]. A. Luzar, D. Chandler. Hydrogen bond kinetics in liquid water [J]. Nature 1996,397:55-57.
    [158]. S. A. Smallwood, K. C. Eapen, S. T. Patton, J. S. Zabinski. Performance results of MEMS coated with a conformal DLC [J]. Wear.2006,260:1179-1189.
    [159]. J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing. Diamond and diamond-like carbon MEMS [J], J. Micromech. Microeng.2007,17:S147-S163.
    [160]. T. W. Scharf, T. W. Wu, B. K. Yen, B. Marchon, J. A. Barnard. Mechanical strength and wear resistance of 5nm ibd carbon overcoats for magnetic disks [J]. IEEE transactions on magnetics 2001. 37(4):1792-1794.
    [161]. E. V. Anoikin, M. M. Yang, J. L. Chao, M. A. Russak. Magnetic hard disk overcoats in the 3-5 nm thickness range [J]. J. Appl. Phys.1999,85:5606-5608.
    [162].K.I.Schiffmann,A.Hieke,Analysis of microwear experiments on thin DLC coatings:friction,wearand plastic deformation[J],Wear 2003,254:565-572.
    [163].M.Zhong,C.H.Zhang,J.B.Luo,X.C.Lu.The protective properties of ultra-thin diamond likecarbon films for high density magnetic storage devices[J],Appl.Surf. Sci.2009,256:322-328.
    [164].J.F.Cui,L.Qiang,B.Zhang,X.Ling,T. Yang,J.Y Zhang.Mechanical and tribological propertiesof Ti-DLC films with different Ti content by magnetron sputtering technique[J].Appl.Surf. Sci.2012,258:5025-5030.
    [165].Y J.Huang,Q.Wang,M.Wang,Z.Y Fei,M.S.Li,Characterization and analysis of DLC filmswith different thickness deposited by RF magnetron PECVD[J],Rare.Metals.2012,31:198-203.
    [166].J.X.Yu,S.Zhang,L.M.Qian,J.Xu,W. Y. Ding,Z.R.Zhou.Radial nanofretting behaviors ofultra thin carbon nitride film on silicon substrate[J].Tribol.Int.2011,44:1400-1406.
    [167].P.D.Mitcheson,P. Miao,B.H.Stark,E.M.Yeatman,A.S.Holmes,T.C.Green.MEMSelectrostatic micropower generator for low frequency operation[J],Sensor.Actuat.A.2005,115:523-529.
    [168].N.Satyanarayana,S.K.Sinha.Tribology of PFPE overcoated self-assembled monolayers depositedon Si surface[J].J.Phys.D:Appl.Phys.2005,38:3512-3522.
    [169].K.I.Schiffmann,A.Hieke.Analysis of microwear experiments on thin DLC coatings:friction,wear and plastic deformation[J].Wear.2003,254:565-572.
    [170].A.Erdemir,C.Bindal,J.Pagan,P.Wilbur.Characterization of transfer layers on steel surfacessliding against diamond-like hydrocarbon films in dry nitrogen[J].Surf. Coat.Tech.1995,76-77:559-563.
    [171].R.Prioli,M.Chhowalla,F.L.Freire.Friction and wear at nanometer scale: a comparative study ofhard carbon films[J].Diam.Relat.Mater. 2003,12: 2195-2202.
    [172].F.Katsuki.Single asperity tribochemical wear of silicon by atomic force microscopy[J].J.Mater.Res.2009,24:173-178.
    [173].L.Chen,M.C.Yang,J.X.Yu,L.M.Qian,Z.R.Zhou.Nanofretting behaviours of ultrathin DLCcoating on Si(100)substrate[J].Wear,2011,271:1980-1986.
    [174].S.J.Bull and D.S.Rickerby.New developments in the modelling of the hardness and scratchadhesion of thin films[J].Surf. Coat.Technol.1990,42:149-164.
    [175].周仲荣,钱林茂.摩擦学尺度效应及相关问题的思考[J].机械工程学报.29(8):22-26.
    [176]. J. X. Yu, L. Chen, L. M. Qian, D. L. Song, Y. Cai. Investigation of humidity-dependent nanotribology behaviors of Si (100)/SiO2 pair moving from stick to slip [J]. Appl. Surf. Sci.,2012, 265:192-200.
    [177]. J. S. McFarlane, D. Tabor. Relation between friction and adhesion [M]. Proc. R. Soc. (London) 1950,202-224.
    [178]. L. M. Qian, Q. P. Sun, Z. R. Zhou. Fretting wear behavior of superelastic nickel titanium shape memory alloy [J]. Tribol. Lett.2005,18 (4):463-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700