银纳米结构的绿色可控合成及生长机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特殊形貌的银纳米材料会呈现出与形貌相关的特殊的光学性能和催化性能。通过不同的合成方法控制合成不同形貌的银纳米结构一直都是具有挑战性的研究工作。本论文围绕这一研究主题,本着绿色合成的理念,利用生物质碳电化学转化机制,提供了一种缓慢稳定的晶体生长环境,通过改变银前驱体的浓度以及碳负载的无机离子种类等方式调控合成了花状、片状、带状和树枝状不同形貌的银纳米单晶,并研究其生长机制。同时利用了简单有效的合成方法合成出银包覆纳米复合结构,并研究了它们的催化和抑菌性能。本文主要开展了以下几个方面的研究工作。
     1.利用生物质碳表面官能团电化学转化的机制调控生长不同形貌的单晶银
     本项研究所做的工作就是仅利用规则的成型活性炭和银氨溶液获得了大量的单晶带银或片银。基于在生物质成型活性碳(biomass-derived monolithic activatedcarbon, MAC)上的还原基团可以电化学转化来维持银或其他贵金属生长的机理,通过利用AgCl作为晶种,选择银氨溶液作为前躯体,以及从前驱体溶液中释放出的OH-能使消耗的还原基团再生这三方面的结合,我们实现了绿色低价的单晶银的种植,并形成了单晶银的生长机制。本项研究工作进一步说明了在多孔材料上的功能基团可以实现电化学转化来扩大其应用范围。
     2.利用生物质碳的电化学转化及所负载无机离子调控合成枝状银纳米结构
     通过改变生物质碳上负载的无机离子,当碳上负载磷酸根离子时,可以在碳上长出树枝状银。比较碳上负载的氯离子、氢氧根离子和磷酸根离子对调控银纳米结构形貌生长的影响,不同的负载离子对应于不同的银的形貌。并探讨了相应的生物碳的电化学生长机制。
     3.利用生物质碳的电化学转化机制及低浓度的银前驱体溶液合成纳米带银
     基于生物质碳与银所形成的原电池生长单晶银的原理,以氧化银为前驱体,提供了单晶纳米带银的生长环境,利用温度、距离等生长环境来控制银离子释放浓度,生长出不同颜色、不同尺寸的纳米带银单晶。
     4.银纳米的核-壳包覆复合结构的合成
     (1)利用植物提取物与银形成碳包覆银的纳米结构,并考察了植物提取物的量、反应温度等对银纳米包覆结构的影响。
     (2)用氢气还原得到不同尺寸的银纳米粒子,无表面活性剂包覆的银纳米粒子与壳聚糖混合,形成了壳聚糖包覆银的纳米结构,并对其进行了抑菌性能测试。发现二者具有良好的协同抑菌性能。
     (3)银与二氧化硅微球的包覆结构的制备。通过敏化和化学沉积两步合成了银与二氧化硅微球的纳米包覆结构,并进行催化性能的测试,发现对硝基化合物转化为氨基化合物具有良好的催化性能。
The intrinsic properties of silver nanostructures, such as optical and catalystproperties, are mainly detennined by their shapes and sizes. Shape-controlled synthesisof silver nanostructures has been and continues to be an area of challenging andactive research. As these issues to be addressed, we create a stable environment for thegrowth of single crystalline silver based on the principle that reductive groups inbiomass-derived monolithic activated carbon (MAC) could be electrochemicallyconversed to sustain the growth of silver and other noble metals. Then we show thatdifferent morphologies single crystalline silver including silver nanoflowers, nanoplates,belts or dendritic grow abundantly on the surface of MAC in a high-quality, low-costand eco-friendly way, and their growth mechanism are studied. A simple and effectivesynthesis method making silver coat or coated composite structure is presenting, andcatalytic and inhibitory properties of composite structure are tested. The followingresearches have been carried out.
     1.Tunable growth of different morphologies single crystalline silver by galvaniccell mechanism on MAC
     Here we show that a large scale strip or flake single crystal silver grow throughbiomass-derived monolithic activated carbon (MAC) with [Ag(NH3)2]OH solution only.Based on the principle that reductive groups in MAC could be electrochemicallyconversed to sustain the growth of silver and other noble metals, through introducingcubic AgCl crystal seed, selecting silver ammonia solution as precursor, and OH-setfree from precursor facilitating the regeneration of the consumed reductive groups, ourwork achieves a green low-cost “planting” of single crystal silver and follows newmechanism of silver growth. It further suggests that functional groups on porousmaterials can be electrochemically conversed for more applications.
     2.Dendritic silver were prepared on monolithic activated carbon (MAC)pre-absorbed with PO43-anions
     Dendritic silver were prepared on monolithic activated carbon (MAC)pre-absorbed with PO43-anions. It is virtal that moderate Cl-, OH-and PO43-pre-absorbed in MAC to form the corresponding morphsynthesis of silver. A galvaniccell reaction mechanism by reductive functional groups on MAC is established.
     3.Nanobelts silver were prepaired through a galvanic cell reaction mechanism andlower Ag+concentration
     Based on the principle that reductive groups in MAC could be electrochemicallyconversed to sustain the growth of silver, through introducing Ag2O precursor, selectinglower Ag+concentration,a continually grow mechanism of single crystal belts silver isestablished. Nanobelts silver with different colours and sizes were obtained by changingtemperature and distance.
     4.The synthesis of core-shell silver composite structure
     (1) Blending plant extracts and silver nanoparticles with ultrasonic, a carbonencapulsated silver composite structure was produced. The amount of extract andreaction temperature are important to the composite structure.
     (2) The silver nanoparticles with different sizes was prepaired by hydrogenreduction. Blending silver nanoparticles and chitosan, a chitosan-encapulsated silvercomposite structure was formed. Chitosan-encapulsated silver composite structure havesynergistic antibacterial effect on Escherichia coli.
     (3) The synthesis of silver-encapulsated silica microspheres composite structure.Silver-encapulsated silica microspheres were prepared by sensitization and chemicaldeposition. And that, these composite structure have catalytic reduction ofp-nitrophenol.
引文
[1]李延增,闫牧夫, TC4薄壁件热处理过程形状尺寸变化数值预报材料科学与工艺,2005,13,1,21-24.
    [2]杨忠尹,纳米科技,北京:机械T业出版社,2004.
    [3]星元,沈军,张忠华,纳米材料的理化特性与应用,北京:化学工业出版社,2006.
    [4] Joachim C, To be nano or not to be nano, Nat. Mater.,2005,4,107-109.
    [5]周裁民,杨雄波,许瑞珍,纳米材料的研究现状及发展趋势,科技信息,2008,17,17-18.
    [6] Wu D, Xu F, Sun B, Fu R, He Hk, Design and Preparation of Porous Polymersand Matyjaszewski Krzyszt, Chem. Rev.,2012,112,3959-4015.
    [7] Tao AR, Ceperley DP, Sinsermsuksakul P, Neureuther AR, Yang P, Nano Lett.,2008,8,11,4033-4038.
    [8] Talapin DV, Shevchenko EV, Kornowski A, Gaponik N, Haase M, Rogach AL,Weller H, Adv. Mater.,2001,13,24,1868-1871.
    [9] Podsiadlo P, Krylova G, Lee B, Critchley K, Gosztola DJ, Talapin DV, AshbyPD, Shevchenko EV, J. Am. Chem. Soc.,2010,132,26,8953-8960.
    [10] Fan HY, Leve E, Gabaldon J, Wright A, Haddad RE, Brinker CJ, Adv. Mater.,2005,17,21,2587-2590.
    [11] Fan HY, Chem. Commun.,2008,12,1383-1394.
    [12] Tao A, Sinsermsuksakul P, Yang P, Tunable plasmonic lattices of silvernanocrystals, Nature Nanotech,2007,2,435-440.
    [13] Murray CB, Kagan C, Bawendi MG, Annu. Rev. Mater. Sci.,2000,30,545-610.
    [14] Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV, Chem. Rev.,2010,110,1,389-458.
    [15] Murray CB, Kagan CR, Bawendi MG, Science,1995,270,5240,1335-133816.
    [16] Wang D, Xie T, Peng Q, Li Y, J. Am. Chem. Soc.,2008,130,12,4016-4022.
    [17] Ding T, Song K, Clays K, Tung CH, Adv. Mater.,2009,21,19,1936-1940.
    [18]孟令镕,彭卿,周和平,李亚栋,从纳米晶到三维超晶格结构高等学校化学学报,2011,32,3,429-436.
    [19]张青,金属纳米结构的光学性质研究[博士学位论文],北京:清华大学物理系,2010.
    [20] Ho JK, Taehoon K, Myongsoo L, Responsive Nanostructures from AqueousAssembly of Rigid-Flexible Block Molecules, Accounts of Chemical Research,2011,44,1,72-82.
    [21] Wang ZL, Song JH, Piezoelectric nanogenerators based on zinc oxidenanowire arrays, Science,2006,312,242-246.
    [22] Wang XD, Song JH, Liu J, Wang ZL, Direct current nanogenerator driven byultrasonic wave, Science,2007,316,102-105.
    [23] Qin Y, Wang XD, Wang ZL, Microfiber-nanowire hybrid structure for energyscavenging, Nature,2008,451,809-813.
    [24] Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL, Self-powered nanowiredevices, Nat Nanotech,2010,5,366-373.
    [25] Zhu G, Yang RS, Wang SH, Wang ZL, Flexible high-output nanogeneratorbased on lateral ZnO nanowire array, Nano Lett,2010,10,3151-3155.
    [26] Hu YF, Zhang Y, Xu C, Zhu G, Wang ZL, High output nanogenerator byrational unipolar-assembly of conical-nanowires and its application for driving a smallliquid crystal display, Nano Lett,2010,10,5025-5031.
    [27] Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL, Functional electrical stimulationby nanogenerator with58V output voltage, Nano Lett,2012,12,3086-3090.
    [28] Katsuhiko N, Wako N, Shintaro A, Miyamoto JI, Takeo K, Accounts ofChemical Research,2013,46,5,1075-1083.
    [29] Andersson M, Pedersen JS, Palmqvist AEC, Silver nanoparticle formation inmicroemulsions acting both as template and reducing agent, Langmuir,2005,2,1,l1387-11396.
    [30] Sun X, Xu F, Li Z, et a1., Cyclic voitammetry for the fabrication of high densesilver nanowire arrays with the assistance of AAO template fJl, Mater.Chem.ehys.,2005,90,69-72.
    [31] Burda C, Chen X, Narayanan R, et a1., Chemistry and properties ofnanocrystals of different shapes, Chem.Rev.,2005,105,1025-1102.
    [32] Cushing BL, Kolesnichenko VL, Connor CJ, Recent advances in theliquid.phase syntheses of inorganic nanoparticles, Chem. Rev.,2004, l,04,3893-3946.
    [33] Daniel M, Astruc D, Gold nanoparticles: assembly,supramolecular chemistry,quantum. size. related properties, and applications toward biology, catalysis, andnanotechnology, Chem. Rev.,2004,104,293-346.
    [34] Lal S, Link S, Halas NJ, Nano-optics from sensing to waveguiding, NatPhotonics,2007,1,641-648.
    [35] Atwater HA, The promise of plasmonics, Scientific American,2007,296,56-63.
    [36] Moskovits M, Surface-enhanced Raman spectroscopy, Rev Mod Phys,1985,57,783-826.
    [37]任斌,田中群,表面增强Raman光谱的研究进展,物理学进展,2004,5,1-13.
    [38] Nie S, Emory SR, Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering, Science,1997,275,1102-1106.
    [39] Gramotnev DK, Bozhevolnyi SI, Plasmonics beyond the diffraction limit,NatPhotonics,2010,4,83-91.
    [40] Bozhevolnyi SI, Volkov VS, Devaux E, et al., Channel plasmonsubwavelengthwaveguide components including interferometers and ring resonators.Nature,2006,440,508-511.
    [41] Xie J, Lee JY, Wang DIc, et a1., Silver nanoplates:from biological tobiomimetie synthesis, ACS Nano,2007, l,429-439.
    [42] Wiley B, Sun Y, Mayers B, et a1., Shape-controlled synthesis of metalnanostructures:the case of silver, J. Chem. Eur.,2005,11,454-463.
    [43] Wiley B, Sun Y, Xia Y, Synthesis of silver nanostructures with controlledshapes and properties, Acc. Chem. Res.,2007,40,1067-1076.
    [44] Rodriguez-gattorno G, Diaz D, et a1., Metallic nanoparticles from spontaneousreduction of silver(I)in DMSO Interaction between nitric oxide and silver nanoparticles,Phys. Chem. B,2002,106,2482-2487.
    [45] Jin R, Cao Y, Mirkin CA, et a1., Photoinduced conversion of silvernanospheres to nanoprisms, Science,200l,294,1901-1903.
    [46] Sun Y, Xia Y, Triangular nanoplates of silver:synthesis, characterization anduse as sacrificial templates for generating triangular nanorings of gold, Adv. Mater,2003,19,695-699.
    [47] Kameo A, Yoshimura L, Esumi K, Preparation of noble metal nanoparticles insupercfitical carbon dioxide, Colloids Surf.A: Physicochem.Engi.Aspects,2003,215,18l-189.
    [48] Andersson M, Pedersen JS, Palmqvist AEC, Silver nanoparticle formation inmicroemulsions acting both as template and reducing agent, Langmuir,2005,2,1,l1387-11396.
    [49] Pal A, Shah S, Devi S, Preparation of silver,gold and silver-gold bimetallicnanoparticles in w/o microemulsion containing TritonX-100, Colloid. Surf. A: Physicochem. Eng. Aspects,2007,302,483-487.
    [50] Huang M, Choudrey A, Yang P, Ag nanowire formation within mesoporoussilica, Chem. Cornmun.,2000,12,1063-1064.
    [51] Qu L, Shi G, Wh X, et a1., Facile route to silver nanotubes, Adv.Mater,2004,16, l200-l202.
    [52] Zhu Y, Hu X, Microwave-assisted polythiol reduction method:a newsolid.1iquid route to fast preparation of silver nanowires, Mater.Lett.,2004,58,1517-1519.
    [53] Hadad L, Perkas N, Gofer Y, et a1., SonochemicaI deposition of silvernanoparticles on wool fibers. Z Appl.Polym.&t,2006,104,1732-1737.
    [54] Jiang L, Xu S, Zhang J, et a1., Ultrasonic-assisted synthesis of monodispersesingle-crystalline silver nanoplates and gold nanorings, Inorg. Chem.,2004,43,5877-5883.
    [55] Starowicz M, Styputa B, Banas J, Electrochemical synthesis of silvernanoparticles, Electrochem. Commun.,2006,8,227-230.
    [56] Ma H, Yin B, Wang S, et a1., Synthesis of silver and gold nanoparticles by anovel electrochemical method, Chem. Phys. Chem.,2004,5,68-75.
    [57] Braun E, Eichen Y, Sivan U, et a1., DNA.templated assembly and electrodeattachment of a conducting silver wire, Nature, l998,39,1,775-778.
    [58] Choi J, Sauer G, Nielsch K, et a1., Hexagonally arranged monodisperse silvernanowires with adjustable diameter and high aspect ratio, Chem.Mawr.,2003,15,776-779.
    [59] Wu Y, Livneh T, Zhang YX, et a1., Templated synthesis ofhighly orderedmesostructured nanowires and nanowire arrays, Nano Lett.,2004,4,2337-2342.
    [60] Sun X, Xu F, Li Z, et a1., Cyclic voitammetry for the fabrication of high densesilver nanowire arrays with the assistance of AAO template, Mater.Chem.ehys.,2005,90,69-72.
    [61] Nepijko SA, Levlev DN, Schulze W, et a1., Growth of rodlike silvernanoparticles by vapor deposition of smalI clusters, ChemPhysChem,2000, l,140-142.
    [62] Wei G, Nan C, Deng Y, et a1., Self-organized synthesis of silver chainlike anddendritic nanostructures via a solvothermal method, Chem.Mater.,2003,1,5,4436-4441.
    [63] Wang Z, Liu J, Chen X, et a1., A simple hydrothermal route tolarge.scale synthesis of uniform silver nanowires, Chem.Eur.Z,2005,11,160-163.
    [64] Yu D, Yam VW, Hydrothermal-induced assembly of colloidal silver spheresinto varioils nanoparticles on the basis of HTAB-modified silver mirror reaction,J.Phys.Chem.B,2005,1,09,5497-5503.
    [65] Ivan OS, Cecila N, Barrera RG, Optical properties of metal nanoparticles witharbitrary shapes, Journal of Physical Chemistry B,2003,107,26,6269-6275.
    [66] Sun YG, Xia YN, Shape-controlled synthesis of gold and silver nanoparticles,Science,2002,298,2176-2179.
    [67] Gao Y, Jiang P, Song L, Wang JX, Liu LF, Xiang YJ, Zhang ZX,Zhao XW,Dou XY, Luo SD, Zhou WY, Xie SS, Studies on silver nanodecadrons synthesized byPVP-assisted N,N-dimethylformamide (DMF) reduction, J. Cryst. Growth.,2006,289,376-380.
    [68] Wiley BJ, Xiong YJ, Li ZY, Yin YD, Xia YN, Right bipyramids of silver: anew shape derived from single twinned seeds, Nano Lett.,2006,6,765-768.
    [69] Tao AR, Habas S, Yang PD, Shape control of colloidal metal nanocrystals,Small,2008,4,310-325.
    [70] Jose LE, Jose RG, Miguel JY, The role of twinning in shape evolution ofanisotropic noble metal Nanostructures, J. Mater. Chem.,2006,16,3906-3919.
    [71] Cushing BL, Kolesniehenko VL, Connor CJ, Recent Advances in theLiquid-Phase Syntheses of Inorganic NanoPartieles, Chem.Rev.,2004,104,3893-3946.
    [72] LaMer VK, Dinegar RH, Theory,Produetion and Mechanism of Formation OfMonodis Persed Hydrosols, J. Am. Chem. SOC.,1950,72,4847-4854.
    [73] Auer S, Frenkel D, Prediction of Absolute Crystal-nueleation Rate inHard-sphere Colloids, Nature,2001,409,1020-1023.
    [74] Laaksonen A, Talanquer V, Oxtoby DW, Nucleation-measurements, theoryand atmospheric applications, Annu Rev Phys Chem,1995,46,489-524.
    [75] Ruckenstein E, Djikaev YS, Recent developments in the kinetic theory ofnucleation, Adv Colloid Interface Sci,2005,118,51-72.
    [76] Peng XG, Mechanisms for the shape control and shape evolution of colloidalsemiconductor nanocrystals, Adv Mater,2003,15,459-463.
    [77] Zhang TH, Liu XY, Nucleation: what happens at he initial stage, Angew ChemInt Ed,2009,48,1308-1312.
    [78]谢厅,龚鸣,李亚栋,基于单分散氟化物纳米晶的成核生长模型,中国科学:化学,2010,40,8,1001-1010.
    [79] Peng XG, Mechanisms for the shape control and shape evolution of colloidalsemiconductor nanocrystals, Adv Mater,2003,15,459-463.
    [80] Li J, Li X, Zhai HJ, Wang LS, Au20: A tetrahedral cluster, Science,2003,299,864-867.
    [81] Zhang HF, Stender M, Zhang R, Wang CM, Li J, Wang LS, Toward thesolution synthesis of the tetrahedral Au20cluster, J. Phys. Chem. B,2004,108,12259-12263.
    [82] van Leeuwen DA, van Ruitenbeek JM, Schmid G, de Jongh L, Size-dependentmagnetisation of Pd clusters and colloids, Phys.Lett. A,1992,170,325-333.
    [83] Schmid G, Large clusters and colloids: metals in the embryonic state, Chem.Rev.,1992,92,1709-1727.
    [84] Zhang H, Schmid G, Hartmann U, Reduced metallic properties ofligand-stabilized small metal clusters, Nano Lett.,2003,3,305-307.
    [85] Aiken JD, Finke RG, A review of modern transition-metal nanoclusters: theirsynthesis, characterization, and applications in catalysis, J. Mol. Catal. A,1999,145,1-44.
    [86] Xia YN, Xiong YJ, Byungkwon L, Sara E, Skrabalak Shape-ControlledSynthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics, Angew.Chem. Int. Ed.,2009,48,60-103.
    [87] Harb M, Rabilloud F, Simon D, Chem. Phys.,2010,12,4246-4254.
    [88] Masafumi T, Takuya T, Mitsuru Y, Katsuhiko H, Shigeo K, Tetsu Y, Size ofElementary Clusters and Process Period in SilverNanoparticle Formation, J. Am. Chem.Soc.,2011,133,14164-14167.
    [89] Sun Y, Gates B, Mayers B, Xia Y, Crystalline silver nanowires by soft solutionprocessing, Nano Lett,2002,2,165-168.
    [90] Jana NR, Gearheart L, Murphy CJ, Wet chemical synthesis of high aspectratio cylindrical gold nanorods, J Phys Chem B,2001,105,4065-4067.
    [91] Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen LP, Xia Y, Seed-mediatedsynthesis of Ag nanocubes with controllable edge lengths in the range of30-200nm andcomparison of their optical properties, J Am Chem Soc,2010,132,11372-11378.
    [92] Zeng J, Xia X, Rycenga M, Henneghan P, Li Q, Xia Y, Successive depositionof silver on silver nanoplates: Lateral versus vertical growth, Angew Chem Int Ed,2011,50,244-249.
    [93] Zeng J, Zheng Y, Rycenga M, Tao J, Li ZY, Zhang Q, Zhu Y, Xia Y,Controlling the shapes of silver nanocrystals with different capping agents, J Am ChemSoc,2010,132,8552-8553.
    [94] Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y, A mechanistic study onthe formation of silver nanoplates in the presence of silver seeds and citric acid orcitrate ions, Chem Asian J,2011,6,376-379.
    [95] Xia X, Zeng J, McDearmon B, Zheng Y, Li Q, Xia Y, Silver nanocrystals withconcave surfaces and their optical and surface-enhanced Raman scattering properties,Angew Chem Int Ed,2011,50,12542-12546.
    [96] Al-Saidi WA, Feng H, Fichthorn KA, Adsorption of polyvinylpyrrolidone onAg surfaces: insight into a structure-directing agent, Nano Lett,2012,12,997-1001.
    [97] Kilin DS, Prezhdo OV, Xia Y, Shape-controlled synthesis of silvernanoparticles: Ab initio study ofpreferential surface coordination with citric acid, ChemPhys Lett,2008,458,113-116.
    [98] Zeng J, Xia XH, Matthew R, Patrick H, Li QG, Xia YN, SuccessiveDeposition of Silver on Silver Nanoplates:Lateral versus Vertical Growth, Angew.Chem. Int. Ed.,2011,50,244-249.
    [99] Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, AlivisatosAP, Shape control of CdSe nanocrystals, Nature,2000,404,59-61.
    [100] Wang X, Zhuang J, Peng Q, Li YD, A general strategy for nanocrystalsynthesis, Nature,2005,437,121-124.
    [101] Wang X, Zhuang J, Peng Q, Li YD, Liquid-solid-solution synthesis ofbiomedical hydroxyapatite nanorods, Adv Mater,2006,18,2031-2034.
    [102] Wang LY, Li YD., Na(Y1.5Na0.5)F6single-crystal nanorods as multicolorluminescent materials, Nano Lett,2006,6,1645-1649.
    [103] Wang X, Zhuang J, Peng Q, Li YD, Hydrothermal synthesis of rare-earthfluoride nanocrystals, Inorg Chem,2006,45,6661-6665.
    [104] Wang LY, Li YD, Controlled synthesis and luminescence of lanthanide dopedNaYF4nanocrystals, Chem Mater,2007,19,727-734.
    [105] Huo ZY, Chen C, Li YD, Self-assembly of uniform hexagonal yttriumphosphate nanocrystals, Chem Commun,2006,3522-3524.
    [106] Liu JF, Li YD, Synthesis and self-assembly of luminescent Ln3+-dopedLaVO4uniform nanocrystals, Adv Mater,2007,19,1118-1122.
    [107] Penn RL, Banfield JF, ImPerfcet Orienied Attachinent DislocationGenerationin Defeet-Free Nanoerystals, Science,1998,281,969-971.
    [108] Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL, Aggregation-BasedCrystal Growth and Microstrueture Development in Natural Iron OxyhydroxideBiomineralization Produets, Science,2000,289,751-754.
    [109] Penn RL, Banfield JF, Oriented attachment and growth,twinning,.polytypism, and formation of metastable phases: insight from nanocrystallineTiO2, Am. Mineral,1998,83,9-10,1077-1082.
    [110] Pradhan N, Xu H, Peng X, Colloidal CdSe Quantum Wires by OrientedAttachment, Nano Letters,2006,6,4,720-724.
    [111]方吉祥,溶液中Au、Ag纳米结构及其晶体生长机制研究[博士学位论文]西安:西安交通大学材料科学与工程专业,2007.
    [112] Wang YL, Camargo PHC, Skrabalak SE, Gu HC, Xia YN, A Facile,Water-Based Synthesis of Highly Branched Nanostructures of Silver, Langmuir,2008,24,20,12042-12046.
    [113] Zhang J, Mark R, Langille, Chad A, Mirkin Nano Lett.Synthesis of SilverNanorods by Low Energy Excitation of Spherical Plasmonic Seeds,2011,11,2495-2498.
    [114] Wang W, Yang X, Cui H, Growth Mechanism of Flowerlike GoldNanostructures: Surface Plasmon Resonance (SPR) and Resonance Rayleigh Scattering(RRS) Approaches to Growth Monitoring, Journal of Physical Chemistry C,2008,112,42,16348-16353.
    [115] Epameinondas L, Konstantina K, Tasoula KL, Vlasoula B, Panagiotis L,Gold Colloids from Cationic Surfactant Solutions. Mechanisms That Control ParticleMorphology, Langmuir,2002,18,3659-3668.
    [116] Hultcen JC, Martin CR, A General Template-based Method for the Prepartionof Nanomaterials, J.Mater.Chem.,1997,7,1075-1087.
    [117] Zhou YK, Huang J, Shen CM,Li H, Synthesis of Highly Ordered LiNiO2Nanowire Arrays in AAO Templates and Their Structural Properties, Mate.Sci.Eng.A.,2002,335,1-2,260-267.
    [118] Zhu BL, Chert X, Sui ZM, Xu LM, Yang CJ, Zhao JK, Liu J, In situFabrcation of ZnS Semiconductor Nanoparticles in Layered Organic-Inorganic SolidTemplate, Chinese Chem.Lett.,2004,15,1,97-100.
    [119] Gao F, Lu QY, Liu XY, Zhao D, Controlled Synthesis of Semiconductor PbSNanoerystals and Nanowires Inside Mesoporous Silica SBA-15Phase, Nano Lett.,2001,l,12,743-748.
    [120] Walter EC, Zach MP, Favier F, Murray BJ, lnaza K, Hemminger JC, PennerRM, Metal Nanowire Arrays by Electrodeposition, Chem.phys.chem.,2003,4,2,131-138.
    [121] Han WQ, Fan SS, Li QQ, et al., Synthesis of gallium nitride nanorodsthrough a carbon nanotube-confined reaction, Science,1997,277,1287-1289.
    [122] Goldberger J, He RR, Zhang YF, et al., Single-crystal gallium nitridenanotubes, Nature,2003,422,599-602.
    [123] He HX, Zhang H,Li QG, Zhu T, Li SF, Liu ZF, Fabrication of DesignedArchitectures of Au Nanoparticles on Solid Substrate with Printed Self-AssembledMonolayers as Templates, Langmuir,2000,16,8,3846-3851.
    [124] Matthew RJ, Kyle DO, Robert JM, Mark RL, and Chad AM, TemplatedTechniques for the Synthesis and Assembly of Plasmonic Nanostructures, Chem. Rev.,2011,111,3736-3827.
    [125] Wei G, Zhou HL, Liu ZG, et al., One-Step Synthesis of Silver Nanoparticles,Nanorods and Nanowires on the Surface of DNA Network, J. Phys. Chem. B,2005,18,109,8738-8743.
    [126] Klaus T, Joerger R, Olsson E, et a1, Silver-based crystalline nanoparticlesmicrobially fabricated, PNAS,1999,96,13611-13614.
    [127] Davis SA, Burkett SL, Mendelson NH, Mann H, Bacterial templating ofordered macrostructures in silica and silica-surfactant mesophases, Nature,1997,385,420-423.
    [128] Djalali R, Chen V, Matsui H, Au nanowire fabrication from sequencedhistidine-rich peptide, J.Am.Chem.Soc.,2002, l24,13660-l3661.
    [129] YangD, Qi L, Ma J, Eggshell membrane templating of hierarehically orderedmacroporous networks composed of TiO2:tubes, Adv.Mater.,2002,14,21,1543-1546.
    [130] Miao Z, Liu Z, Han B,et al., Syntllesis of TiO2:nanotube networks from themineralization of swim bladder membrane in supereritical CO2, J. Supercrit. Fluids,2007,42,2,310-315.
    [131] Mayes EL, Vollratll F, Mann S, Fabrieation of magnetic Spider silk and othersilk-fiber composites using inorganic nanoparticles, Adv. Mater,1998,10,10,801-805.
    [132] Li B, Zhou J, Zong RL, et al., Ordered ceramic microstructures frombutterfly bio-template, J.Am.Ceram.Soc.,2006,89,7,2298-2300.
    [133] Huang JG, Kunitake T, Nano-precision replication of natural cellulosicsubstances by metal oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [134] Gardea-Torresdey JL, Tiemann KJ, Gamez Q, et a1., Gold nanoparticlesobtained by bio-precipitation from gold(1II)solutions., Nanopart.Res.,1999, l,397-404.
    [135] Gardea-Torresdey JL, Parsons JG, Gomez E, et a1., Formation and growth ofAu nanoparticles inside live alfalfa plants, Nano Lett.,2002,2,397-401.
    [136] Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et a1., Alfalfa sprouts:anatural source for the synthesis ofsilver nanoparticles, Langmuir,2003,19,1357-1361.
    [137] Dujardin E, Peet C, Stubbs G, et a1., Organization of metallic nanoparticlesusing tobacco mosaicvirus templates, Nano Lett.,2003,3,413-417.
    [138] Wang Y, Liu Z, Han B, Sun Z, Du J, Zhang J, Jiang T, Wu W, Miao Z,Replication of biological organizations through a supercritical fluid route,Chem.Commun.,2005,2948-2950.
    [139] Zhang F, Ma H, Chen J, et al., Preparation and gas storage of high surfacearea microporous carbon derived from biomass source cornstalks, Bioresour. Technol,2008,99,11,4803-4808.
    [140] Wang F, et al., Tunable growth of nanodendritic silver by galvanic-cellmechanism on formed activated carbon, Chem. Commun.,2010,46,3782-3784.
    [141] Zhao H, Wang F, Ning YS, Zhao BY, Yin FJ, Lai YJ, Zheng JW, Hu XB, FanTX, Tang JG, Zhang D, Hu KA, Green “planting” nanostructured single crystal silverScientific reports, DOI:10.1038/srep01511.
    [142] Fu RW, Zeng HM, Lu Y, The reduction property of activated carbon fibers,Carbon,1993,31,7,1089-1094.
    [143] Chen SX, Zeng HM, Improvement of the reduction capacity of activatedcarbon fiber, Carbon,2003,41,1265-1271.
    [144] Chen SX, Lu Y, Zeng HM, Modification of activated carbon fibers and theirreduetion/adsorption capacities toward Ag in aqueous solution, High Teeh.Lett.,1999,9,8,29-34.
    [145] Wang XS, Huang P, Feng LL, He M, Guo SW, Shen GX, Cui DX, Greencontrollable synthesis of silver nanomaterials on graphene oxide sheets via spontaneousreduction, RSC Adv.,2012,2,3816-3822.
    [146] Courty A, Henry AI, Goubet N, Pileni MP, Large triangular single crystalsformed by mild annealing of self-organized silver nanocrystals, nature materials,2007,1,900-907.
    [1] Zhang H, Jin M, Xiong Y, Lim B, Xia Y, Shape-controlled synthesis of Pdnanocrystals and their catalytic applications, Acc. Chem. Res.,2012,DOI:10.1021/ar300209w.
    [2] Tao A, Sinsermsuksakul P, Yang P, Tunable plasmonic lattices of silvernanocrystals, Nature Nanotech.,2007,2,435-440.
    [3] Cao Y, Jin R, Mirkin C, Nanoparticles with raman spectroscopic fingerprintsfor DNA and RNA detection, Science,2002,297,1536-1540.
    [4] Guo S, Wang E, Noble metal nanomaterials: controllable synthesis andapplication in fuel cells and analytical sensors, Nano Today,2011,6,240-264.
    [5] Hyuk IS, Lee Y, Wiley B, Xia Y, Large-scale synthesis of silver nanocubes: therole of HCl in promoting cube perfection and monodispersity, Angew. Chem.,2005,117,2192-2195.
    [6] Skrabalak SE, Au L, Li X, Xia Y, Facile synthesis of Ag nanocubes and Aunanocages, Nature Protocols,2007,2,2182-2190.
    [7] Ba e T, et al., Gold micrometer crystals modified with carboranethiolderivatives, J. Phys. Chem. C,2008,112,14446-14455.
    [8] Huo Z, Tsung Z, Huang W, Zhang X, Yang P, Sub-two nanometer single crystalAu nanowires, Nano Lett.,2008,8,2041-2044.
    [9] Chen Y, Somsen C, Hassel A, Fabrication of single crystalline gold nanobelts, J.Mater. Chem.,2009,19,924-927.
    [10] Sun Y, Mayers B, Xia Y, Transformation of silver nanospheres into nanobeltsand triangular nanoplates through a thermal process, Nano Lett.,2003,3,675-679.
    [11] Rycenga M, et al., Controlling the synthesis and assembly of silvernanostructures for plasmonic applications, Chem. Rev.,2011,111,3669-3712.
    [12] Liu B, Luo W, Zhao X, A facile synthesis of ordered ultralong silver nanobelts,Materials Research Bulletin,2009,44,682-687.
    [13] Wang F, et al., Tunable growth of nanodendritic silver by galvanic-cellmechanism on formed activated carbon, Chem. Commun.,2010,46,3782-3784.
    [14] Liu R, Sen A, Unified Synthetic Approach to Silver Nanostructures byGalvanic Displacement Reaction on Copper: From Nanobelts to Nanoshells, Chem.Mater.,2012,24,48-54.
    [15] Yang J, Qi L, Zhang D, Ma J, Cheng H, Dextran-controlled crystallization ofsilver microcrystals with novel morphologies, Cryst. Growth Des.,2004,4,1371-1375.
    [16] Chiu C, Choi Y, Luo TM, Formation of AgCl cubic crystals induced byshrinkage of Sol Gel silica film, Cryst. Growth Des.,2012,12,4727-4732.
    [17] Zeng J, Roberts S, Xia Y, Nanocrystal-based time–temperature indicators,Chem. Eur. J.,2010,16,12559-12563.
    [18] Chen H, Simon F, Eychmuller A, Large-scale synthesis of micrometer-sizedsilver nanosheets, J. Phys. Chem. C,2010,114,4495-4501.
    [19] Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA, Colloidal gold andsilver triangular nanoprisms, Small,2009,5,646-664.
    [20] Wang ZL, Transmission electron microscopy of shape-controlled nanocrystalsand their assemblies, J. Phys. Chem. B,2000,104,1153-1175.
    [21] Tao A, Sinsermsuksakul P, Yang P, Polyhedral silver nanocrystals with distinctscattering signatures, Angew.Chem.Int. Ed.,2006,45,4597-4601.
    [22] Koh AL, et al., Electron energy-loss spectroscopy of surface plasmons insingle silver nanoparticles and dimers: influence of beam damage and mapping of darkmodes, ACS Nano,2009,3,3015-3022.
    [23] Bai J, Qin Y, Jiang C, Qi L, Polymer-controlled synthesis of silver nanobeltsand hierarchical nanocolumns, Chem. Mater.,2007,19,3367-3369.
    [24] Aizawa M, Cooper AM, Malac M, Buriak JM, Silver nano-inukshuks ongermanium, Nano Lett.,2005,5,815-819.
    [25] Jin R, et al., Controlling anisotropic nanoparticle growth through plasmonexcitation, Nature,2003,425,487-490.
    [26] Liu L, Yoo S, Lee SA, Park S, Electrochemical growth of silver nanobelts incylindrical alumina nanochannels, Cryst. Growth Des.,2011,11,3731-3734.
    [27] Sun X, Li Y, Colloidal carbon spheres and their core/shell structures withnoble-metal nanoparticles, Angew. Chem.,2004,116,607-611.
    [28] Biniak S, Pakula M, Swiatkowski A, Infuence of surface chemical structure ofactivated carbon on its electrochemical behaviour in the presence of silver, J. Appl.Electrochem.,1999,29,481-487.
    [29] Shen W, Li Z, Liu Y, Surface chemical functional groups modification ofporous carbon, Recent Patents on Chemical Engineering,2008,1,27-40.
    [30] Skrabalak SE, Wiley BJ, Kim M, Formo E, Xia Y, On the polyol synthesis ofsilver nanostructures-glycolaldehyde as a reducing agent, Nano Lett.,2008,8,2077-2081.
    [31] Gutes A, Carraro C, Maboudian R, Silver dendrites from galvanicdisplacement on commercial Aluminum foil as an effective SERS substrate, J. Am.Chem. Soc.,2010,132,1476-1477.
    [32] You H, Ding C, Song X, Ding B, Fang J, In situ studies of different growthmodes of silver crystals induced by the concentration field in an aqueous solution,CrystEngComm,2011,13,4491-4495.
    [33] Gutes A, Carraro C, Maboudian R, Silver nanodesert rose as a substrate forsurface-enhanced raman spectroscopy, ACS Appl. Mater. Interfaces,2009,1,2551-2555.
    [34] Yang Z, et al., Plasmonic silver nanobelts via citrate reduction in thepresence of HCl and their orientation-dependent scattering properties, J. Phys. Chem.Lett.,2011,2,1742-1746.
    [35] Song X, et al., Surface activated carbon nanospheres for fast adsorption ofsilver ions from aqueous solutions, J. Hazard. Mater.,2011,194,162-168.
    [36] Sun YG Silver nanowires-unique templates for functional nanostructuresNanoscale,2010,2,1626-1642.
    [37] Sharma, V. K., Yngard, R. A.&Lin, Y. Silver nanoparticles: green synthesisand their antimicrobial activities. Adv. Colloid Interface Sci.2009,145,83-96
    [1] Jiang GH, Wang L, Chen T, et al., Preparation and characterization of dendriticsilver nanoparticles, Journal of Materials Science,2005,40,7,1681-1683.
    [2] Zheng XW, Zhu LY, Wang XJ, et al., A simple mixed surfactant route for thepreparation of noble metal dendrites, Journal of Crystal Growth,2004,260,255-262.
    [3] He R, Qian XF, Yin J, et al., Formation of silver dendrites under microwaveirradiation, Chemical Physics Letters,2003,369,3-4,454-458.
    [4] Zhu JJ, Liao XH, Chen HY, Electrochemical preparation of silver dendrites inthe presence of DNA, Materials Research Bulletin,2001,36,5-6,1687-1692.
    [5] Gao XL, Gu GH, Hu ZS, et al., A simple method for preparation of silverdendrites, Colloids&Surfaces A-Physicochemical&Engineering Aspects,2005,254,1-3,57-61.
    [6] Xiao JP, Xie Y, Tang R, et al., Novel ultrasonically assisted templated synthesisof palladium and silver dendritic nanostructures, Advanced Materials,2001,13,24,1887-1891.
    [7] Fang JX, You HJ, Kong P, Yi Y, Song XP, Ding BJ, Dendritic silvernanostructure growth and evolution in replacement reaction, Crystal Growth&Design,2007,7,5,864-867.
    [8] Aizawa M, Cooper AM, Malac M, Buriak JM, Silver nano-inukshuks ongermanium, Nanoletter,2005,5,5,815-819.
    [9] Chen J, Herricks T, Xia YN, Polyol Synthesis of Platinum nanostructures:control of morphology through the manipulation of reduction kinetics, Angew. Chem.Int. Ed.,2005,44,2589-2592.
    [10] Watt J, Cheong S, Tilley RD, Ultrafast growth of highly branched Palladiumnanostructures for catalysis, ACS NANO.,2010,4,396-402.
    [11] Lim B, Jiang M, Yu T, Camargo PHC, Xia YN, Nucleation and growthmechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties,Nano Res,2010,3,69-80.
    [12] Vidoni O, Philippot K, Amiens C, Chaudret B, Balmes O, Malm JO, Senocq F,Casanove MJ, Novel, Spongelike Ruthenium Particles of Controllable Size StabilizedOnly by Organic Solvents, Chem. Int. Ed.,1999,38,3736-3738.
    [13] Pelzer K, Vidoni O, Philippot K, Chaudret B, Colliere V, OrganometallicSynthesis of Size-Controlled Polycrystalline Ruthenium Nanoparticles in the Presenceof Alcohols, Adv. Fund. Mater.,2003,75,118-126.
    [14] Ely TO, Amiens C, Chaudret B, Synthesis of Nickel Nanoparticles. Influenceof Aggregation Induced by Modification of Poly (vinylpyrrolidone) Chain Length onTheir Magnetic Properties, Chem. Mater.,1999,11,526-529.
    [15] Wang M, Liu XY, Christina SS, et al., Fractal Aggregations at Low DrivingForce with Strong Anisotropy, Physical Review Letters,1998,80,14,3089-3092.
    [16] Liu XY, Wang M, Li DW, et al., Nucleation-limited aggregation of crystallitesin fractal growth, Journal of Crystal Growth,2000,208,687-695.
    [17] Li DW, Wang M, Liu P, et al., Spontaneous Correlation of CrystallographicOrientations in Crystallite Aggregation:Physieal Originand Its Influence on PatternFormation, J. Phys.Chem. B,2003,107,96-101.
    [18] Lim, B.; Jiang, M.; Yu, T.; Camargo. P. H. C.; Xia, Y. N. Nucleation andgrowth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalyticproperties. Nano Res.2010,3,69-80.
    [19] Lim B, Jiang M, Camargo PHC, Xia YN, Pd-Pt Bimetallic Nanodendriteswith High Activity for Oxygen Reduction, Science,2009,324,1302-1305.
    [20] Peng Z, Yang H, Synthesis and Oxygen Reduction Electrocatalytic Property ofPt/Pd Bimetallic Heteronanostructures, J. Am. Chem. Soc.,2009,131,7542-7543.
    [21] Cheong S, Watt J, Ingham B, Toney MF, Tilley RD, In Situ and Ex SituStudies of Platinum Nanocrystals: Growth and Evolution in Solution, J. Am. Chem.Soc.,2009,131,14590-14595.
    [22] Mulvihill MJ, LingXY, Henzie J, Yang PD, Anisotropic etching of silvernanoparticles for plasmonic structures capable of single-particle SERS, J. Am Chem.Soc,2010, J32,268-274.
    [23] Cheong S, Watt J, Tilley RD, In Situ and Ex Situ Studies of PlatinumNanocrystals: Growth and Evolution in Solution, Chem.Soc,2009,131,14590.
    [24] Mulvihill MJ, Henzie J, Yang P, et al., Controlled Synthesis of2-D and3-DDendritic Platinum Nanostructures, Soc,2010,132,268.
    [25] Byungkwon L, Xia YN, Metal Nanocrystals with Highly BranchedMorphologies, Angew. Chem. Int. Ed.,2011,50,76-85.
    [26] Chimentao RJ, Kirm I, Medina F, et al., Different morphologies of silvernanoparticles as catalysts for the selective oxidation of styrene in the gas phase,Chemical Communications,2004,7,846-847.
    [27] Rashid MH, Mandal TK, Synthesis and Catalytic Application ofNanostructured Silver Dendrites, The Journal of Physical Chemistry C,2007,111,45,16750-16760.
    [28] Digish K, Andreas O, Anthony PO, et al., The facile formation of silverdendritic structures in the absence of surfactants and their electrochemical and SERSproperties, Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,386,1-3,98-106.
    [29] Xia Y, Xiong Y, Lim B, et al., Shape-controlled synthesis of metalnanocrystals:simple chemistry meets complex physics, A ngewandte ChemieInternational Edition,2008,48,1,60-103.
    [30] Otto A, Mrozek I, Grabhorn H, et al., Surface-enhanced Raman scattering,Journal of Physics: Condensed Matter,1992,4,5,1143-1212.
    [31] Bryant GW, Garcia de Abajo FJ, Aizpurua J, Mapping the plasmon resonancesof metallic nanoantennas, Nano Letters,2008,8,2,631-636.
    [32] Tsuji T, Kakita T, Tsuji M, Preparation of nano-size particles of silver withfemtosecond laser ablation in water, Applied Surface Science,2003,206,1-4,314-320.
    [33] Andersson M, Pedersen JS, Palmqvist AEC, Silver nanoparticle formation inmicroemulsions acting both as template and reducing agent, Langmuir,2005,21,24,11387-11396.
    [34] Lam CC, Leung PT, Young K, Explicit asymptotic formulas for the positions,widths, and strengths of resonances in Mie scattering, Journal of the Optical Society ofAmerica B,1992,9,9,1585-1592.
    [35] Deng ZT, Masud M, Anthony J, New Method to Single-CrystalMicrometer-Sized Ultra-Thin Silver Nanosheets: Synthesis and Characterization, J.Phys. Chem. C,2009,113,867-873.
    [36] Yang J, Qi L, Zhang D, Ma J, Cheng H, Dextran-controlled crystallization ofsilver microcrystals with novel morphologies, Cryst. Growth Des.,2004,4,1371-1375.
    [37] Yang JH, Qi LM, Zhang DB, Ma JM, Cheng HM, Dextran-ControlledCrystallization of Silver Microcrystals with Novel Morphologies Crystal Growth&Design,2004,4,6,1371-1375.
    [38]谢厅,龚鸣,李亚栋,基于单分散氟化物纳米晶的成核生长模型,2010,40,8,1001-1010.
    [39] Xie T, Li SA, Peng Q, Li YD, Monodisperse BaF2nanocrystals: phases, sizetransitions and self assembly, Angew Chem Int Ed,2009,48,196-200.
    [40] Xie T, Li SA, Wang WB, Peng Q, Li YD, Nucleation and growth ofBaFxCl2-x nanorods, Chem Eur J,2008,14,9730-9735.
    [1] Benjamin JW, Wang ZH,Jiang W, Yin YD, David HC, Xia YN, Synthesis andElectrical Characterization of Silver Nanobeams,2006,6,10,2273-2278.
    [2] Gao T, Wang TH, Catalyst-Assisted Vapor-Liquid-Solid Growth ofSingle-Crystal CdS Nanobelts and Their Luminescence Properties, J. Phys. Chem. B,2004,108,20045-20049.
    [3] Gao T, Wang TH, Two-Dimensional Single Crystal CdS Nanosheets: Synthesisand Properties, Crystal Growth&Design,2010,10,11,4995-5000.
    [4] Sloan J, Wright DM, Woo HG, et al., CaPillarity and silver nanowire formationobserved in single walled carbon nanotubes, ChemicalCommunications,1999,8,699-700.
    [5] Wang CY, Chen MH, Zhu GM, et al., A novel soft-template technique toSynthesize metal Ag nanowire, Joumal of Colloid and interface Seienee,2001,243,2,362-364.
    [6] Hong BH, Bae SC, Lee CW, et al., Ultrathin single-crystalline silver nanowirearrays formed in an ambient solution phase, Seience,2001,294,5541,348-351.
    [7] Wiley B, Sun Y, Xia Y, Synthesis of silver nanostruetures with conirolledshapes and properties, Accounts of Chemical Researeh,2007,40,10,1067-1076.
    [8] Jana NR, Gearheart L, Murphy CJ, Seed-mediated growth approach forshape-controlled synthesis of spheroidal and rod-like gold nanoparticles using asurfactant template, Adv. Mater,2001,13,18,1389-1393.
    [9] Yu Y Y, Chang S S, Lee C L, Wang C R C. Gold nanorods: electrochemicalsynthesis and optical properties. Journal of Physical Chemistry B,1997,101,34,6661~6664.
    [10] Wang ZH, Chen XY, Liu JW, et al., Glueose reduction route synthesis ofuniform silver nanowires in large-scale, Chem.Lett,2004,33,1160-1161.
    [11] Yu YY, Chang SS, Lee CL, Wang CRC, Gold nanorods: electrochemicalsynthesis and optical properties, Journal of Physical Chemistry B,1997,101,34,6661-6664.
    [12] Zhu JJ, Liao XH, Zhao XN, et al., Preparation of silver nanorods byelectrochemical methods, Materials Letters,2001,49,2,91-95.
    [13] Wu HY, Huang WL, Huang MH, Direct high yield synthesis of high aspectratio gold nanorods, Crystal Growth Design,2007,7,4,831-835.
    [14] Xia YN, Yang PD, Sun YG, et al., One-dimensional nanostructures: synthesis,characterization, and applications, Advanced Materials,2003,15,5,353-389.
    [15] Jiang P, Li SY, Xie SS, et al., Machinable long PVP-stabilized silvernanowires, Chemistry-A European Journal,2004,10,19,4817-4821.
    [16] Yugang Sun, Byron Gates, Brian Mayers, et al., Crystalline silver nanowiresby soft solution processing, Nano Letters,2002,2,2,165-168.
    [17] Sun YG, Brian M, Xia YN, Transformation of Silver Nanospheres intoNanobelts and Triangular Nanoplates through a Thermal Process, Nano Letters,2003,3,5,675-679.
    [18] Bai JW, Qin Y, Jiang CG, and Qi LM, Polymer-Controlled Synthesis of SilverNanobelts and Hierarchical Nanocolumns, Chem. Mater.,2007,19,3367-3369.
    [19] Yang ZQ, KhanhVan TN, Chen HY, Qian HJ, Lawrence P, Fernando, KennethA, Christensen, Jeffrey N, Anker Plasmonic Silver Nanobelts via Citrate Reduction inthe Presence of HCl and their Orientation-Dependent Scattering Properties, J. Phys.Chem. Lett.,2011,2,1742-1746.
    [20] Liu R, Ayusman S, Unified Synthetic Approach to Silver anostructures byGalvanic Displacement Reaction on Copper: From Nanobelts to Nanoshells, Chem.Mater.,2012,24,48-54.
    [21] Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG, Science2001,294,1901-1903.
    [22] Sun YG; Mayers B, Xia YN, Nano Lett.,2003,3,675-679.
    [1] Templeton AC, Wuelfing WP, Murray RW, Monolayer-Protected ClusterMolecules, Acc. Chem. Res.,2000,33,27-36.
    [2] Zhong CJ, Maye MM, Core-Shell Assemblyed Nanoparticles as Catalysts, Adv.Mater.,2001,13,1507-1511.
    [3] Shchukin DG, Sukhorukov GB, Nanoparticle Synthesis in Engineered OrganicNanoscale Reactors, Adv. Mater.,2004,8,671-682.
    [4] Caruso F, Nanoengineering of Particle Surfaces, Adv. Mater.,2001,13,11-22.
    [5] Tsai SH, Lee CL, Chao CW, Shih HC, A novel technique for the formation ofCarbon-encapsulated metal nanoparticles on silicon, Cabron,2000,38,775-785.
    [6] Dosa PI, Ebren C, Vivekanantan S, Peter K, Vollhardt C, Wasser IM, MetalEncapsulating carbon nanosturetures from oligoalkyne Metal complexes, J. Am. Chem.Soc.,1999,121,10430-10431.
    [7] Liu Q, Xu Z, Finch JA, Egerton R, A Novel Two-Step Silica-Coating Processfor Engineering Magnetic Nanocomposites, Chem. Mater.,1998,10,3936-3940.
    [8] Liz-Marzan LM, Giersig M, Mulvaney P, Synthesis of Nanosized Gold-SilicaCore-Shell Particles, Langmuir,1996,12,329-4335.
    [9] Ung T, Liz-Marzan LM, Mulvaney P, Controlled Method for Silica Coating ofSilver Colloids Influence of Coating on the Rate of Chemical Reactions, Langmuir,1998,14,3740-3748.
    [10] Ung T, Liz-Marzan LM, Mulvaney P, Redox Catalysis Using Ag@SiO2Colloids, J. Phys. Chem. B.,1999,103,6770-6773.
    [11] Hardikar VV, Matijevic E, Coating of Nanosize Silver Particles with Silica, J.Colloid Interface Sci.,2000,221,132-136.
    [12] Dokoutchaev A, James JT, Koene SC, Pathak S, Prakash GKS, Thompson ME,Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres, Chem.Mater.,1999,11,2389-2399.
    [13]杨晓峰,董相廷,周艳慧, et al.,贵金属核壳纳米粒子最新研究进展,稀有金属材料与工程,2009,38,002,368-372.
    [14] Tom RT, Nair AS, Singh N, et al., Freely Dispersible Au@TiO2, Au@ZrO2,Ag@TiO2, and Ag@ZrO2Core Shell Nanoparticles: One-Step Synthesis,Characterization, Spectroscopy, and Optical Limiting Properties, Langmuir,2003,19,8,3439-3445.
    [15] Lu Y, Yin Y, Li Z-Y, et al., Synthesis and Self-Assembly of Au@SiO2Core Shell Colloids Nano Lett,2002,2,7,785-788.
    [16] Chen D, Liu S, Li J, et al., Nanometre Ni and core/shell Ni/Au nanoparticleswith controllable dimensions synthesized in reverse microemulsion, J Alloys Compd,2009,475,1-2,494-500.
    [17] Feng L, Wu X, Ren L, et al., Well‐Controlled Synthesis of Au@PtNanostructures by Gold-Nanorod-Seeded Growth, Chem Eur J,2008,14,31,9764-9771.
    [18] Kim JH, Chung HW, Lee TR, Preparation and Characterization of PalladiumShells with Gold and Silica Cores, Chem Mater,2006,18,17,4115-4120.
    [19] Shi YL, Asefa T, Tailored Core-Shell-Shell Nanostructures: SandwichingGold Nanoparticles between Silica Cores and Tunable Silica Shells, Langmuir,2007,23,18,9455-9462.
    [20] Tsuji M, Miyamae N, Lim S, et al., Crystal structures and growth mechanismsof Au@Ag core-shell nanoparticles prepared by the microwave-polyol method, CrystGrowth Des,2006,6,8,1801-1807.
    [21] Gao Y, Cranston R, Recent advances in antimicrobial treatment of textiles,Text.Res. J.,2008,78,60-72.
    [22] Simchi A, Tamj1d E, Pishbin F, et al., Recent progress in inorganic andcomposite coatings with bactericidal capability for orthopaedic applications,Nanomedicine:Nanotechnology, Biology, and Medicine,2011,7,22-39.
    [23] Akhavan O, Abdolahad M, Abdi Y, et al., Silver nanoparticles within verticallyaligned multi-wall carbon nanotubeswith open tips for antibacterial purposes,Journal of Materials Chemistry,2011,21,2,387-393.
    [24] Liu J, Zhao ZW, Feng H, et al., One-pot synthesis of Ag-FeA nanocompositesin the absence of additional reductant and its potent antibacterial properties, Journal ofMaterials Chemistry,2012,22,28,13891-13894.
    [25] Ghosh S, Goudar VS, Padmalekha KG, et al., ZnO/Ag nanohybrid: synthesis,characterization, synergistic antibacterial activity and its mechanisra, RSC Advances,2012,2,6,930-940.
    [26] Kim YH, Lee DK,Cha HG, et al., Synthesis and Characterization ofAntibacterial Ag@SiO2Nanocomposite, The Journal of Physical Chemistry C,2007,111,9,3629-3635.
    [27]刘长岚,李成彬,崔文新.壳聚糖在医药领域的应用.山东科学,2003,16,3,68-71.
    [28]甲壳素研究开发暨医疗保健应用学术研讨会论文集,2004,8.
    [29] Elahifard MR, Rahimnejsd S, Haghighi S, et al., Apatite-CoatedAg/AgBr/TiO2Visible-Light Photocatalyst for Destruction of Bacteria, Journal of theAmerican Chemical Society,2007,129,31,9552-9553.
    [30] St ber W, Fink A, Controlled growth of monodisperse silica spheres in themicron size range, J. Coll. Interf. Sci.,1968,26,62-69.
    [31] Kalantary MR, Holbrook KA, Wells PB, Effccts of agitation on conventionalelectroless plating: implications for production of Ni-P composite coating, Plating&Surface Finishing,1992,79,8,55-62.
    [32] Walker DR, Cambell F, Electroless and Electrolytic Nickel Coatings,Electroplating and Metal Finishing,1976,7,8,10-13.
    [33] Salvago G, Cavallatti PL, Characteristics of the Chemical Reduction of nickelAlloys with Hypophosphite, Plating,1972,59,7,665-671.
    [34] Yoshio K, Yohei T, Daisuke N, Mikio K, Deposition of gold nanoparticles onsilica spheres by electroless metal plating technique, Journal of Colloid and InterfaceScience,2005,283,601-604.
    [35] Lee JM, Kim DW, Jun YD, Oh SG, Preparation of silica–silver heterogeneousnanocomposite particles by one-pot preparation strategy using polyol process:Size-controlled immobilization of silver nanoparticles, Materials Research Bulletin,2006,41,1407-1416.
    [36] Yang J, Lee JY, Deivaraj TC, and Heng-Phon Too An Improved Procedure forPreparing Smaller and Nearly Monodispersed Thiol-Stabilized Platinum Nanoparticles,Langmuir,2003,19,10361-10365.
    [37] Radha N, Mostafa A, El-Sayed Effect of Catalytic Activity on the MetallicNanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6andThiosulfate Ions Catalyzed by PVP-Platinum Nanoparticles, J. Phys. Chem. B,2003,107,12416-12424.
    [38] Jiang ZJ, Liu CY, Sun LW, Catalytic Properties of Silver NanoparticlesSupported on Silica Spheres, J. Phys. Chem. B,2005,109,1730-1735.
    [39] Nikhil RJ,Tapan KS, Tarasankar P, Growing Small Silver Particle as RedoxCatalyst, J. Phys. Chem. B,1999,103,115-121.
    [40] Manisha JV, Shrikant MK, Raghunath VC, Synthesis of p-aminophenol bycatalytic hydrogenation of p-nitrophenol, Organ Proc. Res. Develop.,2003,7,202-208.
    [41] Nikhil RJ, Tapan KS, Tarasankar P, Growing small silver particle as redoxcatalyst, J. Phys. Chem. B,1999,103,115-121.
    [42] Pradhan N, Pal A, Pal T, Silver nanoparticle catalyzed reduction of aromaticnitro compounds, Coll. Surf. A: Physicochem. Eng. Aspects,2002,196,247-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700