条斑紫菜功能基因组及重复序列特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
条斑紫菜是具有重要经济价值和科学研究价值的大型红藻,是潮间带藻类抗逆分子生理学研究的理想模式物种。但是,目前对于其基因组信息知之甚少,对其环境耐受机制以及分子育种研究也都非常欠缺。本论文通过对条斑紫菜功能基因组及重复序列的全面系统研究,深入了解条斑紫菜转录组特性和基因组结构特征,为其抗逆育种和栽培技术改良提供重要参考。
     本论文主要包括以下内容:利用Solexa技术结合生物信息学方法对胁迫条件下的条斑紫菜转录组及小RNA进行深度测序分析;利用软件筛查条斑紫菜基因组及转录序列中的重复序列并进行比较分析;利用富集文库法筛选条斑紫菜和坛紫菜基因组微卫星标记并用于纯系鉴定和遗传分析。
     主要结果如下:
     ⑴利用Solexa技术对不同生理状态和不同胁迫处理的条斑紫菜混合样品进行测序,共获得13,333,334条高质量序列,碱基总量为12×10~9 nt,组装后得到31,538条平均长度为419 nt的Unigene。把获得的Unigene与数据库中EST进行比对分析,发现前者对后者有非常高的覆盖率,也证明了获得的序列绝大多数为条斑紫菜中的新序列。通过与数据库进行比对,发现条斑紫菜转录组中包含大量在其他物种中与光适应、失水适应以及抗氧化机制相关的功能基因,并且发现了红藻中未曾报道过的超氧化物歧化酶类型。通过KEGG分析,发现了条斑紫菜中的120条代谢途径,其中包括一条几近完整的与高等植物类似的C3/C4碳固定途径和其他与抗逆机制相关的代谢途径。与数据库比对之后,仍有56.6%的Unigene没有找到同源序列,说明测序结果中可能存在大量的功能未知的新基因。
     ⑵通过对胁迫条件下条斑紫菜小RNA的Solexa深度测序,共获得高质量序列8,262,593条,其中以22 nt的RNA tags数量最多,筛选其中表达量大于1次的682,398条RNA tags进行后续分析。与数据库比对,找出其中的rRNA、tRNA、snRNA和snoRNA共计35,967条,保守的microRNA有3条,剩下的序列(94.7%)均没有注释。利用条斑紫菜的GSS数据进行miRNA前体预测,共找到8条符合前体标准的新类型miRNA,靶基因预测结果表明,其中6条miRNA参与调控10个靶基因的表达,而这些靶基因绝大部分参与生物代谢、物质转运及信号转导过程。
     ⑶通过对基因组序列和转录序列中的重复序列进行筛查和比较分析发现:在条斑紫菜中,小卫星重复总长占基因组不到2%,拷贝数较低,以四碱基组成类型最为丰富,且明显富含GC。基因组序列中的小卫星与转录序列中的小卫星相比在拷贝数、数量及长度比例上均略低。微卫星序列在基因组中的长度比例不到0.4%,拷贝数主要分布在9次以下,以三碱基重复类型最为丰富,五碱基重复类型最少,CCG是最为丰富的基序。基因组序列中的微卫星与转录序列中的微卫星相比,出现频率低,长度比例高。在条斑紫菜中,散布重复序列均由RNA转座子和DNA转座子组成,且前者比例远高于后者。RNA转座子中LTR数目最多,LINE次之,SINE最少。在所有转座元件中gypsy数目最多。基因组序列中的转座元件与转录序列中的相比,出现频率高,长度比例也高。总之,条斑紫菜基因组序列中的重复序列总长度比例约为6.5%,明显高于转录序列中的相应比例,而出现频率却相对较低。
     ⑷首次通过富集筛库法,获得24对条斑紫菜微卫星引物。利用其中12对引物对青岛汇泉湾野生群体进行微卫星位点评估,共获得29个等位基因,平均每个位点的等位基因数目为2.42,有效等位基因数目为1.81。利用24对引物分析11个不同地域来源的条斑紫菜丝状体,聚类结果显示这11个个体根据地域的差别被明显地分为两支。利用微卫星标记分析单个叶片的扩增条带,发现同一位点两条不同带型的序列差别在于微卫星重复次数的不同。利用数据库搜索法和富集文库法,分别得到9对和14对有较好扩增谱带的坛紫菜微卫星引物,并且通过实验证明了这些标记在遗传分析中的实用价值。
Porphyra yezoensis Ueda is a genus of red macroalga considered to be of important economic and research value. It is also an ideal model species for studying on the stress-tolerance molecular physiology of intertidal seaweeds. However, the knowledge of their environment-tolerance mechanisms and molecular breeding are very lacking at present. In this thesis, comprehensive and systematic study of functional genomics and repetitive sequences will substantially improve the global view of the P. yezoensis transcriptome and its genome structure, and will be beneficial to improve the stress-tolerance breeding and cultivation techniques.
     Illumina/Solexa sequencing technology is used to study the transcriptome and small RNA of P. yezoensis with the aim to characterize its functional genome. Comparative analysis of the composition and distribution of repetitive sequences is performed in P. yezoensis. A group of microsatellite DNA markers are developed and used to determine the pure line and genetic diversity in Porphyra.
     The following are the major findings:
     The transcriptome of P. yezoensis was profiled with next-generation RNA sequencing technology. A total of 13,333,334 quality paired-end reads were obtained from the cDNA library constructed for a mixture of P. yezoensis at different growth stages and under different growing conditions, which generated 1.2×10~9 nt. The assembling of these reads yielded 31,538 unigenes with a mean length of 419 nt. The unigenes obtained overlapped the majority of the deposited in dbEST database at NCBI. A large set of annotated genes involved in stress tolerance and defense, and a C4-like carbon fixing pathway was profiled. Less than half of them can be annotated based on the similarity with the known proteins in diverse databases, while the remaining should be novel.
     Deep sequencing technology is used and 8,262,593 quality small RNAs are obtained from a small RNA library. The largest number of small RNAs are length of 22 nt. By blasting small RNAs cloned more than once (682,398) against known databases, all small RNAs were classified into different categories, including rRNA, tRNA, snRNA, snoRNA and unannotated RNAs. By blasting against miRBase, 3 small RNAs were found to be the same as plant miRNAs. Eight novel miRNA candidates were predicted from the GSS of P. yezoensis as well as from the sequencing results. By prediction, six novel miRNA candidates result in ten target genes, most of which encode proteins involved in metabolism, transportation and signal transduction.
     Comparative analysis of repetitive sequences show their characteristics of composition and distribution in P. yezoensis. The total length of minisatellite repeats in P. yezoensis is less than 2% of total sequences analized with low repeat times. Most of the minisatellite DNA is composed of four types of bases with GC-rich. The repeat times, number and length proportion of minisatellite repeats in genome sequences are lower than those in transcribed sequences. The total length of microsatellite repeats in P. yezoensis is less than 0.4% of total sequences analized. The repeat times of most microsatellite repeats are less than nine. Trinucleotide repeat types are the most abundant, and CCG is the most abundant motif. The frequency of microsatellite repeats in genome sequences is lower than that in transcribed sequences, whereas, the length proportion is higher. In P. yezoensis, RNA transposons are much more than DNA transposons. The most abundant type of RNA transposons is the LTR retrotransposons, followed by LINE elements and SINE elements. Among all elements, gypsy made up the largest fraction in number. The frequency and length proportion of transposable elements in genome sequences are higher than those in transcribed sequences. In short, the length proportion of repetitive sequences in genome is approximately 6.5%, which is much higher than that in transcribed sequences. However, the frequency of repetitive sequences in genome is lower than that in transcribed sequences
     Twenty-four microsatellite DNA markers are developed from enriched library of P. yezoensis. Twelve primer pairs amplify two to four bands, whereas another 12 primer pairs produce monomorphic banding patterns. A total of 29 alleles are produced at 12 loci, with an average of 2.42 alleles (Na) and 1.81 effective alleles (Ne) per locus. These markers are used to analyze the genetic diversity within 11 geographically different lines of P. yezoensis. Overall, these lines are clustered into two divisions with those from close geographic locations clustering together. Further cloning and sequencing of size variant alleles at two microsatellite loci from one blade reveals that the variable numbers of motif repeats in different alleles are major sources of polymorphisms. In P. haitanensis, nine and fourteen microsatellite DNA markers are developed from EST and enriched library, respectively. These markers are also used to determine pure line and genetic diversity of P. haitanensis, which proved their value of practical applications.
引文
[1] Yoshida T, Notoya M, Kikuchi N, Miyata M. Catalogue of species of Porphyra in the world, with special reference to the type locality and bibliography. Nat Hist Res (Special Issue), 1997, 3: 5~18
    [2] Mumford TF, Miura A. Porphyra as food: cultivation and economics. In Lembi CA, Walland JR (eds). Algae and human affairs. Cambridge University Press, Cambridge, 1988, 87~117
    [3]侯家龙.紫菜和它的生活史.生物学通报,1989,2:15~16
    [4]张学成,秦松,马家海,许璞.海藻遗传学北京.中国农业出版社,2005.184~220
    [5] Sahoo D, Tang X.R, Yarish C. Porphyra-the economic seaweed as a new experimental system. Current science, 2002, 83: 1313~1316
    [6]高淑清,单保恩.条斑紫菜生物学作用的研究进展.现代中西医结合杂志,2004,13:1661~1662
    [7]张全斌,赵婷婷,綦慧敏,李智恩,徐祖洪.紫菜的营养价值研究概况.海洋科学,2005,29:69~72
    [8]汤晓荣,姜红霞.紫菜属生活史和繁殖方式多样性的研究进展.中国海洋大学学报,2005,35:571~574
    [9]汤晓荣,潘光华,许东海.紫菜分子遗传学研究进展.中国海洋大学学报,2006,36: 687~692
    [10] Monotilla W, Notoya M. Morphological and physiological responses of Porphyra suborbiculata Kjellman (Bangiales, Rhodophyta) blades from five localities. Bot Mar, 2004, 47: 323~334
    [11] O¨quist G, Fork DC. Effects of desiccation on the excitation energy distribution from phycoerythrin to the two photosystems in the red alga Porphyra perforata. Physiol Plant, 1982, 56: 56~62
    [12] Herbert SK. Photoinhibition resistance in the red alga Porphyra perforata: the role of photoinhibition repair. Plant Physiol, 1990, 92: 514~519
    [13] Reed RH, Collins JC, Russell G. The effects of salinity upon galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth) C. Ag. J Exp Bot, 1980, 31: 1539~1554
    [14] Mukai LS, Craigie JS, Brown RG. Chemical-composition and structure of the cell-walls of the conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). J Phycol, 1981, 17: 192~198
    [15] Korbee N, Huovinen P, Flgueroa FL, Aguilera J, Karsten U. Availability of ammonium in?uences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol, 2005, 146: 645~654
    [16]许志恒,张朝辉,李八方,靳肖,陈伯虎,李平林.紫菜中类菌胞素氨基酸种类的确定及提取条件优化.食品工业科技,2011,2:187~190
    [17]庄金秋,杨丽梅,贾杏林.功能基因组学研究概述.中国生物工程杂志,2005,5:204~209
    [18] Woychik RP, Klebig ML, Justice MJ, Magnuson TR, Avner ED, Avrer ED. Functional genomics in the post-genome era. Mutat Res, 1998, 400: 3~14
    [19]高锐,臧春龙,张传东.功能基因组学研究进展.畜牧兽医科技信息,2008,3:10~12
    [20] Hieter P, Boguski M. Functional genomics: it's all you read it Science. 1997, 278: 601~602
    [21]王丹,杨宇.植物功能基因组的主要研究方法及其应用.现代农业科技,2009,1:277~278
    [22]于凤池. EST技术及其应用.中国农学通报,2005,21:54~54
    [23] Nikado I, Asamizu E, Nakajima M, Nakamura Y. Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyro yezoensis. DNA Research, 2000, 7: 223~227
    [24] Lee EK, Seo SB, Kim TH, Sung SK, An G, Lee CH, Kim YJ. Analysis of expressed sequence tags of Porphyra yezoensis. Mol Cells, 2000, 10: 338~42
    [25] Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol, 2003, 39: 923~930
    [26]杨官品,沈怀舜,许璞.条斑紫菜丝状孢子体表达序列标签分析.高技术通讯,2002,12:93~97
    [27]杨官品,刘永健,孙雪,沈怀舜,许璞,张学成.条斑紫菜丝状孢子体cDNA文库构建及抗病相关基因鉴定.青岛海洋大学学报,2003,33:47~52
    [28]徐民俊,茅云翔,庄筠昀,张学成.条斑紫菜孢子体cDNA文库构建及表达序列标签的初步分析.大连水产学院学报,2006,21:7~21
    [29]庞国兴,王广策,胡松年,曾呈奎.坛紫菜(Porphyra haitanensis)丝状孢子体EST的获取及其生物信息学分析.海洋与湖沼,2005,36:452~458
    [30] Fan XL, Fang YJ, Hu SN, Wang GC. Generation and analysis of 5318 express sequence tags (ESTs) from filamentous sporophyte of Porphyra haitanensis (Rhodophyte). J Phycol, 2007, 43: 1287~1294
    [31] Kakinuma M, Kaneko I, Coury DA, Suzuki T, Amano H. Isolation and identification of gametogenesis-related genes in Porphyra yezoensis (Rhodophyta) using subtracted cDNA libraries. J Appl Phycol, 2007, 18, 489~496
    [32]周晓君,茅云翔,王孟强,孔凡娜,隋正红,张学成.条斑紫菜cDNA微阵列制备及其在世代差异基因表达检测中的应用.高技术通讯,2006,16:1300~1305
    [33] Kitade Y, Asamizu E, Fukuda S, Nakajima M, Ootsuka O, Endo H, Tabata S, Saga N. Identification of genes preferentially expressed during asexual sporulation in Porphyrayezoensis gametophytes (Bangiales, Rhodophyta). J Phycol, 2008, 44: 113~123
    [34] Liang C, Zhang X, Zou J, Xu D, Su F, Ye N. Identification of miRNA from Porphyra yezoensis by High-Throughput Sequencing and Bioinformatics Analysis. PLoS ONE, 5: e10698
    [35] Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH. Porphyra: a marine crop shaped by stress. Trends in Plant Science, 2011, 16: 29~37
    [36] Britten RJ, Kohne DE. Repeated sequences in DNA:Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 1968, 161: 529~540
    [37] Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of Parasitic protozoa. Microbiol Mol Biol Rev, 2003, 67: 360~375
    [38]杜耀华,王正志.基因组中的重复DNA序列.生物技术,2003,13:51~53
    [39] Yunis JJ, Yasmineh WG. Heterochromatin, satellite DNA and cell function. Science, 1971, 174: 1200~1209
    [40] Ingavale SS, Kaur R, Aggarwal P, Bachhawat AK. A minisatellite sequence within the propeptide region of the vacuolar carboxypeptidase Y gene of Schizosaccharomyces pombe. J Bacteriol, 1998, 180: 3727~3729
    [41] Vergnaud G, Denoeud F. Minisatellites: Mutability and genome architecture. Genome Res, 2000, 10: 899~907
    [42] Jauert PA, Edmiston SN, Conway K, Kirkpatrick DT. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae. Mol Cell Biol, 2002, 22: 953~964
    [43]姜运良.卫星、小卫星和微卫星DNA——真核生物基因组的串状重复序列.生命的化学,1998,18:29~31
    [44] Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115: 49~63
    [45] Skinner DM, Beattie WG, Blattner FR, et al. The sequence of a herm it crab satellite DNA in (-TAGG-)n-(-TAGG-)n. Biochemistry, 1974, 13: 3930~3937
    [46] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of dinucleatide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989, 44: 397~401
    [47] Tautz D. Hyperiability of simple sequence as a general source of polymorphic DNA markers. Nucleic Acids Res, 1989, 17: 6463~6471
    [48] Stephan W, Cho S. Possible role of natural selection in formation of tandem-repetitive noncoding DNA. Genetics, 1994, 136: 333~341
    [49] Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nuc Acids Res, 1992, 20: 211~215
    [50]瞿陆峰,潘伟荣,曾养志.微卫星DNA标记及其应用.畜牧与饲料科学,2010,31:6~8
    [51]李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26:769~776
    [52] Karagyozov L, Kalcheva ID, Chapman VM. Construction of random small-genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Res, 1993, 21: 3911~3912
    [53] Ostrander EA, Jong PM, Rine J, et al. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proceedings of the National Academy of Sciences of the USA, 1992, 89: 3419~3423
    [54] Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science, 2001, 160: 1115~1123
    [55] Serapion J, Kucuktas H, Feng J, Liu Z. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Biotechnol, 2004, 6: 364~377
    [56] Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) Simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol, 1998, 15: 1275~1287
    [57]刘必谦,曾庆国,骆其君,等.条斑紫菜(Porphyra yezoensis)dbEST中筛选微卫星位点及引物种间转移扩增.海洋与湖沼,2005,36:248~254
    [58] Liu BQ, Zeng QG, Wang YJ, Luo QJ. The cross-species amplification and validation of EST-SSR loci in Porphyra haitanensis. Acta hydrobiologica sinica, 2007, 31: 149~154
    [59]刘必谦,曾庆国,骆其君,周湘池.微卫星标记在坛紫菜丝状体品系DNA指纹构建中的应用.水产学报,2005,29:323~326
    [60] Sun JW, Guo BT, Jin DM, Weng ML, Feng YB, Xu P, Duan DL, Wang B. Development of SSR primers from EST sequences and their application in germplasm identification of Porphyra lines (Rhodophyta). Eur J Phycol, 2006, 41: 329~336
    [61] Zuo ZH, Wang CG, Cao XH, Su Y, Liao LJ, Chen YX. Isolation and characterization of microsatellite loci from a commercial cultivar of Porphyra haitanensis. Mol Ecol Notes, 2007, 7: 522~524
    [62]吴亚亚,胡则辉,严兴洪,周志刚.利用微卫星遗传标记评价坛紫菜的种质.上海水产大学学报,2009,18:409~414
    [63]张鹏,张源,王铁杆,严兴洪.坛紫菜不同品系亲缘关系的SSR标记分析.中国水产科学, 2009,16:842~849
    [64] Yan XH, Huang M. Identification of Porphyra haitanensis (Bangiales, Rhodophyta) meiosis by simple sequence repeat markers. Journal of Phycology, 2010, 46: 982~986
    [65] Xie CT, Chen CS, Ji DH, Xu Y. Characterization, development and exploitation of EST-derived microsatellites in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol, 2009, 21: 367~374
    [66] Xie CT, Chen CS, Xu Y, Ji DH. Construction of a genetic linkage map for Porphyra haitanensis (Bangiales, Rhodophyta) based on sequence-related amplified polymorphism and simple sequence repeat markers. J Phycol, 2010, 46: 780~787
    [67] Yarish C, Chopin T, Wilkes R, Mathieson AC, Fei XG, Lu S. Domestication of nori for Northern America: the Asian experience. Bull Aquacult Ass Canada, 1999, 1: 11~17
    [68] Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 2010, 20: 265~272
    [69] Altschul SF, Madden TL, Sch?ffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search Programs. Nucleic Acids Res, 1997, 25: 3389~3402
    [70] Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, 1999, 138~148
    [71] Derelle E, Ferraz C, Rombauts S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. P Natl Acad Sci USA, 2006, 103: 11647~11652
    [72] Tsujino I. Studies on the compounds specific for each group of marine algae, II: extraction and isolation of characteristic ultraviolet absorbing material in Rhodophyta. Bull Fac Fish, Hokkaido Univ, 1961, 12: 59~65
    [73] Xiong F, Kemenda J, Kopecky J, Nedbal L. Strategies of ultraviolet-B protection in microscopic algae. Physiologia Plantarum, 1997, 100: 378~388
    [74] Singh SP, Klisch M, Sinha RP, et al. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study. Genomics, 2010, 95: 120~128
    [75] Yoshitama K. Recent advances in secondary metabolism research:regulation of biosynthesis and physiological functions of flavonoids and some phenolics. J Plant Res, 2000, 113: 285
    [76]杜丽娜,张存莉,朱玮,等.植物次生代谢合成途径及生物学意义.西北林学院学报,2005,20:150~155
    [77] Rozema J, Bj?rn LO, Bornman JF, et al. The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B, 2002, 66: 2~12
    [78] Cockl JM, Sterck L, Rouze P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465: 617~621
    [79] Collén J, Davison IR. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ, 1999, 22: 1143~1151
    [80] Wolfe-Simon F, Grzebyk D, Schofield O, et al. The role and evolution of superoxide dismutases in algae. J Phycol, 2005, 41: 453~465
    [81] Llorca O, Martín-Benito J, Ritco-Vonsovici M, et al. Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J, 2000, 19: 5971~5979
    [82] Oliver MJ, Dowd SE, Zaragoza J, et al. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics, 2004, 5: 89
    [83] Bartels D. Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol, 2005, 45: 696~701
    [84] Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, Hatano S. Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: Identification of Late Embryogenesis Abundant Proteins. Plant Cell Physiol, 1995, 36: 1421~1430
    [85] Dittami SM, Michel G, Collén J, et al. Chlorophyll-binding proteins revisited- amultigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol, 2010, 10: 365
    [86]王磊,范云六.植物微小RNA(microRNA)研究进展.中国农业科技导报,2007,9:18~23
    [87]吴敏,韩召军. miRNA研究方法进展.生物技术通讯,2005,5:571~573
    [88]吕德康,葛瑛,柏锡,李勇,朱延明.生物信息学在植物miRNA研究中的应用.生物信息学,2009,2:113~116
    [89] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406~3415
    [90] Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation. RNA, 2003, 9: 277~279
    [91] Bonnet E, Wuyts J, Rouze P, et al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 2004, 20: 2911~2917
    [92]樊龙江.生物信息学札记第3版. 2010
    [93] Yao YY, Guo GG, Ni ZF, Sunkar R, Du JK, Zhu JK, Sun QX. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 2007, 8: R96
    [94] Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, et al. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research, 2008, 18: 571~584
    [95] Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, et al. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol, 2010, 10: 3
    [96] Lu C, Tej SS, Luo SJ, Haudenschild CD, Meyers BC, Green PJ. Elucidation of the small RNA component of the transcriptome. Science, 2005, 309: 1567~1569
    [97] Qiu D, Pan X, Wilson IW, Ketchum REB, Li F, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436: 37~44
    [98]曾长英,陈新,卢诚,王文泉,彭明.植物抗逆相关miRNA的研究及其在木薯中的应用.热带作物学报,2010,2:332~337
    [99]江海洪,谢燕,刘倩予.细胞色素c氧化酶的分子生物学研究进展.国外医学(生理、病理科学与临床分册),2001,1:20~22
    [100]王平荣,张帆涛,高家旭,孙小秋.邓晓建高等植物叶绿素生物合成的研究进展.西北植物学报,2009,29:629~636
    [101] Benson G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27: 573~580
    [102]高焕.中国对虾基因组串联重复序列分析及其分子标记的开发与应用. [博士学位论文].山东青岛:中国科学院海洋研究所,2005
    [103] Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847~854
    [104] Wang CB, Guo WZ, Cai CP, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chinese Sci Bull, 2006, 51: 557~561
    [105]温小杰,张学勇,郝晨阳,刘旭. MITE转座元件在植物中的研究进展.中国农业科学, 2008,41:2219~2226
    [106]栾生.日本囊对虾基因组串联重复序列分析及微卫星标记的开发与应用. [博士学位论文].山东青岛:中国海洋大学,2006
    [107]宋来鹏.三疣梭子蟹基因组串联重复序列分析及微卫星标记的初步筛选. [硕士学位论文].山东青岛:中国海洋大学,2008
    [108]张玲玲.栉孔扇贝fosmid文库的构建及基因组结构特征分析. [博士学位论文].山东青岛:中国海洋大学,2007
    [109] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet, 2002, 30: 194~200
    [110] Wang M, Hu J, Zhuang Y, et al. In Silico Screening for microsatellite markers from expressed sequence tags of Porphyra yezoensis (Bangiales, Rhodophyta). Journal of Ocean University of China, 2007, 6: 161~166
    [111] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res, 2000, 10: 967~981
    [112] Li B, Xia Q, Lu C, Zhou Z, Xiang Z. Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. Geonmics Proteomics Bioinformatics, 2004, 2: 24~31
    [113]林范学,程水明,李安政,林芳灿.香菇基因组中EST-SSR的构成和分布.微生物学通报,2007,34:438~442
    [114]李小白,张明龙,崔海瑞.油菜EST-SSR标记的建立.分子细胞生物学报,2007,29:20~25
    [115]胡建斌,刘颖,王兰菊,李建吾.甜瓜EST序列中微卫星的分布特征.植物生理学通讯,2009,45:258~262
    [116] Gui Y, Wang S, Quan L, Zhou C, Long S, Zheng H, et al. Genome size and sequence composition of moso bamboo: a comparative study Sci China C Life Sci. 2007, 50: 700~705
    [117] Zheng C. Repetitive sequence analysis for soybean genome sequences. UNIVERSITY OF MISSOURI-COLUMBIA , 2005
    [118] Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 451~456
    [119] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793~800
    [120] Messing J, Bharti AK, Karlowski WM, et al. Sequence composition and genome organization of maize. Proc Natl Acad Sci USA, 2004, 101: 14349~14354
    [121] Han Y, Korban SS. An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol, 2008, 67: 581~588
    [122] Hong CP, Plaha P, Koo DH, Yang TJ, Choi SR, Lee YK, et al. A Survey of the. Brassica rapa genome through BAC-end sequence analysis and comparison with Arabidopsis thaliana. Molecules and Cells, 2006, 22: 300~307
    [123] Cavagnaro, PF, Chung S, Szklarczyk M, Grzebelus D, Senalik DA, Atkins AE. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Molecular Genetics and Genomics, 2009, 281: 273~288
    [124] Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res, 2006, 16: 1252~1261
    [125] Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res, 2006, 16: 1262~1269
    [126] Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR. The transposable element landscape of the model legume Lotus japonicus. Genetics, 2006, 174: 2215~2228
    [127] Yuzuru M, Hitoshi K, Masahiko K. Cloning and characterization of G+C-rich, highly repeated DNA sequences from Porphyra yezoensis (laver), Rhodophyta. J Appl Phycol, 2000, 12: 131~138
    [128]袁昭岚,黄鹤忠,沈颂东,陈大鹏,朱建一,许璞.条斑紫菜5个栽培品系的ISSR分析.海洋科学,2006,30:9~14
    [129] Wattier RA, Prodohl PA, Maggs CA. DNA isolation protocol for red seaweed (Rhodophyta). Plant Mol Biol Rep, 2000, 18: 275~281
    [130] Yeh FC, Boyle TJB. Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129: 157
    [131] Tokuko U, Takayuki K, Yoshihiko T, Teruyoshi N, Hiroshi Y. Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity, 1998, 81: 422~428
    [132] Gupta PK, Varshnney RK. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 2000, 113: 163~185
    [133] Sethy NK, Shokeen B, Edwards KJ, Bhatia S. Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet, 2006, 112: 1416~1428
    [134] Ohme M, Miura A. Tetrad analysis in conchospore germlings of Porphyra yezoensis (Rhodophyta, Bangiales). Plant Sci, 1988, 57: 135~140
    [135] Mitman GG, Van Der Meer JP. Meiosis, blade development,and sex determination in Porphyra purpurea (Rhodophyta). J Phycol, 1994, 30: 147~159
    [136]严兴洪,马少玉.坛紫菜抗高温品系的筛选.水产学报,2007,31:112~119
    [137]逄巧巧.采用SSR和AFLP标记对龙须菜的遗传多样性分析. [硕士学位论文].山东青岛:中国海洋大学,2009
    [138]郝君,孙效文,梁利群,鲁翠云.大黄鱼微卫星标记的富集与筛选.中国水产科学,2006,13:762~766
    [139]袁慧,张修月,宋昭彬,岳碧松.岩原鲤微卫星富集文库的构建及微卫星分子标记的筛选.四川动物,2008,27:210~215
    [140]惠敏.扇贝微卫星标记的筛选及其在物种鉴定中的应用. [硕士学位论文].山东青岛:中国海洋大学,2008
    [141]于颖,杨孔,王永,徐亚欧,等.藏鸡微卫星文库的构建与微卫星标记筛选.四川动物,2009,28:358~362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700