高功率掺镱光纤激光器设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种新型光纤元件的出现,高功率光纤激光器的制造技术日趋成熟,其相关产品也更加深入地进入到工业、军事、医疗器械等领域。正是由于高功率光纤激光器所体现出的体积小、转换效率高、能量更集中等相对于其他高功率激光器的优势所在,决定了其在制造及科研方面受到的关注越来越多。本文的主要研究内容及创新如下:
     1.利用线偏振模标量法研究光纤耦合过程,根据光纤特征参数U、W,计算不同模式的耦合系数,再结合光纤功率分布函数,研究光功率在光纤内的传递。提出一种计算多模光纤耦合的数值分析方法,可根据光纤参数计算耦合效率及光纤耦合长度,并指出影响光纤耦合的主要因素。
     2.经过对双包层增益光纤的吸收特性公式的理论推导与数值仿真,在分析了光纤掺杂浓度、模场直径、光纤损耗等因素对光纤增益的影响基础上,设计Yb双包层光纤激光器的结构。利用分析结果合理选择增益光纤,确定增益光纤长度、纤芯半径及泵浦吸收率等参数。同时,选择相互匹配的光纤器件,完成系统结构初步设计
     3.根据Yb光纤吸收谱特性,在泵浦激光器工作波长976nm附近进行理论分析,研究FBG的反射特性及WDM分光特性,数值模拟光栅长度及光栅调谐量对光栅性能产生的影响。利用短半波振荡周期WDM设计的全光纤波长检测器,检测泵浦激光器输出波长,根据分析结果,设计泵浦激光器工作波长控制系统,以提高光纤激光器系统泵浦效率。通过泵浦激光器控制系统,提高光光转换效率。
     4.研究组成光纤激光器系统的主要光学元件,如Yb光纤、泵浦激光器、合束器等元件的原理及工作特性,根据实验目的及总体目标,设计合理的光纤激光器结构。采用种子源脉冲驱动输出,经过两级放大的MOPA结构,完成915nm泵浦实验及理论验证;采用一级声光调制产生脉冲激光,二级放大的MOPA,完成样机开发。检测915nm泵浦光纤激光器及976nm泵浦光纤激光器各项运行指标:光光转换效率、脉冲形状、线宽等。
     5.完成20W脉冲输出光纤激光器样机开发,选定以976nm泵浦实现脉冲激光输出的系统结构,结合泵浦激光器控制优化设计方案,严格控制泵浦工作波长,提高泵浦效率。系统重复频率可以调整,平均功率稳定,单脉冲能量高,实现了免维护运行。
With the emergence of various new kind of optical fiber element,他the technology of high power fiber laser producing gets to mature gradually, its related products also get into the fields of industry, military, medical equipment, etc more deeply. Because of the small volume, high conversion efficiency, more centralized energy compared to other high power laser, fiber laser draws more and more attentions from the manufacture and scientific research department. The main research contents and innovation are as follows:
     1. Using scalar method of linear polarization mode, study fiber coupling process, according to the optical fiber characteristic parameters U, W, calculate coupling coefficient of different fiber modes, and then combined with optical fiber power distribution function, the optical power transmission in fiber is studied. This paper carries out a calculation method of multimode optical fiber coupling numerical analysis, according to fiber parameter, calculate coupling efficiency and fiber coupling length while the main factors influencng fiber coupling is pointed out.
     2. After theoretical deducing and numerical simulation of absorption characteristic formula of double cladding fiber, based on the analysis of the optical fiber doping concentration, mode field diameter, fiber loss, etc, the factors influence the optical fiber gain, the structure of double cladding Yb fiber laser is designed. Use the analysis result to choose reasonable gain fiber, determine the fiber length, core diameter and absorption rate, etc. At the same time, choose matching fiber components, complete preliminary design of system structure.
     3. According to Yb fiber absorption spectrum characteristics, carry out the theoretical analysis near the wavelength of976nm in the pump laser, the FBG reflection characteristics and WDM spectral characteristics are studied, simulate the effects of grating length and grating tuning amount to its performance. According to the results of analysis, design pump laser work wavelength control system to improve fiber laser pump efficiency. Designthe full optical fiber wavelength detector with the use of WDM with short half wave oscillation cycle, detect pump laser output wavelength, on this basis, design a kind of pump laser control structure, in order to improve optical conversion efficiency.
     4. Study the principle and working characteristic of main optical components of fiber laser system, such as Yb fiber, pump laser, combiner, according to experimental purpose and total target, design the fiber laser structure. Apply the MOPA structure with seed source of pulse driving and two level amplifier, finish experimental and theoretical verification in915nm pumping. Complete prototype development with the MOPA strcture that first level of pulse laser using AOM, second amplified level. Test various operation indexs of915nm pumped fiber laser and976nm pumped fiber laser, optical conversion efficiency, pulse shape, the line width and so on.
     5. Complete the prototype development of20W fiber laser with pulse output, select the structure of pulse output with976nm pump, combined with optimizing design of pump laser control, control the pump wavelength and improve the pump efficiency. System repetition frequency can be adjusted, average power is stable, single pulse energy is high and the free maintenance operation is achieved.
引文
[1]郭玉彬,霍佳雨.光纤激光器及其应用.北京:科学出版社,2008.
    [2]John D. Minelly. Technology Trends for High Power Fiber Lasers. European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference,2009.
    [3]张劲松.高功率光纤激光器发展概况.光通信技术.12:8-10.
    [4]Fukai Chisato, Kurokawa Kenji, Tajima Katsusuke. Long-term reliability of single-mode fibers when exposed to high-power laser light. Lightwave Technology, 2005,23(9):2713-2718.
    [5]程雯婧.半导体激光阵列与双包层光纤耦合技术的研究.北京交通大学硕士论文,2005.
    [6]贾秀杰,郭占城,范万德.全国产化掺镱双包层高功率光纤激光器的研制.南开大学学报(自然科学版).2007,40(2):87-90.
    [7]Minelly, J. D. Technology Trends for High Power Fiber Lasers. CLEO Europe 2009.
    [8]赵尚弘,占生宝,石磊.高功率光纤激光技术.北京:科学出版社,2009.
    [9]A. Popp, A. V., Th. Graf. Thin-Disk Laser-pumped High-Power Ytterbium-doped Fiber Laser. CLEO Europe 2009.
    [10]A. Tunnermann, T. S., J. Limpert. High power fiber lasers and amplifiers. Fraunhofer IOF 2009.
    [11]S.Pierrot, J.S., A.Bertrand. All Fiber High Energy, High Power Picosecond Laser. CLEO/QELS 2010.
    [12]姜涛.大功率光纤激光器的理论与实验研究.吉林大学硕士论文,2010.
    [13]文建国,张景贵.一种用作武器的高亮度光纤激光器实现方案.应用激光.2005,25(6):397-400.
    [14]熊悦,潘炜,罗斌.掺镱双包层高功率光纤激光器热效应的理论研究.强激光与粒子束.2005,17(4):495-499.
    [15]Siddharth Ramachandran. Spatially Structured Light in Optical Fibers: Applications to High-Power Laser. ASSP 2009.
    [16]Baoyin Zhao, K. D., Wei Zhao. Experimental study on high power all-fiber laser.CHINESE OPTICS LETTERS.2010,8(4):404-406.
    [17]Wen Lu, Hongbn Huang, Yang Ran. Design and Implementation of Distributed High Power LD Driver Used in Fiber Laser.2009 4th IEEE Conference on Industrial Electronics and Applications.2009:2373-2376.
    [18]C. J. Saraceno, O. H. H., C. R. E. Baer. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers. OPTICS EXPRESS.2011,19(2): 1395-1406.
    [19]Ramachandran, S. Spatially Structured Light in Optical Fibers:Applications to High-Power Lasers. ASSP 2009.
    [20]D. J. Richardson, J. N., W. A. Clarkson. High power fiber lasers:current status and future perspectives. JOSA B.2010,27(11):B63-B92.
    [21]Bing He, Q. L., Jun Zhou, Jingxing Dong. High power coherent beam combination from two fiber lasers. OPTICS EXPRESS.2006,14(No.7):2721-2726.
    [22]D. J. Richardson, J. N., W. A. Clarkson. High power fiber lasers:current status and future perspectives. JOSA B.2010,27(11):B63-B92.
    [23]光机电信息.宝马汽车向IPG订购大功率光纤激光器.产业新闻.2008,54-55.
    [24]姬寒珊.高功率光纤激光器及其在激光武器中的应用前景分析.地面防空武器.2005,3:29-32.
    [25]李伟,赵勇,陈曦,大功率光纤激光器在销毁弹药中的应用.激光与光电子学进展.2008,45(7):39-43.
    [26]楼祺洪,朱健强,周军.双包层光纤激光器及其在军事中的应用.装备指挥技术学院学报.2003,14(5):28-32.
    [27]胥杰,赵尚弘,王怀军.高功率光纤激光器用于战术激光武器.激光杂志.2007,28(5):6-7.
    [28]B. Samson, G. F., A. Carter and K. Tankala. High-Power Large-Mode Area Optical Fibers for Fiber Laser and Amplifiers. OFC/NFOEC 2008.
    [29]程雯婧,宁提纲.一种新的阵列半导体激光器侧面耦合双包层光纤的方法研究.激光杂志.2008,29(1):55-56.
    [30]刘德明,阎嫦玲.高功率光纤激光器的关键技术及应用.红外与激光工程.2006,35(增刊):105-109.
    [31]Richardson, D. Applications of Pulse Shaping in High Power Fiber Laser Systems. OFC/NFOEC 2008.
    [32]F. Roser, C. J., J. Limpert. Power scaling of high brightness 980 nm Yb-doped fiber laser:detailed study and experiment. ASSP 2009.
    [33]廖素英,巩马理.高功率光纤激光器和放大器的非线性效应管理新进展.激光与光电子学进展.2007,44(6):27-33.
    [1]李玉权.光波导理论与技术[M].北京:人民邮电出版社,2002.
    [2]Abou El-Fadl. Study of the Coupling Performance of Multimode Optical Fiber Coupler.16th National Radio Science Conference.NRSC Press.1999:B10/1-B10/8.
    [3]Jacek Kusznier. Dependence of coupling coefficient on mode number in multimode fiber coupler. Proceeding of SPIE-The International Society for Optical Engineering. SPIE Press.2004:542-547.
    [4]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [5]刘东峰,陈国夫,王贤华.掺Yb3+光纤激光器及放大器.激光与红外.1999,29(4):243-245.
    [6]盛新志,娄淑琴.激光原理.北京:清华大学出版社,2010.
    [7]J. T. Kringlebotn, J. L. Archambault. Er3+, Yb3+ co-doped fiber distributed-feedback laser. Opti. Lett.1994,19(24):2101-2103.
    [8]Rudiger Paschotta, Johan Nilsson, Anne C.Tropper. Ytterbium-Doped Fiber Amplifiers. Jouranl of Quantum Electronics.1997,33(7):1049-1056.
    [9]冯新焕.多波长及锁模光纤激光器的理论与实验研究.南开大学博士学位论文,2005.
    [10]S. Magne, M. Druetta, J. P. Goure. An ytterbium-doped monomode fiber laser:amplified spontaneous emission, modeling of the gain and tenability in an external cavity. J.Lumin.1994,60:647-650.
    [11]R.Giles and D.DiGiovanni. Spectral dependence of gain and noise in erbium doped fiber amplifiers. IEEE Photon. Technol. Lett.1990,2(4):797-799.
    [12]郭玉彬,霍佳雨.光纤激光器及其应用.北京:科学出版社,2008.
    [13]卢秀权,陈绍和.Yb3+光纤放大器.中国激光.2001,28(3):209-214.
    [14]付圣贵.高功率双包层光纤激光器的理论与实验研究.南开大学博士论文,2005.
    [15]刘东峰,陈国夫,王贤华.掺Yb3+光纤激光器及放大器.激光与红外.1999,29(4):243-245.
    [16]项阳.掺Yb双包层光纤激光器的研究.南开大学博士论文,2003.
    [17]Mohammed Salhi, Ammar Hideur, Thierry Chartier. Evi2 dence of Brillouin scattering in an ytterbium doped double clad fiber laser. Optics Letters.2002,27 (15): 1294-1296.
    [1]WANG Anting, XING Meishu, CHEN Guanghui. Double-pass ytterbium-doped fiber amplifier with high gain coefficient and low noise figure.Chinese Optics Letters. 2003,1(9):532-534.
    [2]A. S. Kurkov, A. Yu. Laptev, A. N. Guryanov. Yb3+-doped double-clad fibers and lasers. Proceedings of SPIE.2000,4083:118-126.
    [3]谢春霞,吕福云,王健.大模面积掺Yb3+双包层光纤激光器的实验研究.光子学报.2005,34(5):644-647.
    [4]FEDERIGHI M, PASQUALE F D. The effect of pair-induceed energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations. IEEE Photon Technol. Lett.1995,7(3),303-305.
    [5]Jeffrey P K, Sean W M, Kliner A V K. A new method for side pumping of double-clad fiber sources. Quant. Electronics,2003,39(4):529-540.
    [6]Pavel Polynkin. Efficient and Scalable Side Pumping Scheme for Short High-Power Optical Fiber Lasers and Amplifiers. Opt.Lett.2004,16(9):2024-2026.
    [7]许兆文.掺镱双包层光纤激光器的研究.南开大学硕士学位论文,2003.
    [8]J. Limpert, N. Deguil-Robin, S. Petit. Sub-10 ns Q-switched Yb-doped photonic crystal fiber laser. Quantum Electronics and Laser Science Conference (QELS).2005: JWB51.
    [9]Z. J. Chen, A. B. Grudinin, U. Porta. Enhanced Q switching in double-clad fiber lasers. Optics Letters,1998,23(6):454-456.
    [10]Y. X. Fan, F. Y. LU, S. L. Hu. Tunalbe high-peak-power, high-energy hybrid Q-switched double-clad fiber laser.Optics Letter.2004,29(7):724-726.
    [11]L. Zenteno. High-power double-clad fiber lasers. J. Lightwave Technol.1993(11): 1435-1446.
    [12]M. K. Davis, M. J. F. Digonnet, R. H. Pantell. Thermal effects in doped fibers. J. Lightwave Technol.1998(16):1013-1023.
    [13]J. Limpert, A. Liem, H. Zellmer. High-average-power milljouls fiber amplifier system. CLEO2002:591-592.
    [14]M.Y. Cheng, Y.C. Chang, A. Galvanauskas. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers. Optics Letters.2005,30(4):358-340.
    [15]F. D. Teodoro, C. D. Brooks.Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses.Optics Letters.2005,30(24):3299-3301.
    [16]S. D. Jackson, Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2mm Tm-doped silica fibre lasers. Opt. Comm. 2004(230):197-203.
    [17]Ming-Yuan Cheng, Yu-Chung Chang, Almantas Galvanauskas. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-mm core highly multimode Yb-doped fiber amplifiers. Optics Letters.2005,30(4): 358-360.
    [18]A. Ye, P. Yan, M. L. Gong, M. Lei. Pulsed pumped Yb-doped fiber amplifier at low repetition rate. Chinese Optics Letters.2005,3 (5):249-250.
    [19]Michel J. F. Digonnet. Rare-Earth-Doped Fiber Lasers and Amplifiers. New York:Marcel Dekker, Inc.2001:126-127.
    [1]T. Erdogan. Fiber grating spectra. J. Lightwave Technol.,1997,15(8):1277-1294.
    [2]H. Amos, S. Sami, S. William. Coupled-mode equations for two weakly guiding single-mode fibers. Opt. Lett.1986,11(5):324-326.
    [3]A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J.Quantum Electron.,1973, QE-9:919-933.
    [4]A. J. Saktioto and M. Fadhali. A Simplified Coupling Power Model of Single M ode Fiber Fusion at Coupling Length. Third Asia International Conference on Modelling & Simulation,2009:671-675.
    [5]R. Kashyap. Fiber Bragg gratings. San Diego:Academic Press,1999.
    [6]I. Yokohama, J. Noda, K. Okamoto. Fiber-coupler fabrication with automatic fusion-elongation processes for low excess loss and high coupling-ratio accuracy. J. Lightwave Technol.,1987,5(7):910-915.
    [7]K. Ennser, N. Zervas, R. L. Laming. Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE J. Quantum Electron.1998,34(5): 770-778.
    [8]D. Marcuse. Theory of Dielectric Optical Waveguides. New York:Academic, 1991.
    [9]P. P. Sahu. Double S-bend structure for a compact two mode interference coupler. Appl. Opt.,2011,50(3):242.
    [10]H. Kogelnik. Theory of optical waveguides in Guided-Wave Optoelectronics. T.Tamir, Ed, New York:Springer-Verlag,1990.
    [11]J. Albert, K. O. Hill, B. Malo,et al. Apodizatioin of spectral response of fibre Bragg grating using a phase mask with variable diffraction efficiency. Electron. Lett., 1995,31(3):222-223.
    [12]L. Martineau and S. Lacroix. Fabrication of highly Ge-doped fibre couplers by fusion-tapering technique. Electron. Lett.1997,33(9):798-800.
    [13]M. Dubov, V. Mezentsev, I. Bennion. Method for characterisation of weakly guiding waveguides by measuring mode field diameter. Conference on Lasers and Electro-Optics, Europe,2005:565.
    [14]W. X. Yu and X. C. Yuan. A simple method for fabrication of thick sol-gel microlens as a single-mode fiber coupler. IEEE Photon. Technol. Lett.,2003,15(10): 1410-1412.
    [15]V. E. Pozhar and V. I. Pustovoit. Some general characteristics of coupled-mode equations.7th International Conference on Laser and Fiber-Optical Networks Modeling,2005:229-232.
    [16]A. A. Abou El-Fadl, S. M. Eladl, M. S. I. Rageh. Optical fiber wavelength divisionmultiplexer based on two-mode interference. Seventeenth National Radio ScienceConference.2000:F1/1-F110.
    [17]M. Digonnet and H. Shaw. Analysis of a tunable single mode optical fiber coupler. IEEE J. Quantum Electron.1982,18(4):746-754.
    [1]F. Gonthier, L. Martineau, N. Azami. Hig-Power all-fiber components:the missing link for high power fiber lasers. Fiber Lasers:Technology, Systems and Applications.2004,5355:266-276.
    [2]F. Gonthier. pump coupling techniques for double-clad fiber amplifiers and Lasers. TFII1-3Cleo Europe 2005.
    [3]S. Norman, M. Zervas, A. Appleyard. Latest development of high power fiber lasers in SPI. Fiber Lasers:Technology, Systems and Applications.2004,5335: 229-237.
    [4]J. Nilson and Al. High power fiber lasers. OFC 2005.
    [5]V. Goloborodko, S. Keren, A. Rosenthal. Measuring temperature profiles in high power optical fiber components. Appl. Opt.2003,42(13).
    [6]F. Seguin, A. Wetter, L. Martineau. Tapered fused bundle coupler package for reliable high optical power dissipation. Proc. Proc. of SPIE.2006,6102(1N).
    [7]H. Tsuchiya, H. Nakagome, N. Shimizu. Double excentric connector for optical fiber. Appl. Opt.1977,16(5):1323-1331.
    [8]Bronder, T. J., Shay, T. M. SBS mitigation with'two-tone'amplification:a theoretical model. Proc. of SPIE.2008,6873(1R).
    [9]Tkach, R.W., Chraplyvy, A.R. Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers. J. Light.Tech.1986,4 (11):1655-1661.
    [10]Petermann, K. External Optical Feedback Phenomena in Semiconductor Lasers. IEEE J. of Sel. Top. Quan. Elec.1995,1 (2):480-489.
    [11]Henry, C.H., Kazarinov, R. Instability of semiconductor lasers due to optical feedback from distant reflectors. IEEE J. Quantum Electron.1986,22 (2):294-301.
    [12]Vu, K.T., Malinowski, A., Richardson, D. J. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOP A system. Opt. Expr.2006,14 (23):10996-11001.
    [13]Schimpf, D. N., Ruchert, C., Nodop. Compensation of pulse-distortion in saturated laser amplifiers. Opt. Expr.2008,16 (22):17637-17646.
    [14]Zervas, M. N., Durkin, M., Ghiringhelli, F. High peak power, high rep-rate pulsed fibre laser for marking applications. Proc. SPIE.2006,6102, (Q-1).
    [15]He, F., Price, J.H.V. Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling. Opt. Exp.2006,14 (26):12846-12858.
    [1]Meleshkevich, M., Platonov, N., Gapontsev, D. V.415W Single-Mode CW Thulium Laser in all-fiberformat. CLEO Europe 2007.
    [2]Slobodtchikov, E, Moulton, RE Efficient. High-Power, Tm-doped Silica Fiber Laser. SSDLTR 2007.
    [3]Broer, M.M., Krol, D.M. Highly nonlinear near-resonantphotodarkening in a thulium-doped aluminosilicateglass fiber. Optics Letters.1993,18(799).
    [4]Frith, G., Samson, B., Carter. High-efficienct 100W levelmonolithic fiber devices operating at 2μm. CLEO Europe 2007.
    [5]Frith, G., Samson, B., Carter, A. High Power, High Efficiency monolithic FBG based Fiber Laser Operating at 2μm. Photonics West 2007.
    [6]Volodin, B., Dolgy, S., Melnik, E. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Optics letters.2004,29:1891-1893.
    [7]Edgecumbe, J., Machewirth, D.P. Kilowatt Level, Monolithic Fiber Amplifiers for Beam Combining Applications at 1μm. SSDLTR 2007.
    [8]JDSU. Data sheet-High-Power 8.5W 9xx nm Fiber-Coupled Diode Laser.2007.
    [9]Bookham. Application Note-High Power Multimode Laser Diode Module.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700