拓扑绝缘体表面态调控的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用基于密度泛函理论的第一性原理方法,从理论上研究了拓扑绝缘体材料表面态的相关性质,为设计纳米尺度的物性调控提供了有益的理论指导和依据,得到了如下主要研究成果:
     1.应变引起的拓扑相变。基于第一性原理计算,我们研究了具有各向异性相互作用的Bi_2Se_3类材料的拓扑相变。通过施加不同的应变来改变Bi_2Se_3类物质中的相互作用,我们发现QL内的横向相互作用对它们的拓扑相影响很小,而QL间的纵向相互作用能够有效的调制它们的拓扑相。在我们研究的这类材料中,施加的纵向应变对它们的影响是非均匀的,即在QL内与QL间引起的相互作用效果不同。我们的研究表明决定Bi_2Se_3类材料拓扑相的自旋轨道相互作用主要来至于QL间相互作用。Sb2Se3的QL间距比Bi_2Se_3大,自旋轨道相互作用弱,前者是拓扑平庸的,后者是拓扑非平庸的。这使我们弄清楚了为什么具有同样晶体结构,且都含有重元素、小带隙的Sb2Se3和Bi_2Se_3的能带存在拓扑结构上的差别。我们提出了通过应变调节这类材料的拓扑相的方法,发现通过施加c轴方向的纵向压应变减小Sb2Se3的QL间间距,增大自旋轨道耦合强度,使得它由普通绝缘转变成拓扑绝缘体;而施加纵向拉应变可以增大Bi_2Se_3的QL间间距,减弱自旋轨道耦合强度,使Bi_2Se_3由拓扑绝缘体转变成普通绝缘体。类似的相变情形也发生在两类材料的薄膜上。
     2.拓扑绝缘体薄膜的表面和界面尺寸效应。基于范德瓦尔斯修正的密度泛函理论计算,我们研究了1QL~6QL厚度的拓扑绝缘体Bi_2Se_3和Bi_2Te_3薄膜的表面和界面效应。我们的计算表明,薄膜表层QL间间距弛豫显著,达到20%;内层QL间距弛豫不明显。随薄膜厚度增加,QL间间距逐渐趋于块体值。对于厚度较小的Bi_2Se_3薄膜(2QL~4QL),存在明显的表面态带隙,随厚度的增加薄膜的表面态带隙逐渐减小并最终闭合,这与实验观测符合的很好。我们还研究了石墨烯衬底对Bi_2Se_3薄膜表面态的影响,发现衬底会诱导显著的Rashba劈裂,随厚度增加劈裂效果越明显,并且与无衬底的情形相比,狄拉克点相对于费米能级发生了移动。Bi_2Te_3薄膜有相对较小的QL间间距弛豫效应和较强自旋轨道耦合作用,2QL的薄膜已经开始显现出无能隙的拓扑表面态,与实验观测一致。
     3.半导体衬底对拓扑绝缘体表面与界面态的调控。目前,由于拓扑绝缘体的费米能级难以调控至狄拉克点,它的许多重要且新奇的表面电子与自旋输运性质尚未在实验中得到观测。从实验的迫切需要出发,以Bi_2Se_3和Bi_2Te_3为对象,采用半导体异质节能带调整理论和第一性原理计算,研究常规半导体硅和砷化镓与拓扑绝缘体表面和界面态的作用,寻找调节拓扑绝缘体费米能级至狄拉克点的关键参数。通过第一性原理计算,我们研究了半导体对拓扑绝缘体表面与界面效应。首先,我们计算了不同厚度的拓扑绝缘体薄膜和半导体衬底的功函数。我们的计算发现当半导体衬底的功函数小于拓扑绝缘体薄膜的功函数时,拓扑绝缘体薄膜会从衬底得到电子,更高的能级将被填充,费米能级向上移动,费米能级相对于狄拉克点移动的幅度随薄膜厚度增加而减小。由半导体衬底引起的拓扑绝缘体薄膜费米能级的移动能够用功函数和电荷转移得到解释。随着薄膜厚度的增加,拓扑绝缘体薄膜的态密度也在增加,转移相同数目的电荷引起费米能级的移动幅度较小。
In this thesis, we have investigated theoretically the properties of the surface states oftopological insulators(TI) by using first-principles calculations based on the densityfunctional theory, which will provide a guidance for designing tunable TI-basednano-devices. The main results are summarized as follows:
     1. Strain induced topological phase transition: Based on first-principles calculations, westudy the dependence of topological phase on anisotropic interactions in Bi2Se3-typematerials. By applying different strains in order to vary interactions, we reveal that thetopological phase is insensitive to lateral interaction but can be effectively tuned bylongitudinal interaction. Longitudinal strain is inhomogeneous in the studied systems. Theinterquintuple interaction plays a dominant role in determining the topological phase. Theinter-quintuple separation in Sb2Se3is larger than that of Bi2Se3so that the spin-orbitcoupling of the former is weaker than the latter. Therefore Sb2Se3is a normal insulatorwhile Bi2Se3is a topological insulator. We explain the puzzling band-topology differencebetween Sb2Se3and Bi2Se3and propose an approach to tuning the topological phase bystrain. It is found that Sb2Se3can be converted into a topological insulator by applyingcompressive longitudinal strain to reduce the inter-quintuple separation and increase thespin-orbit coupling. A tensile strain will have an opposite tuning effect on theinter-quintuple separation and spin-orbit coupling and turn Bi2Se3into a normal insulator.We have studied thin films of Sb2Se3and Bi2Se3and also observed a strain-inducedtopological phase transition.
     2. The effects of the surface and interface on the TI films: Based on van der Waalsdensity functional calculations, we have studied few-quintuple-layer (QL) films of Bi2Se3and Bi_2Te_3. The inter-QL separation near the surface is found to have an up to about20%increase, while the inner QL separation is smaller and approaches the bulk value as thethickness grows. Accordingly, the surface Dirac cone of Bi2Se3film is evidently gappedfor small thickness (2~4QLs) and the gap is reduced and finally closed with the increasingthickness, agreeing well with the experiments. We further studied the substrate effect byinvestigating the Bi2Se3/graphene system. It is found that the underlying graphene inducesgiant thickness-dependent Rashba splitting and Dirac point shift with respect to the Fermi level. Because Bi_2Te_3films have smaller relative inter-QL expansion and strongerspin-orbit coupling, the gapless topological surface states emerge in the film as thin as2QL, in good accord with the experiments.
     3. The tuning of the surface and interface states by semiconductor substrate: We haveinvestigated the heterostructures of Bi_2Te_3/Si and Bi_2Se_3/GaAs by first-principlescalculations. It is found that the semiconductor substrate plays an important role in tuningthe Fermi level with respect to the Dirac point of topological insulators (TIs). Theworkfunctions of Bi_2Te_3and Bi_2Se_3are larger than that of the semiconductor substrate,leading to charge transfer from the substrate to TI and the upward Fermi level shift, whichis proportional to the difference of the workfunctions of the two interfaced materials.Thicker TI films have larger density of the states and hence the charge transferred to TIwill give rise to a smaller Fermi level shift. We also studied Bi_2Se_3on polarsemiconductor GaAs. It is found that different termination of GaAs at the interfacecorresponds to different work functions and will result in different Fermi level shift inBi_2Se_3.
引文
[1] Anderson, P. W., Basic Notions of Condensed Matter Physics[M]. Westview Press,1997.
    [2] Hurd, M. C., The Hall Effect in Metals and Alloys[M]. Plenum Press,New York,1973:400.
    [3] Smith, A. W. and Sears, R. W., The Hall Effect in Permalloy[J]. Phys. Rev.,1929.34:1466-1473.
    [4] Nagaosa, N., et al., Anomalous hall effect[J]. Rev. Mod. Phys.,2010.82(2):1539-1592.
    [5] Dyakonov, M. I. and Perel, V. I., Current-induced Spin Orientation of Electrons inSemiconductors[J]. Phys. Lett. A,1971.35(6):459-460.
    [6] Hirsch, J. E., Spin Hall Effect[J]. Phys. Rev. Lett.,1999.83:1834-1837.
    [7] Kato, Y. K., Myers, R. C, and Gossard, A. C., Current Induced Spin Polarization inStrained Semiconductors[J]. Phys. Rev. Lett.,2004.93:176601-176604.
    [8] Stern, P. N., Ghosh, S., Xiang, G., Zhu, M., Smarth,N., Awschalom, D. D.,Current-Induced Polarization and the Spin Hall Effect at Room Temperature[J].Phys. Rev. Lett.,2006.97:126603-126606.
    [9] Wunderlich, J., Kaestner, B., Sinova, J., Jungwirth, T., Experimental Observationof the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled SemiconductorSystem[J]. Phys. Rev. Lett.,2005.94:047204-047207.
    [10] Charles, D., Quantum Spin Hall Effect Shows up in a Quantum Well Insulator,Just as Predicted [J]. Physics Today,2008.61:1-19.
    [11] Qi, X. L. and Zhang, S. C., the quantum spin Hall effect and topologicalinsulators[J]. Physics Today,2010.63:33-38.
    [12] Klitzing, K. V., Dorda, G., Pepper, M., New Method for High-AccuracyDetermination of the Fine-Structure Constant based on Quantized HallResistance[J]. Phys. Rev. Lett.,1980.45:494-497.
    [13] Halperin, B. I., Quantized Hall conductance, current-carrying edge states, and theexistence of extended states in a two-dimensional disordered potential[J]. Phys.Rev. B,1982.25:2185-2190.
    [14] Wen, X. G., Chiral Luttinger liquid and the edge excitations in the fractionalquantum Hall states[J]. Phys. Rev. B,1990.41:12838-12844.
    [15] Laughlin, R.B., Quantized Hall conductivity in two dimensions[J]. Phys. Rev. B,1981.23:5632-5633.
    [16] Niu, Q. and Thouless, D. J., Nonlinear Correction to the Quantization of HallConductance[J]. Phys. Rev. B,1984.30:3561-3562.
    [17]叶飞,苏刚,拓扑绝缘体及其研究进展[J].物理,2010.39:564-569.
    [18] Tsui, D. C., Stormer, H., L. and Gossard, A. C., Two-dimensionalMagnetotransport in the Extreme Quantum Limit[J]. Phys. Rev. Lett.,1982.48:1559-1562.
    [19] Laughlin, R. B., Anomalous Quantum Hall Effect: An Incompressible QuantumLiquid with Fractionally Charged Excitations[J]. Phys. Rev. Lett.,1983.50:1395-1398.
    [20] Wen, X. G., Topological orders and edge excitations in fractional quantum Hallstates[J]. Advances in Physics,1995.44(5):405-473.
    [21] Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; Nijs, M. D., Quantized HallConductance in a Two-Dimensional Periodic Potential[J]. Phys. Rev. Lett.,1982.49:405-408.
    [22] Yennie, D.R., Integral quantum hall effect for nonspecialists[J]. Rev. Mod. Phys.,1987.59:781-824.
    [23] Huckestein, B.,Scaling theory of the integer quantum hall effect[J]. Rev. Mod.Phys.,1995.67:357-396.
    [24] Stormer, H. L.; Tsui, D.C. and Gossard, A.C., The fractional quan-tum halleffect[J]. Rev. Mod. Phys.,1999.71:S298-S305.
    [25] Murthy, G. and Shankar, R., Hamiltonian theories of the fractional quan-tum halleffect[J]. Rev. Mod. Phys.,2003.75:1101-1158.
    [26] Stormer, H. L., Nobel lecture: The fractional quantum hall effect[J]. Rev. Mod.Phys.1999,71:875-889.
    [27] Zhang, Y. B.; Tan, Y. W., Experimental Observation of the Quantum Hall Effectand Berry's Phase in Graphene[J]. Nature,2005.438:201-204.
    [28] Zhang, C. S., Topological States of Quantum Matter[J]. Physics,2008.1:6-9.
    [29] Qi, L.X. and Zhang, S. C, The Quantum Spin Hall Effect and TopologicalInsulators[J]. Physics Tody,2010.63:33-38.
    [30] Hasan, M. Z. and Kane, C. L., Colloquium: Topological insulators[J]. Rev. Mod.Phys.,2010.82:3045-3067.
    [31] Haldane, F. D. M., Model for a quantum Hall effect without Landau levels:Condensed-matter realization of the "parity anomaly"[J]. Phys. Rev. Lett.,1988.61:2015-2018.
    [32] Kane, C. L. and Mele, E. J., Quantum Spin Hall Effect in Graphene[J]. Phys. Rev.Lett.,2005.95:226801-226804.
    [33] Kane, C. L. and Mele, E. J., Z2Topological Order and the Quantum Spin HallEffect[J]. Phys. Rev. Lett.,2005.95:146802-146805.
    [34] Qi, X. L.; Hughes, T. L. and Zhang, S. C., Topological Field Theory ofTime-Reversal Invariant Insulators[J]. Phys. Rev. B.,2008.78:195424-195466.
    [35] Yao, Y. G.; Ye, F.; Qi, X. L.; Zhang, S. C., Spin-Orbit Gap of Graphene:First-Principles Calculations[J]. Phys. Rev. B.,2007.75:041401-041404.
    [36] Bernevig, B. A. and Zhang, S. C., Quantum spin hall effect[J]. Phys. Rev. Lett.,2006.96(10):106802-106805.
    [37] Bernevig, B. A.; Hughes, T. L. and Zhang, S. C., Quantum Spin Hall Effect andTopological Phase Transition in HgTe Quantum Wells[J]. Science,2006.314:1757-1761.
    [38] K nig, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.;Qi, X. L.; Zhang, S. C., Quantum Spin Hall Insulator State in HgTe QuantumWells[J]. Science,2007.318:766-770.
    [39] Wang, Z.; Qi, X. L. and Zhang, S. C., Topological order parameters for interactingtopological insulators[J]. Phys. Rev. Lett.,2010.105(25):256803-25806.
    [40] Wang, Z., Qi, X. L. and Zhang, S. C., Topological field theory and thermalresponses of interacting topological superconductors[J]. Phys. Rev. B,2011.84(1):014527-014531.
    [41] Fu, L.; Kane, C. L., and Mele, E. J., Topological Insulators in Three Dimensions[J].Phys. Rev. Lett.,2007.98:106803-106806.
    [42] Fu, L. and Kane, C. L., Topological Insulators with Inversion Symmetry[J]. Phys.Rev. B.,2007.76:045302-045318.
    [43] Moore, J. E. and Balents, L., Topological invariants of time-reversal-invariantband structures[J]. Phys. Rev. B.,2007.75:121306(R)-121309(R).
    [44] Roy, R., Topological phases and the quantum spin hall effect in threedimensions[J]. Phys. Rev. B.,2009.79:195322-195326.
    [45] Zhang, S. C. and Hu, J. P., A Four-Dimensional Generalization of the QuantumHall Effect[J]. Science,2001.294:823-828.
    [46] Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., ATopological Dirac Insulator in a Quantum Spin Hall Phase[J]. Nature,2008.452:970-974.
    [47] Hsieh, D., et al., Observation of Unconventional Quantum Spin Textures inTopological Insulators [J]. Science,2009.323:919-922.
    [48] Zhang, H. J.; Liu, C. X.; Dai, X.; Fang, Z.; Zhang, S. C., Topological Insulators inBi2Se3, Bi2Te3and Sb2Te3with a Single Dirac Cone on the Surface[J]. Nat. Phys.,2009.5:438-442.
    [49] Moore, J., Topological Insulators: The Next Generation[J]. Nat. Phys.,2009.5:378-380.
    [50] Chen, Y. L.;Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.;Zhang, H.J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X.,Experimental Realization of a Three-Dimensional Topological Insulator Bi2Te3[J].Science,2009.325:178-181.
    [51] Hsieh, D., et al., Observation of Time-Reversal-Protected Single-Dirac-ConeTopological-Insulator states in Bi2Te3and Sb2Te3[J]. Phys. Rev. Lett.,2009.103:146401-146404.
    [52] Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal,A.; Lin, H.; Bansil, A.; Grauer, D.;Hor, Y. S.; Cava, R. J.; Hasan, M. Z., Observation of a Large-GapTopological-Insulator Class with a Single Dirac Cone on the Surface[J]. Nat. Phys.,2009.5:398-402.
    [53] Hsieh, D.; Xia, Y.; Qian, Y.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.;Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.;Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., A Tunable Topological Insulatorin the Spin Helical Dirac Transport Regime[J]. Nature,2009.460:1101-1105.
    [54] Chen, Y. L., et al., Massive Dirac Fermion on the Surface of a Magnetically DopedTopological Insulator[J][J]. Science,2010.329(5992):659-662.
    [55] Zhang, Y.;Chang, C. Z.; He, K.; Wang, L. L.;Chen, X.; Jia, J. F.;Ma, X. C.; Xue, Q.K., Doping effects of Sb and Pb inepitaxial topological insulator Bi2Se3thin films:An in situ angle-resolved photoemission spectroscopy study[J]. Appl. Phys. Lett.,2010.97(19):194102-194104.
    [56] Zhang, G.; Qin, H.; Chen, J.; He, X.; Lu, L.; Li, Y.; Wu, K., Growth ofTopological Insulator Bi2Se3Thin Films on SrTiO3with Large Tunability inChemical Potential[J]. Adv. Funct. Mater.,2011.21(12):2351-2355.
    [57] Li, Y. Y.; Wang, G.; Zhu, X. G.; Liu, M. H.;Ye, C.; Chen, X.; Wang, Y. Y.; He, K.;Wang, L. L.; Ma, X. C.; Zhang, H. J.; Dai, X.; Fang, Z.;Xie, X. C.; Liu, Y.;Qi, X.L.; Jia, J. F.;Zhang, S. C.; Xue, Q. K., Intrinsic Topological Insulator Bi2Te3ThinFilms on Si and Their Thickness Limit[J]. Adv. Mater.,2010.22:4002-4008.
    [58] Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.;Fang, Z.; Dai, X.; Shan, W. Y.; Shen, S. Q.; Niu, Q.; Qi, X. L.; Zhang, S. C.;Ma, X.C.; Xue, Q. K., Crossover of the Three-Dimensional Topological Insulator Bi2Se3to the Two-Dimensional Limit[J]. Nat. Phys.,2010.6:584-588.
    [59] Zhang, T.; Cheng, P.; Chen, X.; Jia, J. F.; Ma, X. C.; He, K.; Wang, L. L.; Zhang,H. J.; Dai, X.; Fang, Z.; Xie, X. C.; Xue, Q. K., Experimental Demonstration ofTopological Surface States Protected by Time-Reversal Symmetry[J]. Phys. Rev.Lett.,2009.103:266803-266806.
    [60] Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y., Large bulk resistivityand surface quantum oscillations in the topological insulator Bi2Te2Se[J]. Phys.Rev. B,2010.82:241306(R).
    [61] Xiong, J.; Petersen, A. C.; Qu, D.; Hor, Y. S.; Cava, R. J.; Ong, N. P., Quantumoscillations in a topological insulator Bi2Te2Se with large bulk resistivity[J].Physical E.,2012.44(5):917-920.
    [62] Chen, J.; Qin, H. J.; Yang, F.; Liu, J.; Guan, T.; Qu, F. M.; Zhang, G. H.; Shi, R. J.;Xie, X. C.; Yang, C. L.; Wu, K. H.; Li, Y. Q.; Lu, L., Gate-Voltage Control ofChemical Potential and Weak Antilocalization in Bi2Se3[J]. Phys. Rev. Lett.,2010.105:176602-176605.
    [63] Lin, H.; Markiewicz, Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A.,Single-Dirac-Cone Topological Surface States in the TlBiSe2Class of TopologicalSemiconductors[J]. Phys. Rev. Lett.,2010.105:036404-0.36407.
    [64] Yan, B. H.; Liu, C. X.; Zhang, H. J.; Yam, C. Y.; Qi, X. L.; Frauenheim, T.; Zhang,S. C., Theoretical Prediction of Topological Insulators in Thallium-BasedIII-V-VI2Ternary Chalcogenides[J]. Euro. phys. Lett.,2010.90:37002-37006.
    [65] Kuroda, K.; Ye, M.; Kimura, A.; Eremeev, S. V.; Krasovskii, E. E.; Chulkov, E. V.;Ueda, Y.; Miyamoto, K.; Okuda, T.; Shimada, K.; Namatame, H.; Taniguchi, M.,Experimental Realization of a Three-Dimensional Topological Insulator Phase inTernary Chalcogenide TlBiSe2[J]. Phys. Rev. Lett.,2010.105:146801-146804.
    [66] Sato, T.; Segawa, K.; Guo, H.; Sugawara, K.; Souma, S.; Takahashi, T.; Ando Y.,Direct Evidence for the Dirac-Cone Topological Surface States in the TernaryChalcogenide TlBiSe2[J]. Phys. Rev. Lett.,2010.105:136802-136805.
    [67] Nakahara, M., Geometry, Topology and Physics[M]. Adam Hilger, Bristol,2003:573.
    [68] Kane, C. L., Condensed matter: An insulator with a twist[J]. Nat. Phys.,2008.4(5):348-349.
    [69] Hirahara, T.; Nagao, T.; Matsuda, I.; Bihlmayer, G.; Chulkov, E. V.; Koroteev, Y.M.; Echenique, P. M.; Saito, M.; Hasegawa, S., Role of Spin-Orbit Coupling andHybridization Effects in the Electronic Structure of Ultrathin Bi Films[J]. Phys.Rev. Lett.,2006.97(14):146803-146806.
    [70] Teo, J.C.Y.; Fu, L.; Kane, C. L., Surface states and topological invariants inthree-dimensional topological insulators: Application to Bi1-xSbx[J]. Phys. Rev. B,2008.78:045426-045440.
    [71] Fukui, T. and Hatsugai, Y., Quantum spin hall effect in three dimensionalmaterials: Lattice computation of Z2topological invariants and its application to biand Sb[J]. J. Phys. Soc. Jpn.,2007.76:053702.
    [72] Ran, Y.; Zhang, Y. and Vishwanath, A., One-dimensional topologically protectedmodes in topological insulators with lattice dislocations[J]. Nat. Phys.,2009.5:298-303.
    [73] Lin, H., et al., Half-Heusler ternary compound-s as new multifunctionalexperimental platforms for topological quantum phenomena[J]. Nat. Mater,2010.9(7):546-549.
    [74] Analytis, J. G., et al., Bulk fermi surface coexistence with dirac surface state inBi2Se3: A comparison of photoemission and shubnikovde haas measurements[J].Phys. Rev. B.,2010.81:205407.
    [75] Park, S. R., et al., Quasiparticle scattering and the protected nature of thetopological states in a parent topological insulator Bi2Se3[J]. Phys. Rev. B,2010.81:041405(R)-041408(R).
    [76] Shen, S.-Q., Quantum hall effect of the surface states in topological insulator[J].e-print arXiv:0909.4125,2009.
    [77] Hasan, M. Z.; Kane, C. L., Topological Insulators[J]. arXiv:1002.3895v2,2010.
    [78] Shan, W. Y.; Lu, H. Z.; Shen, S. Q., Effective continuous model for surface statesand thin films of three-dimensional topological insulators[J]. New J. Phys.,2010.12:043048-043070.
    [79] Zhang, Y., et al., Crossover of the three-dimensional topological insulator Bi2Se3to the two-dimensional limit[J]. Nat. Phys,2010.6:584-588.
    [80] Roushan, P., et al., Topological surface states protected from backscattering bychiral spin texture[J]. Nature,2009.460:1106-1109.
    [81] Guo, H. M. and Franz, M., Theory of quasiparticle interference on the surface of astrong topological insulator[J]. Phys. Rev. B.,2010.81:041102(R)-041105(R).
    [82] Zhou, X., et al., Theory of quasiparticle scattering in a two-dimensional system ofhelical dirac fermion-s: Surface band structure of a three-dimensional topologicalinsulator[J]. Phys. Rev. B,2009.80:245317-245328.
    [83] Lee, W. C.; Wu, C. J.; Arovas, D. P.; Zhang, S. C., Quasiparticle interference onthe surface of the topological insulator Bi2Te3[J]. Phys. Rev. B,2009.80:245439-245443.
    [84] Kohn, W.; Shan, L. J., Self-consistent equations including exchange andcorrelation effects[J]. Phys Rev,1965.140:A1133-A1138.
    [85] People, J. A. and Gordon, M. S., Molecular orbital theory of the electronicstructure of organic compounds. I. Substituent effects and dipole moments[J]. J.Am. Chem. Soc.,1967.89:4253-4261.
    [86] A, G.W. and H.L. B, The description of chemical bonding from ab initiocalculations[J]. Ann Rev Phys Chem,1978.29:363-396.
    [87] Hohenberg, P. C.; Kohn, W., Inhomogeneous electron gas[J]. Phys. Rev. B,1964.136:B864-B871.
    [88]谢希德和陆栋,固体能带理论[M].复旦大学出版社,1998.
    [89] Hartree, D., The wave mechanics of an atom with a non-Coulomb central field.Part I. Theory and methods[J]. Proc. Cambridge Phil. Soc.,1928.24(1):89-110.
    [90] Fock, V., Original-zitate zum hartree-fock-ansatz[J]. Zeits. F. Physik.,1930.61(1-2):126-148.
    [91] March, N. H., The thomas-fermi approximation in quantum mechanics[J].Advance in Physics,1957.6:1-101.
    [92] Ceperley, D. M.;Alder, B. J., Ground state of the electron gas by a stochasticmethod[J]. Phys. Rev. Lett.,1980.45(7):566-569.
    [93] Perdew, J. P.; Zunger, A., Self-Interaction Correction to Density-FunctionalApproximations for Many-Electron Systems[J]. Phys. Rev. B,1981.23:5048-5079.
    [94] Becke, A. D., Density-functional exchange-energy approximation with correctasymptotic behavior[J]. Phys. Rev. A,1988.38:3098-3100.
    [95] Perdew, J. P.; Chevary, J. A.;Vosko, S. H.; Jackson, K. A.; Perderson, M. R.,Atoms, molecules, solids, and surfaces: Applications of the generalized gradientapproximation for exchange and correlation[J]. Phys. Rev. B,1992.46(11):6671-6687.
    [96] Perdew, J. P.; Wang, Y., Accurate and simple density functional for the electronicexchange energy: Generalized gradient approximation[J]. Phys. Rev. B,1986.33:8800-8802.
    [97] Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation madesimple[J]. Phys. Rev. Lett.,1996.77(18):3865-3868.
    [98] Bl ch, P. E., Projector augmented-wave method [J]. Phys. Rev. B,1994.50(24):17953-17979.
    [99] Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Phys. Rev. B,1999.59(3):1758-1775.
    [100] Holzwarth, N. A. W.; Matthews, G. E.; Dunning, R. B.; Tackett, A. R.; Zeng, Y.,Comparison of the projector augmented-wave, pseudopotential, and linearizedaugmented-plane-wave formalisms for density-functional calculations of solids[J]. Phys. Rev. B,1997.55(4):2005-2017.
    [101] Grundler, D., Spintronics[J]. Physics World,2002.15:39-43.
    [102] Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Phys. Rev. B,1996.54:11169-11175.
    [103] Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations formetals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci.,1996.6:15-50.
    [104] Fu, L. and Kane, C.L., Time reversal polarization and a Z2adiabatic spin pump[J].Phys. Rev. B,2006.74:195312-195324.
    [105] Zhang, G. H., et al., Quintuple-layer epitaxy of thin films of topological insulatorBi2Se3[J]. Appl. Phys. Lett.,2009.95:053114-053116.
    [106] Garate, I. and Franz, M., Inverse Spin-Galvanic Effect in the Interface between aTopological Insulator and a Ferromagnet[J]. Phys. Rev. Lett.,2010.104:146802-146805.
    [107] Fu, L. and Kane, C. L., Superconducting Proximity Effect and Majorana Fermionsat the Surface of a Topological Insulator[J]. Phys. Rev. Lett.,2008.100:096407-096410.
    [108] Song, J. H.; Jin, H., and Freeman, A. J., Interfacial Dirac Cones from AlternatingTopological Invariant Superlattice Structures of Bi2Se3[J]. Phys. Rev. Lett.,2010.105:096403-096406.
    [109] Yazyev, O. V.; Moore, J. E.; Louie, S. G., Spin Polarization and Transport ofSurface States in the Topological Insulators Bi2Se3and Bi2Te3from FirstPrinciples[J]. Phys. Rev. Lett.,2010.105:266806-266809.
    [110] Chen, Y. L., et al., Massive Dirac Fermion on the Surface of a Magnetically DopedTopological Insulator [J]. Science,2010.329:659-662.
    [111] Teweldebrhan, D.; Goyal, V. and Balandin, A. A., Exfoliation andCharacterization of Bismuth Telluride Atomic Quintuples andQuasi-Two-Dimensional Crystals[J]. Nano Lett.,2010.10(1209):1209-1218.
    [112] Young, S. M., et al., Theoretical investigation of the evolution of the topologicalphase of Bi2Se3under mechanical strain[J]. Phys. Rev. B.,2011.84:085106-085109.
    [113] Xiao, D., et al., Half-Heusler Compounds as a new Class of Three-DimensionalTopological Insulators[J]. Phys. Rev. Lett.,2010.105:096404.
    [114] Chadov, S., et al., Tunable multifunctional topological insulators in ternaryHeusler compounds[J]. Nature Materials,2010.9:541-545.
    [115] Monkhorst, H. J. and Pack, J. D., Special points for Brillouin-zone integrations[J].Phys. Rev. B.,1976.13(12):5188-5192.
    [116] Jepson, O. and Anderson, O. K., The electronic structure of h.c.p. Ytterbium[J].Solid State Commun.,1971.9(20):1763-1767.
    [117] Methfessel, M. and Paxton, A. T., High-precision sampling for Brillouin-zoneintegration in metals[J]. Phys. Rev. B,1989.40(6):3616-3621.
    [118] Bl chl, P. E.; Jepsen, O.; Andersen, O. K., Improved tetrahedron method forBrillouin-zone integrations[J]. Phys. Rev. B,1994.49(23):16223-16233.
    [119] Hobbs, D.; Kresse, G.; Hafner, J., Fully unconstrained noncollinear magnetismwithin the projectoraugmented-wave method[J]. Phys. Rev. B,2000.62(17):11556-11570.
    [120] Hybertsen, M. S.; Louie, S. G., Electron correlation in semiconductors andinsulators: Band gaps and quasiparticle energies[J]. Phys. Rev. B,1986.34(8):5390.
    [121] Klintenberg, M., The search for strong topological insulators[J]. arXiv:1007.4838,2010.
    [122] Zhang, W., et al., First-principles studies of the three-dimensional strong toplogicalinsulator Bi2Te3,Bi2Se3and Sb2Te3[J]. New. J. Phys.,2010.12(065013):065013-065026.
    [123] Douglas, R. W. and Goldsmi, H. J., The use of semiconductors in thermoelectricrefrigeration, Br. J. Appl. Phys.,1954.5:458.
    [124] Wright, D.A., Nature(London),1958.183:834.
    [125] Mishray, S.K.; Satpathy, S.; Jepsen, O. J., Electronic structure and thermoelectricproperties of bismuth telluride and bismuth selenide, J. Phys.:Condens. Matter1997.9:461-470.
    [126] Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.;Hor, S. Y.; Cava, R. J.; Hasan, M. Z., Observation of a large-gap topologicalinsulator class with a single Dirac cone on the surface, Nat. Phys.,2009.5:398-402.
    [127] Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.;Fang, Z.;Dai, X.; Shan, W. Y.; Shen, S. Q.; Niu, Q.; Qi, X. L.; Zhang, S. C.; Ma, X.C.; Xue, Q. K., Crossover of the three-dimensional topological insulator Bi2Se3tothe two dimensional limit, Nat. Phys.,2010.6:584-588.
    [128] Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.;Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.;Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., A tunable topological insulatorin the spin helical Dirac transport regime, Nature,2009.460:1101-1105.
    [129] Chen, Y. L.; Analytis, J. G.; Chu, J. H; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, S.C.; Fisher, I. R.; Huassain, Z.; Shen, Z. X., Experimental Realization of a ThreeDimensional Topological Insulator Bi2Te3, Science,2009.325:178-181.
    [130] Hong, S. S., et al., Ultra-low carrier concentration and surface-dominant transportin antimony-doped Bi2Se3topological insulator nanoribbons[J]. NatureCommunications2012.3:757.
    [131] Li, Y.Y., et al., Intrinsic Topological Insulator Bi2Te3Thin Films on Si and TheirThickness Limit, Adv. Mater.,2010.22:4002-4007.
    [132] Peng, H. L., et al., Aharonov–Bohm interference in topological insulatornanoribbons[J]. Nature Materials2010.9:225-229.
    [133] Tang, H., et al., Two Dimensional Transport-Induced Linear Magneto-Resistancein Topological Insulator Bi2Se3Nanoribbons[J].5,2011:7510-7516.
    [134] Yazyev, O.V.; Moore, J. E. and Louie, S. G., Spin Polarization and Transport ofSurface States in the Topological Insulators Bi2Se3and Bi2Te3from FirstPrinciples, Phys. Rev. Lett.,2010.105:266806-266809.
    [135] Zhang, W., et al., First-principles studies of the three-dimensional strong toplogicalinsulator Bi2Te3,Bi2Se3and Sb2Te3New J. Phys.,2010.12:065013-065026.
    [136] Jin, H.; Song, J. H. and Freeman, A. J., Dirac cone engineering in Bi2Se3thinfilms[J]. Phys. Rev. B,2011.83:125319-125323.
    [137] Liu, C.-X., et al., Oscillatory crossover from two-dimensional to three-dimensionaltopological insulators[J]. Phys. Rev. B,2010.81:041307(R)-041310(R).
    [138] Perdew, J. P.; Burke, K., and Ernzerhof, M., Phys. Rev. Lett.,1996.77:3865-3868.
    [139] Klime, J.; Bowler, D. R., and Michaelides, A.,Chemical accuracy for the van derWaals density functional, J. Phys.:Condens. Matter,2010.22:022201-022205.
    [140] Klime, J.; Bowler, D. R., and Michaelides, A., Phys. Rev. B,2011.83:195131-195143.
    [141] Wyckoff, W. G., Crystal Structures(Wiley-InterScience, New York),1964.
    [142] Black, J., et al., J. Phys. Chem. Solids,1957.2:240.
    [143] Young, S.M., et al., Theoretical investigation of the evolution of the topologicalphase of Bi2Se3under mechanical strain, Phys. Rev. B,2011.84:085106-085109.
    [144] Liu, W.L., et al., Anisotropic interactions and strain-induced topological phasetransition in Sb2Se3and Bi2Se3, Phys. Rev. B,2011.84:245105-245109.
    [145] Luo, X.; Sullivan, M. B. and Quek, S.Y.,Phys. Rev. B,2012.86:184111-184126.
    [146] Zhang, Y., et al., Crossover of the three-dimensional topological insulator Bi2Se3to the two-dimensional limit[J]. Nat. Phys.,2010.6:584-588.
    [147] Li, Y.Y., et al., Intrinsic Topological Insulator Bi2Te3Thin Films on Si and TheirThickness Limit[J]. Advan. Mater.,2010.22:4002-4007.
    [148] Zaanen, J., Fast Electrons Tie Quantum Knots [J]. Science,2009.323:888-890.
    [149] Büttiker, M., Edge-State Physics Without Magnetic Fields [J]. Science,2009.325:278-279.
    [150] Zhang, G. H., et al., Quintuple-layer epitaxy of thin films of topological insulatorBi2Se3[J]. Appl. Phys. Lett.,2009.95:053114-053116.
    [151] Liu, C. X., et al., Oscillatory crossover from two-dimensional to three-dimensionaltopological insulators, Phys. Rev. B,2010.81:041307(R)-041310(R).
    [152] Song, C.L., et al., Topological insulator Bi2Se3thin films grown on double-layergraphene by molecular beam epitaxy[J]. Appl. Phys. Lett.,2010.97:143118-143120.
    [153] Richardella, A., et al., Coherent heteroepitaxy of Bi2Se3on GaAs(111)B[J]. Appl.Phys. Lett.,2010.97:262104-262106.
    [154] Sakamoto, Y., et al., Spectroscopic evidence of a topological quantum phasetransition in ultrathin Bi2Se3films[J]. Phys. Rev. B,2010.81:165432-165435.
    [155] Hirahara, T., et al., Anomalous transport in an n-type topological insulatorultrathin Bi2Se3film[J]. Phys. Rev. B,2010.82:155309-155314.
    [156] Haneman, D., Adsorption and Bonding Properties of Cleavage Surfaces ofBismuth Telluride[J]. Phys. Rev.,1960.119:567-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700