FW-Ⅱ型轴流泵短期辅助生物功能性和血液相容性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     FW-Ⅱ型轴流泵是经计算机流体力学优化设计的旋转叶轮连续性血流心室辅助装置。本研究拟利用大动物短期存活实验观察FW-Ⅱ轴流泵的循环辅助效果,并评价其对大动物的的血流动力学、肝肾功能的影响,为其后期的临床试验提供基础数据。方法:
     9只小尾寒羊(60-75kg)分为轴流泵组(n=6)和假手术组(n=3),轴流泵组通过胸部左外侧切口,建立左心室-轴流泵-胸降主动脉心室辅助模型;假手术组在心尖部和胸降主动脉处切开后直接缝合,未安装轴流泵。术后3天内应用肝素抗凝,使全血激活凝固时间(ACT)维持至150-200秒,后期联合阿司匹林(100mg/d)和华法令(3mg/d)抗凝。应用Swan-Ganz导管监测手术前后、轴流泵不同转速下(7000-9000转/分)左心做功指数(LVSWI)、心指数(CI)、心肌加速度指数(ACI)、心率收缩压乘积(RPP)、肺毛细血管楔压(PCWP)和中心静脉压(CVP)等血流动力学指标;联合经食道超声心动图监测轴流泵不同转速下主动脉瓣开放关闭情况,分析不同转速和主动脉瓣开放、收缩压、舒张压、平均动脉压及脉压差之间相关性。在术前、术后第1、3、5、7、10及14天抽取两组动物静脉血检测肌酸激酶(CPK)、乳酸脱氢酶(LDH)、总蛋白、总胆红素、谷草转氨酶(AST)、谷丙转氨酶(ALT)、尿素氮(BUN)和肌酐(Cr)水平,评价肝肾功能。结果:
     9只羊术后6-8小时拔除气管插管,其中FW-Ⅱ轴流泵辅助组5只羊辅助持续14至16天,轴流泵运转正常,1只羊因术后出血于第7天提前终止实验。在14天内,轴流泵的转速维持至7500-8500转/分,产生的血流量稳定在3.0±0.7L/min。同术前相比,术后随着转速的增加,LVSWI、CI、ACI和RPP显著降低(P<0.01)。在轴流泵转速设置范围内(7000-9000转/分),同主动脉瓣开放时相比较,主动脉瓣关闭时舒张压、平均压均显著增加(P<0.05),脉压差显著减少(P<0.05),收缩压无显著性差异(P>0.05);同轴流泵低转速(7000rpm)相比,高转速(9000rpm)时主动脉瓣开放次数显著减少(22% vs 97%,P<0.001);同低脉压差相比(<15mmHg),高脉压差时主动脉瓣开放次数显著增加(65% vs24%,P<0.001)。轴流泵组和假手术组CPK、LDH水平都在术后第三天达到峰值(673±26IU/L vs 642±22IU/L,357±13IU/L vs 302士14IU/L,P>0.05),10天后恢复至术前水平。两组总蛋白水平在术后第3天下降至最低(5.9±0.09g/dL vs6.1±0.12g/dL,P>0.05),术后10天恢复至正常范围;两组总胆红素水平术后第3天达峰值(0.5±0.04mg/dL vs 0.31±0.03mg/dL,P<0.05),术后7天恢复至术前水平。轴流泵组和假手术对照组AST及ALT均有升高,AST上升更为明显,术后第3天达到峰值(229.4±31.9IU/L vs 203.4±531.9IU/L,P>0.05),10天后逐渐下降至术前水平;两组的的ALT手术前后无显著性差异(12.9±53.1 vs15.6±6.1,P>0.05)。两组的BUN和Cr水平在14天内均保持稳定水平,最高峰值出现在第5天(14.5±2.5 vs13.2±2.1mmol/L;1.6±0.03 vs 1.5±0.03μmol/L),后逐渐降至正常范围。结论:
     FW-Ⅱ型泵可安全短期辅助实验动物,左心辅助效果明显,血流动力学稳定,肝肾功能无损害。目的:
     通过观察FW-Ⅱ型轴流泵短期辅助期间血液相容性表现,及白细胞-血小板聚集体生成水平在辅助循环过程与血栓形成的关系,为后期临床应用提供抗凝依据和监测手段。方法:
     分别于轴流泵组和假手术组术前、术后第1、3、5、7、10、14天采集中心静脉血液标本,检测常规血液学指标包括:红细胞、白细胞、血小板计数、血浆游离血红蛋白(PFH)、凝血酶原时间(PT)、国际标准化比值(INR)、部分凝血活酶时间(APTT)、凝血酶时间(TT)、纤维蛋白原(Fg),检测血清中白介素-6(IL-6)、肿瘤坏死因子-α(TNF-a)、补体C3a和C5a含量。通过流式细胞仪检测上述时间点血小板激活和白细胞-血小板聚集体;在术后第10天,不同转速下(7000、7500、8000、8500和9000转/分),分别采集静脉血检测白细胞-血小板聚集体。于术前、术后、血小板数恢复正常后、口服阿司匹林后和口服华法令后分别抽取静脉血,通过PFA-100分析仪检测花生四烯酸(AA)和二磷酸腺苷(ADP)诱导的血小板聚集率;通过血栓弹力描记图(TEG)检测反应时间(R值)、凝固时间(K值)、血栓最大幅度值(Ma)、凝固角(a)、凝血指数(CI),监测凝血功能状态。实验结束后,拆分轴流泵观察各组成部分有无血栓形成,取材观察心、肺、脾、肾、脑大体和镜下病理表现。结果:
     轴流泵组和假手术组术后红细胞计数均下降,术后第3天最低(2.4×1012/Lvs 3.2×1012/L),两组分别于术后10天和14天恢复至术前水平。轴流泵组术后血浆游离血红蛋白水平第三天达到最高值(170±20mg/L),1周内维持在50mg/L以上,10天后逐渐降低;假手术组后第1天略有增高,2天后降至术前水平。两组动物白细胞计数术后第5天达到高峰(13.28±0.24×109/L vs 11.74±0.96×109/L),随后逐渐下降;与假手术组相比,轴流泵组术后14天内白细胞计数维持在较高水平。两组血小板计数均于术后3天内均有不同程度下降,随后逐渐增加,14天内血小板数变化无显著性差异(P>0.05)。与术前相比较,植入轴流泵后外周血中循环血小板激活和白细胞-血小板聚集体形成,术后第2天达到高峰(42±6%,40±5%,P<0.01),7天内维持较高状态,后逐渐降低,但术后14天仍高于术前水平(17±4%,20±6%,P>0.05);第三只实验羊的白细胞-血小板聚集体活化数显著高于另外4只。在第10天,调节轴流泵转速从7000增加到9000转/分,血小板活化和白细胞-血小板聚集体数变化呈现V字形变化,在8000转/分时最低(15±3%,16±4%),而在7000转/分和9000转/分时达到高值(33±3%,31±5%)。血小板激活和白细胞-血小板聚集体在术后早期持续高水平状态,口服阿司匹林后,血小板活化数减少(P<0.01),而白细胞-血小板聚集体数无减少。与术前相比较,血小板聚集率在术后早期下降,血小板计数恢复后显著增加(P<0.05),口服阿司匹林治疗后显著降低(P<0.01),而在口服华法令治疗后无显著改变。与术前相比,R值和K值术后无显著变化;凝固角和MA在血小板计数恢复后显著增加(P<0.01),抗血小板治疗后无显著改变;凝血指数在血小板计数恢复后增加(P<0.05),在抗血小板治疗后下降。实验结束后拆分FW-Ⅱ轴流泵,轴流泵轴两端根部有少量血栓形成(重0.008±0.004g),除第三次实验泵流入管处有少量血栓形成(重0.14g),所有泵的前、后导叶、叶轮及泵管均无血栓形成,心脑脾肾等主要脏器大体和镜下观察均无血栓形成及缺血梗死表现。结论:
     FW-Ⅱ型泵抗血栓性能良好,可用于短期循环辅助。8000转/分血小板活化和白细胞-血小板聚集体值达到最低。
Objective:
     FW-Ⅱaxial blood pump is rotary impeller continuous blood ventricular assist device with design optimization of computational fluid dynamics. In this study, we observed assistance effect of FW-II axial blood pump, and evaluated its impact on hemodynamics, liver and renal function by large animal survival experiment.
     Methods:
     9 small tail sheep were divided into axial blood pump group(n=6) and sham group(n=3):for pump group, left ventricular-axial blood pump-descending aorta model was established by the left lateral thorocotomy; for sham group, incise and suture cardiac apex and descending aorta without implanting pump. All sheep were used heparin to maintain 150-200 seconds of ACT, and then received oral aspirin(100mg/day) and warfarin(3mg/day). We used Swan-Ganz to monitor indices of hemodynamics perioperatively:left ventricular stroke work index(LVSWI), cardiac index(CI), acceleration index(ACI), rate-pressure-product(RPP), pulmonary Capillary wedge pressure(PCWP); Aortic valve opening and closing was observed by transesophageal echocardiography under different rotational speed, the relation between different pump speed and mean arterial pressure, pulse pressure, and aortic valve opening was analyzed. Serum creatine kinase (CPK), lactate dehydrogenase (LDH), total protein, total bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine (Cr) level were detected in the preoperative,1,3,5,7,10 and 14 days to assess the function of liver and kidney.
     Results:
     All sheep were extubated 6-8 hours postoperatively. For pump group,5 sheep were assisted for 14-16 days without pump dysfunction, one sheep died of hemorrhage at 7 days. Within 14 days, the pump was maintained 7500-8500 rounds per minute(RPM), and produce stable blood flow(3.0±0.7L/min). Compared with the preoperative value, LVSWI, CI, ACI, and RPP were significantly lower (P<0.01). within the range of pump speed setting, compared with aortic valve opening, pump speed, diastolic pressure, mean arterial pressure significantly increased (P<0.05), pulse pressure significantly reduced (P<0.05), systolic blood pressure insignificantly changed (P> 0.05) when aortic valve closed. compared to high speed (9000rpm), the number of aortic valve opening reduced significantly with low-speed (7000rpm) (22% vs 97%, P<0.001). Compared with low pulse pressure (<15mmHg), the number of aortic valve opening with high pulse pressure(>15mmHg) increased significantly (65% vs 24%, P<0.001). CPK and LDH levels of two groups peaked in day 3(673±26 vs 642±22 IU/L,357±13IU/L vs 302±14IU/L, P>0.05), gradually recovered to preoperative level at day 10. Total protein levels in two groups were the lowest at day 3(5.9±0.09g/dL vs 6.1±0.12g/dL, P> 0.05), returned to normal level at day10; total bilirubin of two groups peaked at day 3 (0.5±0.04mg/dL vs 0.31±0.03mg/dL, P <0.05), decreased to preoperative level at day 5. AST level of two groups increased significantly, peaked at day 3 (229.4±31.9 vs 203.4±31.9 IU/L, P> 0.05), declined to preoperative level at day 10; there was no significant difference between pre and post operative ALT level of two groups (12.9±3.1 vs 15.6±6.1, P> 0.05). within 14 days, BUN and Cr levels in both groups remained stable, peaked at day 5 (14.5±2.5 vs13.2±2.1mmol/L; 1.6±0.03 vs 1.5±0.03μmol/L).
     Conclusions:
     FW-Ⅱaxial blood pump can safely assist animals, unload left ventricular obviously, present stable hemodynamics, and has little effect on liver and kidney function.
     Blood Compatibility Study of FW-II Axial Blood Pump for Short-Term Assistance
     Objective:
     To provide anticoagulation evidence and monitoring methods for future clinical use, we observed blood compatibility of FW-II axial blood pump and the relation between leukocyte-platelet aggregation and thrombosis for short-term assistance.
     Methods:
     At preoperative and postoperative day 1,3,5,7,10,14, venous samples of pump and sham group were collected to detect hematologic indices:red blood cells, white blood cells, platelets count, plasma free hemoglobin and coagulation parameters. serum interleukin-6(IL-6), tumor necrosis factor (TNF-α), C3a and C5a content were also detected by enzyme-linked immunosorbent assay(ELISA). Platelet activation and leukocyte-platelet aggregation were detected by flow cytometry. At day 10, venous samples of different speed(7000-9000 round per minute) were collected to detect leukocyte-platelet aggregation. At the day of preoperative, postoperative, platelet count normalization, aspirin, and warfarin, venous samples were collected, platelet aggregation induced by arachidonic acid (AA) and adenosine diphosphate (ADP) was detected through PFA-100 analyzer. Thrombelastography(TEG) was used to monitor coagulation status:R time (R value), K time (K), maximum amplitude(Ma), (a), coagulation index (CI). FW-II axial blood pumps were explanted and each part was inspected to find any thrombus formation. Macroscopic and histological examination were checked on heart, brain, kidney and spleen respectively for thrombosis.
     Results:
     Postoperative red blood cell count of two groups decreased, reached the lowest level at day 3 (2.4×1012/Lvs3.2×1012/L), and returned to preoperative level respectively at day 10 and 14. Plasma free hemoglobin of pump group peaked at day 3(170mg±20mg/L), maintained 50mg/L within 7 days, and gradually decreased from day 10. White blood cell count of two groups peaked at day 5(13.28±0.24×109/L vs 11.74±0.96×109/L), and then gradually decreased. Compared to sham group, WBC count of pump group had been a high level. Platelet count of two groups decreased within 3 days, and gradually returned to preoperative level. Compared with preoperative baseline, the number of platelet activation and leukocyte-platelet aggregates reached the peak at postoperative day 2(42±6%,40±5%,P<0.01), retained a high level within 7 days, then gradually decreased, but were still higher than preoperative level at day 14 (17±4%,20±6%, P>0.05). According to rotating speed, the number of platelet activation and platelet-leukocyte aggregates were lowest at the speed of 8000 round per minute (15±3%,16±4%). Platelet-leukocyte aggregates of the third sheep were significantly higher than other four sheep. Compared with preoperative baseline, platelet aggregates significantly increased after platelet count recover to normal level. Compared with preoperative baseline, there was no significant change for R and K value, aangle and MA significantly increased after platelet count recovered to normal level, coagulation index increased after postoperatively platelet count normalization, reduce significantly after oral aspirin. Minus thrombus were found in front and rear hub of pump rotor(0.008±0.004g). except round thrombus of inflow housing in the third pump, no thrombus at other components (flow straighter, impeller, pump housing) was found. There was not any ischemia and infarction evidence in macroscopic and histological examination of heart, brain, kidney and spleen.
     Conclusion:
     FW-Ⅱaxial blood pump can be used to assist left ventricular circulation for 2 weeks with a satisfactory antithrombosis ability. The level of platelet activation and leukocyte-platelet aggregation can be reduced to bottom at a optimized pump speed.
引文
1. Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). The American journal of cardiology.2008; 101(7):1016-22.
    2. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C. Heart disease and stroke statistics--2010 update:a report from the American Heart Association. Circulation.2010; 121(7):e46.
    3. Lietz K, Miller LW. Improved survival of patients with end-stage heart failure listed for heart transplantation:analysis of organ procurement and transplantation network/U.S. United Network of Organ Sharing data,1990 to 2005. J Am Coll Cardiol.2007; 50(13):1282-90.
    4. Baughman KL, Jarcho JA. Bridge to life--cardiac mechanical support. N Engl J Med.2007; 357(9):846-9.
    5. Miller LW. Left Ventricular Assist Devices Are Underutilized. Circulation.2011; 123(14):1552-8.
    6. El-Banayosy A, Arusoglu L, Kizner L, Tenderich G, Minami K, Inoue K, Korfer R. Novacor left ventricular assist system versus Heartmate vented electric left ventricular assist system as a long-term mechanical circulatory support device in bridging patients:a prospective study. J Thorac Cardiovasc Surg.2000; 119(3):581-7.
    7. Kirsch M, Vermes E, Damy T, Nakashima K, Senechal M, Boval B, Drouet L, Loisance D. Single-centre experience with the Thoratec paracorporeal ventricular assist device for patients with primary cardiac failure. Arch Cardiovasc Dis.2009; 102(6-7):509-18.
    8. Demir O, Biyikli E, Lazoglu I, Kucukaksu S. Design of a Centrifugal Blood Pump:Heart Turcica Centrifugal. Artif Organs.2011.
    9. John R. Current axial-flow devices--the HeartMate Ⅱ and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg.2008; 20(3):264-72.
    10. Goldstein DJ, Zucker M, Arroyo L, Baran D, McCarthy PM, Loebe M, Noon GP. Safety and feasibility trial of the MicroMed DeBakey ventricular assist device as a bridge to transplantation. J Am Coll Cardiol.2005; 45(6):962-3.
    11. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, Conte JV, Naka Y, Mancini D, Delgado RM, MacGillivray TE, Farrar DJ, Frazier OH. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med.2007; 357(9):885-96.
    12. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM,3rd, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med.2009; 361(23):2241-51.
    13.张岩,薛嵩,桂幸民,胡盛寿,孙寒松,朱晓东.运用三维数值模拟对人工心脏轴流血泵的设计和改进.中国生物医学工程学报.2007;(01).
    14. Zhang Y, Zhan Z, Gui XM, Sun HS, Zhang H, Zheng Z, Zhou JY, Zhu XD, Li GR, Hu SS, Jin DH. Design optimization of an axial blood pump with computational fluid dynamics. ASAIO J.2008; 54(2):150-5.
    15. Zhang Y, Hu SS, Zhou JY, Sun HS, Zhang H, Zheng Z, Zhu XD, Li GR, Gui XM, Zhan Z, Jin DH. Design and performance testing of an axial-flow ventricular assist device developed at the Fu Wai Hospital in Beijing. Int J Artif Organs.2008; 31(11): 983-7.
    16. Svitek RG, Smith DE, Magovern JA. In vitro evaluation of the TandemHeart pediatric centrifugal pump. ASAIO J.2007; 53(6):747-53.
    17. Saito A, Shiono M, Orime Y, Yagi S, Nakata KI, Eda K, Hattori T, Funahashi M, Taniguchi Y, Negishi N, Sezai Y. Effects of left ventricular assist device on cardiac function:Experimental study of relationship between pump flow and left ventricular diastolic function. Artificial Organs.2001; 25(9):728-32.
    18. Tuzun E, Eya K, Chee HK, Conger JL, Bruno NK, Frazier OH, Kadipasaoglu KA. Myocardial Hemodynamics, Physiology, and Perfusion with an Axial Flow Left Ventricular Assist Device in the Calf. ASAIO Journal.2004; 50(1):47-53.
    19. Frazier OH, Myers TJ, Westaby S, Gregoric ID. Clinical experience with an implantable, intracardiac, continuous flow circulatory support device:Physiologic implications and their relationship to patient selection. Annals of Thoracic Surgery. 2004; 77(1):133-42.
    20. Frazier OH, Myers TJ, Gregoric ID, Khan T, Delgado R, Croitoru M, Miller K, Jarvik R, Westaby S. Initial clinical experience with the Jarvik 2000 implantable axial-flow left ventricular assist system. Circulation.2002; 105(24):2855-60.
    21. Frazier OH, Shah NA, Myers TJ, Robertson KD, Gregoric ID, Delgado R. Use of the flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplantation. Cardiology.2004; 101(1-3):111-6.
    22. Letsou GV, Myers TJ, Gregoric ID, Delgado R, Shah N, Robertson K, Radovancevic B, Frazier OH. Continuous axial-flow left ventricular assist device (Jarvik 2000) maintains kidney and liver perfusion for up to 6 months. Annals of Thoracic Surgery.2003; 76(4):1167-70.
    23. Radovancevic B, Vrtovec B, de Kort E, Radovancevic R, Gregoric ID, Frazier OH. End-organ Function in Patients on Long-term Circulatory Support With Continuous- or Pulsatile-flow Assist Devices. Journal of Heart and Lung Transplantation.2007; 26(8):815-8.
    24. Nicolson DG, Porto I, Westaby S, Boardman P, Banning AP. Spontaneous Echocardiographic Contrast in the Ascending Aorta Mimicking the Appearance of Aortic Dissection in a Patient with a Left Ventricular Assist Device. Echocardiography. 2004; 21(2):193-5.
    25. Golding LR, Jacobs G, Murakami T, Takatani S, Valdes F, Harasaki H, Nose Y. Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Transactions-American Society for Artificial Internal Organs.1980; 26:251-5.
    26. De Robertis F, Birks EJ, Rogers P, Dreyfus G, Pepper JR, Khaghani A. Clinical performance with the Levitronix Centrimag short-term ventricular assist device. Journal of Heart and Lung Transplantation.2006; 25(2):181-6.
    27. Schmid C, Tjan TDT, Etz C, Schmidt C, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the incor left ventricular assist device. Journal of Heart and Lung Transplantation.2005; 24(9): 1188-94.
    28. Allaire PE, Kim HC, Maslen EH, Olsen DB, Bearnson GB. Prototype continuous flow ventricular assist device supported on magnetic bearings. Artificial Organs.1996; 20(6):582-90.
    29. Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Shimane H, Nishimura K, Ban T, Akamatsu T, Ozaki T, Ito H, Suzuki M, Akutsu T. More than 1 year continuous operation of a centrifugal pump with a magnetically suspended impeller. ASAIO Journal.1997; 43(5):M548-M52.
    30. Saito S, Westaby S, Piggott D, Katsumata T, Dudnikov S, Robson D, Catarino P, Nojiri C. Reliable long-term non-pulsatile circulatory support without anticoagulation. European Journal of Cardio-Thoracic Surgery.2001; 19(5):678-83.
    31. Nojiir C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Ozaki T, Suzuki M, Akamatsu T, Akutsu T. Terumo implantable left ventricular assist system:Results of long-term animal study. ASAIO Journal.2000; 46(1):117-22.
    32. Loree Ii HM, Bourque K, Gernes DB, Scott Richardson J, Poirier VL, Barletta N, Fleischli A, Foiera G, Gempp TM, Schoeb R, Litwak KN, Akimoto T, Kameneva M, Watach MJ, Litwak P. The HeartMate III:Design and in vivo studies of a Maglev centrifugal left ventricular assist device. Artificial Organs.2001; 25(5):386-91.
    33. Badiwala MV, Ross HJ, Rao V. An unusual complication of support with a continuous-flow cardiac assist device [1]. New England Journal of Medicine.2007; 357(9):936-7.
    34. Kar B, Delgado Iii RM, Frazier OH, Gregoric ID, Harting MT, Wadia Y, Myers TJ, Moser RD, Freund J. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow:Implantation technique and computer flow modeling. Texas Heart Institute Journal.2005; 32(3):294-8.
    35. Kar B, Delgado 3rd RM, Radovancevic B, Myers TJ, Wadia Y, Letsou GV, Riaz I, Metcalfe R, Gregoric I, Harting MT. Vascular thrombosis during support with continuous flow ventricular assist devices:correlation with computerized flow simulations. Congestive heart failure (Greenwich, Conn).2005; 11(4):182-7.
    36. McConnell PI, Del Rio CL, Kwiatkowski P, Farrar DJ, Sun BC. Assessment of Cardiac Function During Axial-flow Left Ventricular Assist Device Support Using a Left Ventricular Pressure-derived Relationship:Comparison With Pre-load Recruitable Stroke Work. Journal of Heart and Lung Transplantation.2007; 26(2): 159-66.
    37. McConnell PI, Sun BC. Pressure-volume analysis during axial flow ventricular assist device support[1]. Journal of Heart and Lung Transplantation.2006; 25(2): 256-7.
    38. Salzberg SP, Lachat ML, von Harbou K, Zund G, Turina MI. Normalization of high pulmonary vascular resistance with LVAD support in heart transplantation candidates. Eur J Cardiothorac Surg.2005; 27(2):222-5.
    39. Bourque K, Gernes DB, Loree Ii HM, Scott Richardson J, Poirier VL, Barletta N, Fleischli A, Foiera G, Gempp TM, Schoeb R, Litwak KN, Akimoto T, Watach MJ, Litwak P. HeartMate III:Pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO Journal.2001; 47(4):401-5.
    40. Golding LR, Jacobs G, Murakami T, Takatani S, Valdes F, Harasaki H, Nose Y. Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Trans Am Soc Artif Intern Organs.1980; 26:251-5.
    1. Maher TR, Butler KC, Poirier VL, Gernes DB. HeartMate left ventricular assist devices:A multigeneration of implanted blood pumps. Artificial Organs.2001; 25(5): 422-6.
    2. Hoshi H, Katakoa K, Ohuchi K, Asama JI, Shinshi T, Shimokohbe A, Takatani S. Magnetically suspended centrifugal blood pump with a radial magnetic driver. ASAIO Journal.2005; 51(1):60-4.
    3. Schoeb R, Barletta N, Fleischli A. A bearingless motor for a left ventricular assist device (LVAD).7th ISMB.2000:383-8.
    4. Demirozu ZT, Ho J, Bogaev RC, Lemaire SA, Coselli JS, Frazier OH. Thrombotic Occlusion of an Aortic-Root Xenograft during Left Ventricular Assistance. Tex Heart Inst J.2011; 38(1):66-7.
    5. John R. Current axial-flow devices--the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg.2008; 20(3):264-72.
    6. Caccamo M, Eckman P, John R. Current State of Ventricular Assist Devices. Curr Heart Fail Rep.2011.
    7. Loforte A, Montalto A, Ranocchi F, Casali G, Luzi G, Monica PL, Sbaraglia F, Polizzi V, Distefano G, Musumeci F. Heartmate Ⅱ axial-flow left ventricular assist system:management, clinical review and personal experience. J Cardiovasc Med (Hagerstown).2009; 10(10):765-71.
    8. Maher TR, Butler KC, Poirier VL, Gernes DB. HeartMate left ventricular assist devices:a multigeneration of implanted blood pumps. Artif Organs.2001; 25(5): 422-6.
    9. Spanier T, Oz M, Levin H, Weinberg A, Stamatis K, Stern D, Rose E, Schmidt AM. Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery.1996; 112(4):1090-7.
    10. Tang L, Liu L, Elwing HB. Complement activation and inflammation triggered by model biomaterial surfaces. J Biomed Mater Res.1998; 41(2):333-40.
    11. Hampton CR, Verrier ED. Systemic consequences of ventricular assist devices: alterations of coagulation, immune function, inflammation, and the neuroendocrine system. Artif Organs.2002; 26(11):902-8.
    12. Baker LC, Davis WC, Autieri J, Watach MJ, Yamazaki K, Litwak P, Wagner WR. Flow cytometric assays to detect platelet activation and aggregation in device-implanted calves. J Biomed Mater Res.1998; 41(2):312-21.
    13. Radovancevic R, Matijevic N, Bracey AW, Radovancevic B, Elayda M, Gregoric ID, Frazier OH. Increased leukocyte-platelet interactions during circulatory support with left ventricular assist devices. ASAIO J.2009; 55(5):459-64.
    14. Snyder TA, Litwak KN, Tsukui H, Akimoto T, Kihara S, Yamazaki K, Wagner WR. Leukocyte-platelet aggregates and monocyte tissue factor expression in bovines implanted with ventricular assist devices. Artif Organs.2007; 31(2):126-31.
    15. Wilhelm CR, Ristich J, Kormos RL, Wagner WR. Monocyte tissue factor expression and ongoing complement generation in ventricular assist device patients. Ann Thorac Surg.1998; 65(4):1071-6.
    16. Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg.2002; 73(6):1933-8.
    17. Uriel N, Pak SW, Jorde UP, Jude B, Susen S, Vincentelli A, Ennezat PV, Cappleman S, Naka Y, Mancini D. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol.2010; 56(15):1207-13.
    18. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V,3rd, Sharma R, Wu J, Arepally G, Bowles D, Rogers J, Villamizar-Ortiz N. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010; 90(4):1263-9; discussion 9.
    19. Heilmann C, Geisen U, Beyersdorf F, Nakamura L, Trummer G, Berchtold-Herz M, Schlensak C, Zieger B. Acquired Von Willebrand syndrome is an early-onset problem in ventricular assist device patients. Eur J Cardiothorac Surg.2011.
    20. Geisen U, Heilmann C, Beyersdorf F, Benk C, Berchtold-Herz M, Schlensak C, Budde U, Zieger B. Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg. 2008; 33(4):679-84.
    21. Seibel K, Berdat P, Boillat C, Wagner B, Zachariou Z, Kessler U. Hemostasis management in pediatric mechanical circulatory support. Ann Thorac Surg.2008; 85(4):1453-6.
    22. Steinlechner B, Dworschak M, Birkenberg B, Duris M, Zeidler P, Fischer H, Milosevic L, Wieselthaler G, Wolner E, Quehenberger P, Jilma B. Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg.2009; 87(1): 131-7.
    23. Majeed F, Kop WJ, Poston RS, Kallam S, Mehra MR. Prospective, observational study of antiplatelet and coagulation biomarkers as predictors of thromboembolic events after implantation of ventricular assist devices. Nat Clin Pract Cardiovasc Med. 2009; 6(2):147-57.
    24. Golding LR, Murakami G, Harasaki H, Takatani S, Jacobs G, Yada I, Tomita K, Yozu R, Valdes F, Fujimoto LK, Koike S, Nose Y. Chronic Nonpulsatile Blood Flow. Transactions-American Society for Artificial Internal Organs.1982; 28:81-5.
    25. Matsumoto T, Okazaki M, Nakahira A, Sasaki J, Egusa H, Sohmura T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Current medicinal chemistry.2007; 14(25):2726-33.
    26. Blat Y, Seiffert D. A renaissance for the contact system in blood coagulation? THROMBOSIS AND HAEMOSTASIS-STUTTGART-.2008; 99(3):457.
    27. Baier RE. Surface behaviour of biomaterials:The theta surface for biocompatibility. Journal of Materials Science:Materials in Medicine.2006; 17(11): 1057-62.
    28. B"|langer MC, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low(?)\density polyethylene and polydimethylsiloxane:A review. Journal of Biomedical Materials Research.2001; 58(5):467-77.
    29. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science:Acad. Press; 1998.
    30. Wernicke JT, Meier D, Mizuguchi K, Damm G, Aber G, Benkowski R, Nose Y, Noon GP, DeBakey ME. A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement. Artificial Organs.1995; 19(2):161-77.
    31. Tang L, Jiang W, Welty SE. The participation of P- and E-selectins on biomaterial-mediated tissue responses. J Biomed Mater Res.2002; 62(4):471-7.
    32. Tang L. Mechanisms of fibrinogen domains:biomaterial interactions. J Biomater Sci Polym Ed.1998; 9(12):1257-66.
    33. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood.2001; 98(4):1231-8.
    34. Johnston RB, Jr. Current concepts:immunology. Monocytes and macrophages. N Engl J Med.1988; 318(12):747-52.
    35. Clot J. [Effects of piperacillin on the immunologic functions of macrophages]. Presse Med.1986; 15(46):2368-70.
    36. Ballow M. Lymphocytes, monocytes, macrophages, and neutrophils. J Allergy Clin Immunol.1989; 84(6 Pt 2):1019-23.
    37. Mazzarella G, Petillo O, Margarucci S, Calabrese C, Peluso G. Role of monocyte/macrophage population in immune response. Monaldi Arch Chest Dis. 1998; 53(1):92-6.
    38. Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. FASEB J.1994; 8(11):854-61.
    39. Kovacs EJ. Fibrogenic cytokines:the role of immune mediators in the development of scar tissue. Immunol Today.1991; 12(1):17-23.
    40. Gharaee-Kermani M, Phan SH. Role of cytokines and cytokine therapy in wound healing and fibrotic diseases. Curr Pharm Des.2001; 7(11):1083-103.
    41. Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed.2004; 15(6):701-26.
    42. Binzen E, Lendlein A, Kelch S, Rickert D, Franke RP. Biomaterial-microvasculature interaction on polymers after implantation in mice. Clin Hemorheol Microcirc.2004; 30(3-4):283-8.
    43. Jakubiec B, Marois Y, Zhang Z, Roy R, Sigot-Luizard MF, Dugre FJ, King MW, Dao L, Laroche G, Guidoin R. In vitro cellular response to polypyrrole-coated woven polyester fabrics:potential benefits of electrical conductivity. J Biomed Mater Res. 1998; 41(4):519-26.
    44. Fages J, Poddevin N, King MW, Marois Y, Bronner J, Jakubiec B, Roy R, Mainard D, Laroche G, Delagoutte JP, Guidoin R. Use of supercritical fluid extraction as a method of cleaning anterior cruciate ligament prostheses:in vitro and in vivo validation. ASAIO J.1998; 44(4):278-88.
    45. Zhuo R, Miller R, Bussard KM, Siedlecki CA, Vogler EA. Procoagulant stimulus processing by the intrinsic pathway of blood plasma coagulation. Biomaterials.2005; 26(16):2965-73.
    46. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thrombosis Research.2004; 114(5-6):447-53.
    47. Harrison P. Progress in the assessment of platelet function. Br J Haematol.2000; 111(3):733-44.
    48. Rastan AJ, Dege A, Mohr M, Doll N, Falk V, Walther T, Mohr FW. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg.2010; 139(2):302-11,11 el.
    49. Engin C, Ayik F, Oguz E, Eygi B, Yagdi T, Karakula S, Ozbaran M. Ventricular assist device as a bridge to heart transplantation in adults. Transplant Proc.2011; 43(3):927-30.
    50. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood.1996; 88(5):1525-41.
    51. Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D. Platelet activation due to hemodynamic shear stresses:damage accumulation model and comparison to in vitro measurements. ASAIO J.2008; 54(1):64-72.
    52. Feng S, Lu X, Resendiz JC, Kroll MH. Pathological shear stress directly regulates platelet alphaIIbbeta3 signaling. Am J Physiol Cell Physiol.2006; 291(6):C1346-54.
    53. Brown CH,3rd, Leverett LB, Lewis CW, Alfrey CP, Jr., Hellums JD. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J Lab Clin Med.1975; 86(3):462-71.
    54. Sakariassen KS, Hanson SR, Cadroy Y. Methods and models to evaluate shear-dependent and surface reactivity-dependent antithrombotic efficacy. Thromb Res.2001; 104(3):149-74.
    55. Zhao XM, Wu YP, Cai HX, Wei R, Lisman T, Han JJ, Xia ZL, de Groot PG. The influence of the pulsatility of the blood flow on the extent of platelet adhesion. Thromb Res.2008; 121(6):821-5.
    56. Chatterjee K, Guo Z, Vogler EA, Siedlecki CA. Contributions of contact activation pathways of coagulation factor XII in plasma. J Biomed Mater Res A.2009; 90(1):27-34.
    57. Joseph K, Kaplan AP. Formation of bradykinin:a major contributor to the innate inflammatory response. Adv Immunol.2005; 86:159-208.
    58. Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC. Platelet functions beyond hemostasis. J Thromb Haemost.2009; 7(11):1759-66.
    59. Rivera J, Lozano ML, Navarro-Nunez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica.2009; 94(5): 700-11.
    60. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res.2004; 114(5-6):447-53.
    1. Bhamidipati CM, Ailawadi G, Bergin J, Kern JA. Early thrombus in a HeartMate II left ventricular assist device:a potential cause of hemolysis and diagnostic dilemma. J Thorac Cardiovasc Surg.2010; 140(1):e7-8.
    2. Bonaros N, Mueller MR, Salat A, Schima H, Roethy W, Kocher AA, Wolner E, Wieselthaler GM. Extensive coagulation monitoring in patients after implantation of the MicroMed Debakey continuous flow axial pump. ASAIO J.2004; 50(5):424-31.
    3. Kawahito K, Damm G, Benkowski R, Aber G, Bacak J, Tasai K, Shimono T, Takatani S, Nose Y, Noon GP, DeBakey ME. Ex vivo phase 1 evaluation of the DeBakey/NASA axial flow ventricular assist device. Artif Organs.1996; 20(1): 47-52.
    4. John R. Current axial-flow devices--the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg.2008; 20(3):264-72.
    5. Haj-Yahia S, Birks EJ, Rogers P, Bowles C, Hipkins M, George R, Amrani M, Petrou M, Pepper J, Dreyfus G, Khaghani A. Midterm experience with the Jarvik 2000 axial flow left ventricular assist device. J Thorac Cardiovasc Surg.2007; 134(1): 199-203.
    6. Akamatsu T, Nakazeki T, Itoh H. Centrifugal blood pump with a magnetically suspended impeller. Artif Organs.1992; 16(3):305-8.
    7. Akamatsu T, Tsukiya T, Nishimura K, Park CH, Nakazeki T. Recent studies of the centrifugal blood pump with a magnetically suspended impeller. Artif Organs.1995; 19(7):631-4.
    8. Allaire PE, Kim HC, Maslen EH, Olsen DB, Bearnson GB. Prototype continuous flow ventricular assist device supported on magnetic bearings. Artif Organs.1996; 20(6):582-90.
    9. Chen HM, Smith WA, Walton JF. High efficiency magnetic bearing for a rotary blood pump. ASAIO J.1998; 44(5):M728-32.
    10. Glauser M, Jiang W, Li G, Lin Z, Allaire PE, Olson D. Optimization of an axial flow heart pump with active and passive magnetic bearings. Artif Organs.2006; 30(5): 400-3.
    11. Schlensak C, Benk C, Siepe M, Heilmann C, Beyersdorf F. Clinical experience with the VentrAssist left ventricular assist device. Thorac Cardiovasc Surg.2010; 58 Suppl2:S198-201.
    12. Esmore DS, Kaye D, Salamonsen R, Buckland M, Rowland M, Negri J, Rowley Y, Woodard J, Begg JR, Ayre P, Rosenfeldt FL. First clinical implant of the VentrAssist left ventricular assist system as destination therapy for end-stage heart failure. J Heart Lung Transplant.2005; 24(8):1150-4.
    13. Esmore DS, Kaye D, Salamonsen R, Buckland M, Begg JR, Negri J, Ayre P, Woodard J, Rosenfeldt FL. Initial clinical experience with the VentrAssist left ventricular assist device:the pilot trial. J Heart Lung Transplant.2008; 27(5):479-85.
    14. James NL, van der Meer AL, Edwards GA, Snelling SR, Begg JD, Esmore DS, Woodard JC. Implantation of the VentrAssist Implantable Rotary Blood Pump in sheep. ASAIO J.2003; 49(4):454-8.
    15. van der Meer AL, James NL, Edwards GA, Esmore DS, Rosenfeldt FL, Begg JD, Woodard JC. Initial in vivo experience of the VentrAssist implantable rotary blood pump in sheep. Artif Organs.2003; 27(1):21-6.
    16. Tansley G, Vidakovic S, Reizes J. Fluid dynamic characteristics of the VentrAssist rotary blood pump. Artif Organs.2000; 24(6):483-7.
    17. Chung MK, Zhang N, Tansley GD, Woodard JC. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump. Artif Organs.2004; 28(3):287-97.
    18. Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Shimane H, Nishimura K, Ban T, Akamatsu T, Ozaki T, Ito H, Suzuki M, Akutsu T. More than 1 year continuous operation of a centrifugal pump with a magnetically suspended impeller. ASAIO Journal.1997; 43(5):M548-M52.
    19. Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Shimane H, Ozaki T, Suzuki M, Akamatsu T, Akutsu T. Recent progress in the development of Terumo implantable left ventricular assist system. ASAIO Journal.1999; 45(3):199-203.
    20. Nishimura K, Kono S, Nishina T, Akamatsu T, Tsukiya T, Nojiri C, Ozaki T, Komeda M. Results of chronic animal experiments with a new version of a magnetically suspended centrifugal pump. ASAIO Journal.1998; 44(5):M725-M7.
    21. Nojiir C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Ozaki T, Suzuki M, Akamatsu T, Akutsu T. Terumo implantable left ventricular assist system:Results of long-term animal study. ASAIO Journal.2000; 46(1):117-22.
    22. Saito S, Westaby S, Piggott D, Katsumata T, Dudnikov S, Robson D, Catarino P, Nojiri C. Reliable long-term non-pulsatile circulatory support without anticoagulation. European Journal of Cardio-Thoracic Surgery.2001; 19(5):678-83.
    23. Morshuis M, Schoenbrodt M, Nojiri C, Roefe D, Schulte-Eistrup S, Boergermann J, Gummert JF, Arusoglu L. DuraHeart magnetically levitated centrifugal left ventricular assist system for advanced heart failure patients. Expert Rev Med Devices. 2010; 7(2):173-83.
    24. Morshuis M, El-Banayosy A, Arusoglu L, Koerfer R, Hetzer R, Wieselthaler G, Pavie A, Nojiri C. European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system. Eur J Cardiothorac Surg.2009; 35(6): 1020-7; discussion 7-8.
    25. Strueber M, Meyer AL, Malehsa D, Haverich A. Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J Thorac Cardiovasc Surg.2010; 140(4):936-7.
    26. Meyer AL, Kugler C, Malehsa D, Haverich A, Strueber M. Patient satisfaction with the external equipment of implantable left ventricular assist devices. Artif Organs. 2010; 34(9):721-5.
    27. Cheung A, Lamarche Y, Kaan A, Munt B, Doyle A, Bashir J, Janz P. Off-Pump Implantation of the HeartWare HVAD Left Ventricular Assist Device Through Minimally Invasive Incisions. Ann Thorac Surg.2011; 91(4):1294-6.
    28. Lim HJ, Nam HY, Lee BH, Kim DJ, Ko JY, Park JS. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol Prog.2007; 23(3):693-7.
    29. Wieselthaler GM, G OD, Jansz P, Khaghani A, Strueber M. Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant.2010; 29(11):1218-25.
    30. Mozes A, Denofrio D, Pham DT, Homoud MK. Inappropriate implantable cardioverter-defibrillator therapy due to electromagnetic interference in patient with a HeartWare HVAD left ventricular assist device. Heart Rhythm.2010.
    31. Tuzun E, Roberts K, Cohn WE, Sargin M, Gemmato CJ, Radovancevic B, Frazier OH. In vivo evaluation of the HeartWare centrifugal ventricular assist device. Tex Heart Inst J.2007; 34(4):406-11.
    32. Wood C, Maiorana A, Larbalestier R, Lovett M, Green G, O'Driscoll G. First successful bridge to myocardial recovery with a HeartWare HVAD. J Heart Lung Transplant.2008; 27(6):695-7.
    33. Krabatsch T, Hennig E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, Potapov E, Hetzer R. Evaluation of the Heart Ware HVAD Centrifugal Pump for Right Ventricular Assistance in an In Vitro Model. ASAIO J.2011.
    34. Gregoric ID, Cohn WE, Frazier OH. Diaphragmatic implantation of the Heart Ware ventricular assist device. J Heart Lung Transplant.2011; 30(4):467-70.
    35. Melhem M, Kelly B, Zhang J, Kasting G, Li J, Davis H, Heffelfinger S, Desai P, Roy-Chaudhury P. Development of a local perivascular paclitaxel delivery system for hemodialysis vascular access dysfunction:polymer preparation and in vitro activity. Blood Purif.2006; 24(3):289-98.
    36. Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J.2010; 56(4):285-9.
    37. Pitsis AA, Visouli AN, Vassilikos V, Ninios VN, Sfirakis PD, Mezilis NE, Dardas PS, Filippatos GS, Bougioukas GI, Kremastinos DT, Long JW. First human implantation of a new rotary blood pump:design of the clinical feasibility study. Hellenic J Cardiol.2006; 47(6):368-76.
    38. El-Menyar AA. Multidisciplinary approach for circulatory support in patients with advanced heart failure. Expert Rev Cardiovasc Ther.2009; 7(3):259-62.
    39. Pitsis AA, Visouli AN, Ninios V, Bougioukas G, Filippatos G, Kremastinos D, Burkhoff D, Long JW. Elective bridging to recovery after repair:the surgical approach to ventricular reverse remodeling. Artif Organs.2008; 32(9):730-5.
    40. Hetzer R, Weng Y, Potapov EV, Pasic M, Drews T, Jurmann M, Hennig E, Muller J. First experiences with a novel magnetically suspended axial flow left ventricular assist device. European Journal of Cardio-Thoracic Surgery.2004; 25(6):964-70.
    41. Schmid C, Tjan TDT, Etz C, Schmidt C, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the incor left ventricular assist device. Journal of Heart and Lung Transplantation.2005; 24(9): 1188-94.
    42. Huber CH, Tozzi P, Hurni M, Von Segesser LK. No drive line, no seal, no bearing and no wear:Magnetics for impeller suspension and flow assessment in a new VAD. Interactive Cardiovascular and Thoracic Surgery.2004; 3(2):336-40.
    43. Gottel P, Hetzer R, Schmid C. Clinical results of the first 99 patients with the axial flow pump:Incor. J Heart Lung Transplant.2005; 24.
    44. Schmid C, Jurmann M, Birnbaum D, Colombo T, Falk V, Feltrin G, Garatti A, Genoni M, Gerosa G, Gottel P, Gummert J, Halfmann R, Hammel D, Hennig E, Kaufmann F, Lanfranconi M, Meyns B, Mohr F, Miiller J, Nikolov D, Rucinskas K, Scheld HH, Schmid FX, Schneider M, Sirvydis V, Tandler R, Vitali E, Vlasselaers D, Weyand M, Wilhelm M, Hetzer R. Influence of Inflow Cannula Length in Axial-flow Pumps on Neurologic Adverse Event Rate:Results From a Multi-center Analysis. Journal of Heart and Lung Transplantation.2008; 27(3):253-60.
    45. Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J.2007; 53(3): 310-5.
    46. Loree HM, Bourque K, Gernes DB, Richardson JS, Poirier VL, Barletta N, Fleischli A, Foiera G, Gempp TM, Schoeb R, Litwak KN, Akimoto T, Kameneva M, Watach MJ, Litwak P. The Heartmate III:design and in vivo studies of a maglev centrifugal left ventricular assist device. Artif Organs.2001; 25(5):386-91.
    47. Bourque K, Gernes DB, Loree HM,2nd, Richardson JS, Poirier VL, Barletta N, Fleischli A, Foiera G, Gempp TM, Schoeb R, Litwak KN, Akimoto T, Watach MJ, Litwak P. HeartMate III:pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO J.2001; 47(4):401-5.
    48. Gazzoli F, Alloni A, Pagani F, Pellegrini C, Longobardi A, Ricci D, Rinaldi M, Vigano M. Arrow CorAide left ventricular assist system:initial experience of the cardio-thoracic surgery center in Pavia. Ann Thorac Surg.2007; 83(1):279-82.
    49. Fukamachi K. New technologies for mechanical circulatory support:current status and future prospects of CorAide and MagScrew technologies. J Artif Organs. 2004; 7(2):45-57.
    50. Doi K, Golding LA, Massiello AL, Kopcak MW, Jr., Gerhart RL, Schenk S, Inoue M, Ootaki Y, Fukamachi K. Preclinical readiness testing of the Arrow International CorAide left ventricular assist system. Ann Thorac Surg.2004; 77(6): 2103-10.
    51. Masuzawa T, Onuma H, Kim SJ, Okada Y. Magnetically suspended centrifugal blood pump with a self bearing motor. ASAIO J.2002; 48(4):437-42.
    52. Hoshi H, Shinshi T, Takatani S. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs.2006; 30(5):324-38.
    53. Ren Z, Jahanmir S, Heshmat H, Hunsberger AZ, Walton JF. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. ASAIO J.2009; 55(4):340-7.
    54. Kim C, Schaaf CH, Maynard C, Every NR. Unstable angina in the myocardial infarction triage and intervention registry (MITI):short- and long-term outcomes in men and women. Am Heart J.2001; 141(1):73-7.
    1. Suzuki T, Yonezawa K, Horiguchi H, Tsukiya T, Taenaka Y, Tsujimoto Y. The rotordynamic fluid forces on a shaft support part of artificial heart pump impeller in whirling motion. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B.2009; 75(Compendex):770-9.
    2. Jun-Ho L, Allaire PE, Gang T, Decker JA, Xuerui Z. Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension. IEEE Transactions on Control Systems Technology.2003; 11(Copyright 2003, IEE):128-38.
    3. Halme J, Andersson P. Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics state of the art. Proceedings of the Institution of Mechanical Engineers, Part J (Journal of Engineering Tribology).2010; 224(Copyright 2011, The Institution of Engineering and Technology):377-93.
    4. Zhou C, Wu X, Liu C, He W. Rolling Bearing Fault Diagnosis Based on EMD and Fuzzy C Means Clustering. Journal of Kunming University of Science and Technology (Science and Technology).2009; 34(Copyright 2010, The Institution of Engineering and Technology):34-9.
    5. Huaxin C, Xuefeng C, Yanyang Z, Feng D, Hongrui C, Jiyong T, Hongkai J, Zhengjia H. An effective approach to rolling bearing diagnosis based on adaptive redundant second-generation wavelet. International Journal of Materials & amp; Product Technology.2008; 33(Copyright 2009, The Institution of Engineering and Technology):65-78.
    6. Rujiang H, Zhipeng F, Fulei C. Defects diagnosis and classification for rolling bearing based on mathematical morphology.2009 8th International Conference on Reliability, Maintainability and Safety (ICRMS 2009),20-24 July 2009; 2009; Piscataway, NJ, USA:IEEE; 2009. p.817-21.
    7. Sveda M, Roosz A, Buza G, Kuzsella L. A comparative examination of the friction coefficient of two different sliding bearing.4th Hungarian Conference on Materials Science, Testing and Informatics,12-14 Oct 2003; 2004; Switzerland:Trans Tech Publications; 2004. p.471-6.
    8. Yeh K, Chen CW, Hsiung TK. Fuzzy control for seismically excited bridges with sliding bearing isolation.3rd International Conference on Intelligent Computing, ICIC 2007, August 21,2007-August 24,2007; 2007; Qingdao, China:Springer Verlag; 2007. p.473-83.
    9. Allaire PE, Maslen EH, Kim HC, Bearnson GB, Olsen DB. Design of a magnetic bearing-supported prototype centrifugal artificial heart pump. Tribology Transactions. 1996; 39(Compendex):663-9.
    10. Stienmier JD, Thielman SC, Fabien BC. Analysis and control of a flywheel energy storage system with a hybrid magnetic bearing. Transactions of the ASME Journal of Dynamic Systems, Measurement and Control.1997; 119(Copyright 1998, IEE):650-6.
    11. Slaughter MS, Sobieski MA,2nd, Tamez D, Horrell T, Graham J, Pappas PS, Tatooles AJ, LaRose J. HeartWare miniature axial-flow ventricular assist device: design and initial feasibility test. Tex Heart Inst J.2009; 36(1):12-6.
    12. Matsuda KI, Kita T, Okada Y, Masuzawa T, Ohishi T, Taenaka Y, Yamane T. Radial-type self-bearing motor for nonpulsatile-type artificial heart. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing.2000; 43(Compendex):941-8.
    13. Schoeb R, Barletta N. Principle and application of a bearingless slice motor. JSME International Journal, Series C (Mechanical Systems, Machine Elements and Manufacturing).1997; 40(Copyright 1998, IEE):593-8.
    14. Day SW, McDaniel JC. PIV measurements of flow in a centrifugal blood pump: Steady flow. Journal of Biomechanical Engineering.2005; 127(Compendex):244-53.
    15. Morley D, Litwak K, Ferber P, Spence P, Dowling R, Meyns B, Griffith B, Burkhoff D. Hemodynamic effects of partial ventricular support in chronic heart failure:results of simulation validated with in vivo data. J Thorac Cardiovasc Surg. 2007; 133(1):21-8.
    16. Sortore CK, Bartosh BW. Compact and cost effective active magnetic bearing system design for high speed rotors. Lubrication Engineering.1993; 49(Compendex): 555-60.
    17. Beams JW. Magnetic suspension for small rotors. Review of Scientific Instruments.1950; 21(2):182-4.
    18. Shuqin L, Darong C, Feng X. Study of switching power amplifier for active magnetic bearing. Conference Proceedings IPEMC 2004 The 4th International Power Electronics and Motion Control Conference,14-16 Aug 2004; 2004; Xi'an, China:Xi'an Jiaotong Univ. Press; 2004. p.1539-43.
    19. Jalbrzykowski S, Branski M, Falkowski K. The pulse power amplifier for the magnetic bearing. Diffusion and Defect Data Part B (Solid State Phenomena).2009; 147-149(Copyright 2009, The Institution of Engineering and Technology):161-6.
    20. Cheol-Soon K, Chong-Won L. Isotropic optimal control of active magnetic bearing system. Transactions of the ASME Journal of Dynamic Systems, Measurement and Control.1996; 118(Copyright 1997, IEE):721-6.
    21. Weilert M, Hahn I, Barmatz M, Higham D, Frodsham G. Progress on a small multi-cycling cryogenic fluid flow valve. Cryogenics.2001; 41(Compendex):813-6.
    22. Qian KX, Zeng P, Ru WM, Yuan HY, Feng ZG, Li L. Permanent magnetic-levitation of rotating impeller:a decisive breakthrough in the centrifugal pump. Journal of Medical Engineering & amp; Technology.2002; 26(Copyright 2002, IEE):36-8.
    23. Chen C, Paden B, Antaki J, Ludlow J, Bearnson G. Optimal design of permanent magnet bearings with application to the HeartQuestTM ventricular assist device. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing.2003; 46(Compendex):403-8.
    24. Cui D, Xu L. Influence of machining error on the performance of active magnetic bearing. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering.2009; 45(Compendex):24-33.
    25. Shen JX, Tseng KJ, Vilathgamuwa DM, Chan WK. Novel compact PMSM with magnetic bearing for artificial heart application. IEEE Transactions on Industry Applications.2000; 36(Compendex):1061-8.
    26. Takano S. Role of 5-hydroxytryptamine in platelet thrombus formation and mechanisms of inhibition of thrombus formation by 5-hydroxytryptamine2A antagonists in rabbits. Arch Int Pharmacodyn Ther.1995; 330(3):297-308.
    27. Wang F-X, Wang J-Q, Kong Z-G. Study on brushless DC motor with passive magnetic bearings. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering.2004; 24(Compendex):90-5.
    28. Stoiber M, Grasl C, Pirker S, Raderer F, Schistek R, Huber L, Gittler P, Schima H. A passive magnetically and hydrodynamically suspended rotary blood pump. Artif Organs.2009; 33(3):250-7.
    29. Komori M, Kobayashi H, Shiraishi C. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen. Proceedings of the 1999 IEEE International Magnetics Conference 'Digest of Intermag 99', May 18,1999-May 21,1999; 1999; Kyongju, South Korea:IEEE; 1999. p. EF-09.
    30. Qinghai W, Wei P, Yizhou H, Yuxin S, Huangqiu Z. Principle and parameter design for an innovated radial-axial hybrid magnetic bearing.2008 11th International Conference on Electrical Machines and Systems (ICEMS 2008),17-20 Oct 2008; 2008; Piscataway, NJ, USA:IEEE; 2008. p.2142-6.
    31. Tian X, Fang J, Liu G. Magnetic suspending flywheel hybrid magnetic bearing PWM switching power amplifier based on fuzzy PI control. Chinese Journal of Scientific Instrument.2008; 29(Copyright 2009, The Institution of Engineering and Technology):943-8.
    32. Yong L, Wei L, Yongping L. Computer-aided simulation analysis of a novel structure hybrid magnetic bearing. IEEE Transactions on Magnetics.2008; 44(Copyright 2008, The Institution of Engineering and Technology):2283-7.
    33. Jinji S, Jiancheng F. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing.2010; (Compendex).
    34. Sato T, Tanno Y. Magnetic bearing having PID controller and discontinuous controller. Proceedings of IECON'93-19th Annual Conference of IEEE Industrial Electronics,15-19 Nov 1993; 1993; New York, NY, USA:IEEE; 1993. p.2121-5.
    35. Li M-h, Liu S-q. Fuzzy PID control of magnetic bearing. Control Engineering China.2004; 11(Copyright 2005,IEE):409-12.
    36. Koskinen H. Fuzzy control schemes for active magnetic bearings.8th Australian Artificial Intelligence Conference, FLAI 93 Fuzzy Logic in Artificial Intelligence,28-30 June 1993; 1993; Berlin, Germany:Springer-Verlag; 1993. p. 137-45.
    37. Zhang M, Lin H. Continual fuzzy control for magnetic suspension bearing. Instrument Techniques and Sensor.2002; (Copyright 2003, IEE):13-22.
    38. Habib MK, Inayat-Hussain JI. Fuzzy control scheme for dual-acting magnetic bearing actuator system.2004 IEEE Conference on Robotics, Automation and Mechatronics, December 1,2004-December 3,2004; 2004; Singapore, Singapore: Institute of Electrical and Electronics Engineers Inc.; 2004. p.1186-91.
    39. Jun-Ho L, Min-Soo K, Young-Woon C, Jung-Suk L, Key-Seo L. Displacement-sensorless control of magnetic bearing system using current and magnetic flux feedback. Transactions of the Korean Institute of Electrical Engineers, D.2000; 49(Copyright 2000, IEE):339-45.
    40. Hofer M, Schmidt E, Schrodl M. Design of a three phase permanent magnet biased radial active magnetic bearing regarding a position sensorless control.24th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2009, February 15,2009-February 19,2009; 2009; Washington, DC, United states: Institute of Electrical and Electronics Engineers Inc.; 2009. p.1716-21.
    41. Schmidt E, Hofer M. Static and transient voltage driven finite element analysis for the sensorless control of a hybrid radial active magnetic bearing.2009 12th International Conference on Electrical Machines and Systems (ICEMS 2009),15-18 Nov 2009; 2009; Piscataway, NJ, USA:IEEE; 2009. p.5 pp.
    42. Garcia P, Guerrero JM, El-Sayed I, Briz F, Reigosa D. Carrier Signal Injection Alternatives for Sensorless Control of Active Magnetic Bearings.2010 First Symposium on Sensorless Control for Electrical Drives (SLED 2010),9-10 July 2010; 2010; Piscataway, NJ, USA:IEEE; 2010. p.78-85.
    43. Tian X-H, Fang J-C, Liu G. Magnetic bearing switching power amplifier based on SVPWM control. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics.2008; 30(Compendex):1598-602.
    44. Qi H, Huang P, Zhao L. Design and Realization of a Novel Power Amplifier for Magnetic Bearing with Permanent Magnetic Bias. Journal of Wuhan University of Technology (Information & amp; Management Engineering).2010; 32(Copyright 2011, The Institution of Engineering and Technology):245-8.
    45. Hu L, Cheng C. Study of power amplifiers for a active magnetic bearing control system. Journal of Wuhan University of Technology (Information & amp; Management Engineering).2004; 26(Copyright 2005, IEE):23-7.
    46. Han F, Fang J, Liu G. Design and implementation of SVPWM switching power amplifiers for active magnetic bearing. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society.2009; 24(Compendex):119-24.
    47. Xiao L-j, Sun C-y, Li P. Analysis of Radial Magnetic Bearing Used in Magnetic Suspension Wind Power Generator.2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE 2010),7-9 Nov 2010; 2010; Piscataway, NJ, USA:IEEE; 2010. p.4 pp.
    48. Jun W, Longxiang X. Analysis and modeling of a switching power amplifier for magnetic bearing.2009 4th IEEE Conference on Industrial Electronics and Applications,25-27 May 2009; 2009; Piscataway, NJ, USA:IEEE; 2009. p.2257-61.
    49. Zong M, Ba L, Wang F. Study on novel hybrid type power amplifier for magnetic bearing.2008 Joint International Conference on Power System Technology and IEEE Power India Conference (POWERCON),12-15 Oct 2008; 2008; Piscataway, NJ, USA:IEEE; 2008. p.4 pp.
    50. Humphrey M, Hilton E, Allaire P. Experiences using RT-Linux to implement a controller for a high speed magnetic bearing system. Proceedings of RTAS'99:Fifth IEEE Real-Time Technology and Applications Symposium,2-4 June 1999; 1999; Los Alamitos, CA, USA:IEEE Comput. Soc; 1999. p.121-30.
    51. Dapeng W, Fengxiang W, Haoran B. Design and performance of QFT-H-infinity controller for magnetic bearing of high-speed motors.2009 4th IEEE Conference on Industrial Electronics and Applications,25-27 May 2009; 2009; Piscataway, NJ, USA: IEEE; 2009. p.2624-9.
    52. Dapeng W, Fengxiang W. Design of PDC controller based on T-S fuzzy model for magnetic bearing of high-speed motors.2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT 2010),9-11 July 2010; 2010; Piscataway, NJ, USA:IEEE; 2010. p.602-6.
    53. Komori M, Hamasaki T. Improvement of dynamics for a superconducting magnetic bearing (SMB) system. IEEE Transactions on Applied Superconductivity. 1998; 8(Compendex):158-63.
    54. Komori M, Kumamoto M. Hybrid superconducting magnetic bearing (SMB) system without bias current. JSME International Journal, Series C:Dynamics, Control, Robotics, Design and Manufacturing.1999; 42(Compendex):344-9.
    55. Murakami K, Komori M, Mitsuda H, Inoue A. Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB). Cryogenics.2007; 47(Compendex):272-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700