不同预应变方式对超低碳钢烘烤硬化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同加载方式下的预应变对超低碳钢烘烤硬化性能的影响。利用烘烤箱对试样进行170℃×20min的烘烤处理,通过MTS810万能试验机进行烘烤前的预变形和烘烤硬化性能测定,采用透射电镜对不同预应变方式下和烘烤后的位错形貌进行观察,同时应用ANSYS有限元软件对不同预应变方式下的应力应变情况进行模拟,得到如下结论:
     (1)采用标准拉伸试样进行单向拉伸预变形的情况下:在0%~4%范围内,随着预应变的增大,BH值增大;在4%~8%范围内时,随着预应变的增大,BH值降低,且4%预应变所对应的BH值最大;而在8%~15%范围内,随着预应变的增大,BH值又有所提高,8%预应变所对应的BH值最小;4%预应变时的位错密度明显大于8%时的位错密度,而且变形程度越大,位错分布不均匀性程度越大;通过数值模拟发现在预应变较小时,模拟的结果与真实的结果相接近,而预应变较大时,误差较大,但是应力应变在标距内分布均匀。
     (2)采用宽板试样(b/t>30,b为宽度,t为厚度)进行单向拉伸,以产生平面变形的预变形情况下:随着预应变的增加,BH值也增加,但是与标准单向拉伸时的BH结果明显不同,其变化幅度比较小;在此条件下的位错密度明显小于标准单向拉伸情况下的位错密度;数值模拟表明,虽然实际上加载的预应变大小与标准单向拉伸时的相同,但是材料内部产生的塑性变形远远小于实际加载量,且亦小于标准单向拉伸时产生的塑性变形量。
     (3)采用十字拉伸试样以产生双向变形的预变形情况下,一个方向始终加载2%预应变,另一个方向分别加载1%,2%,3%和4%预应变,以实现不同加载比,根据单向拉伸情况下的BH值定义两个值,BH0和BH_2,结果表明:随着加载比的增加,BH0和BH_2两个值都有所增加;试样内部的位错密度也在不断地增加;数值模拟发现,应力应变分布具有一定的方向性,即应力应变分布的弯曲部位弯向加载大的方向。
The effect of pre-strain, under different loading path, on the baking hardening property for ultra-low carbon steel was studied in this paper. The samples were baked at 170℃for 20min in the oven, the pre-strained applied and bake-hardening performance measurement was carried out on the MTS810 universal test machine, and the dislocations morphology with different pre-strain style and baking was observed by the transmission electron microscopy. at the same time, the stress and strain with different pre-strain method was simulated with ANSYS software. The conclusions are as follows:
     (1) Under the condition of uniaxial tensile deformation that standard tensile specimen was adopted: in the range of 0% ~ 4%, the BH value increased along with pre-strain increased; In the range of 4% ~ 8%, the BH value decreased along with the increase of the pre-strain, and the BH value corresponding to 4% was highest; And in the range of 8% ~ 15%, BH value improved along with the increase of the pre-strain, and the BH value corresponding to 8% reached minimum; The dislocation density of 4% was significantly larger than that of 8%, and the greater the deformation was, the greater of dislocation distribution uniformity was; And the smaller the pre-strain was, the closer of the simulated results to true ones, which was showed in the numerical simulation, however the higher the pre-strain became, the bigger the error was, but stress and strain distribution within the gauge was uniform.
     (2) In the case of wide plate sample (b/t > 30, b represent for width, t represent for thickness) to generate the plane deformation: the BH value increased with the increase of the pre-strain, but the magnitude was smaller than uniaxial tensile results; And the dislocation density was obviously less than that of uniaxial tension; Numerical simulation results showed that although the real pre-strain applied in the wide plate sample was similar to the uniaxial tension, the plastic deformation generated in the material was far less than the actual load, and also less than that of the uniaxial tensile samples.
     (3) In the case that cross tensile samples used to produce two-way deformation, 2% pre-strain always applied on one direction, and different pre-strain applied on another one, 1%, 2%, 3% and 4% respectively, so that the different loading ratio achieved. and two values, BH0 and BH_2 were defined according to uniaxial tensile of BH value, the results showed that, both BH0 and BH_2 increased with the increase of loading ratio; and dislocation density of sample was increased; Numerical simulation results showed that the distribution of stress and strain was directivity, namely the larger the load was,the higher the strain was.
引文
[1]. Deng Zhi, Wang Xianjin. Analysis of Sheet Metal Stress-strain Relations in Uniaxial and Biaxial Tension[J]. Journal of University of Science and Technology Beijing, 1994, Vol 1.No (1~2): 70--75.
    [2]. L.M. Storozheva. Ultralow Carbon Steels for the Automotive Industry with the Effect of Hardening Due to Drying of Finished Parts. Metal Science and Heat Treatment[J]. 2001(43):336~344.
    [3]. WOO CHANG JEONG. Effect of prestrain on Aging and Bake Hardening of Cold-Rolled,Continuously Annealed Steel Sheets[J]. Metallurgical and Materials Transactions A,1998,Vol 29A:463~466.
    [4]. J.Z.ZHAO, A.K.DE etc. A Model for Cottrell Atmosphere Formation During Aging of Ultra Low Carbon Bake Hardening Steels[J]. ISIJ,2000, Vol 40(No.7):725~730.
    [5]. J.Z.ZHAO, A.K.DE etc. Formation of Cottrell Atmosphere during Strain Aging of Bake-Hardenable Steels[J]. Metallurgical and Materials Transactions A,2001,Vol 32A:417~423.
    [6].曲英,炼钢学原理[M],冶金工业出版社,1987:149.
    [7]. Larry Janicsek. Steelmaking Conference Proceedings, 1990:111.
    [8]. Hideyudi Ohma,et al., Steelmaking Conference Proceedings, 1986:327.
    [9]. John R.Stubbles. Steelmaking Conference Proceedings, 1992:67.
    [10]. Mamru Suda, et al., Steelmaking Conference Proceedings, 1992:229.
    [11].C.L.Garcia, et al., Metallurgy of Vacuum- Degassing Steel Products. 1989,TMS:451.
    [12].康永林.现代汽车板工艺及成形理论与技术[M].北京:冶金工业出版社,2009.
    [13].杨秀. RH-KTB深脱碳方法研究[D].武汉:武汉科技大学,2004.
    [14]. A.H.Cottrell and B.A. Bilby. Dislocation Theory of Yielding and Strain Aging of Iron[J]. Proceedings of the Physical Society, 1949,Vol.62A:49~62.
    [15].段小平,胡吟萍.烘烤条件对超低碳烘烤硬化钢BH值的影响[J].武汉工程职业技术学院学报. 2009, Vol.21( No.4):7~10.
    [16].焦轶民,傅玉生.国产烘烤硬化钢板BH值的检测与探讨[J].天津汽车,1994,4:36~40.
    [17]. K.DEHGANI and J.J.JONAS. Dynamic Bake Hardening of Interstitial-Free Steels[J]. Metallurgical and Materials Transactions A. 2000,Vol 31A: 1375~1384.
    [18].王利,金蕾,夏启等.冷轧TRIP钢的特性及应用[J] .汽车工艺与材料, 2004 , 6: 72~74.
    [19].张继成.新型汽车钢板的BH值与预应变量的关系[J].上海金属.2006(28):18~21.
    [20]. Konieczny A.汽车用双相钢成形性能评价[J].世界钢铁, 2003 , 1: 34~38.
    [21].朱晓东,王利,俞宁峰等.过时效和平整对冷轧双相钢板强度、塑性及烘烤硬化性的研究[J] .钢铁研究学报,2003 , 15 (6) : 47~50.
    [22].马鸣图.双相钢的时效和回火[J] .国外金属材料, 1985 ,2: 1~9.
    [23]. A.A. Konieczny.汽车用双相钢成形性能评价[J].世界钢铁,2003 , (1) :34~38.
    [24].蒋浩民等.双相钢板应变强化和烘烤硬化特性实验研究[J].塑性工程学报. 2009(16):173~201.
    [25].焦轶民,傅玉生,杨宝森等.国产烘烤硬化钢板BH值的检测与探讨[J].天津汽车, 1994 , 4: 36~40.
    [26].李东升,李雪峰,周贤宾.汽车板材烘烤硬化特性的研究[J] .金属成形工艺, 2001, 19 (2) : 14~17.
    [27].关小军,王先进,刘月乔.预变形和烘烤条件对ELC-BH钢板性能的影响[J].钢铁, 1994 , 29 (7) : 41~44.
    [28]. De A K, De Blauwe K, Vandeputte S. , et al. Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel[J]. Journal of Alloys and Compounds, 2000, 310: 405~410.
    [29]. De A K, Vandeputte S, De Cooman B C. Static strain aging behavior of ultra low carbon bake hardening steel[J] . Scripta Materialia , 1999 , 41 (8) : 831~837.
    [30]. Shinjiro Kaneko. Development of Hot-Rolled Sheet Steel with Significant Increase in Tensile Strength Induced by Strain Age Hardening[J]. KAWASAKI STEEL TECHNICAL REPORT .2003(48):53~59.
    [31].陆晓华.双轴纤维增强复合材料强度准则研究与双向拉伸试验[D].南京航空航天大学硕士学位论文.南京:南京航空航天大学,2007
    [32]. Heinz Palkowskl, Thorsten Anke. Bake Hardening of Hot Rolled Multiphase Steels under Biaxial Pre-strained Conditions[J]. Steels for Automotive Application.2006. 77(No.9-10):675~678.
    [33]. V.BALLARIN, A.PERLADE, etc. Mechanism and Modeling of Bake-Hardening Steels: PartⅡ.Complex Loading Paths[J]. Metallurgical and Materials Transactions A. 2009, Vol 40A:1375~1382.
    [34].张烱,张伯达. 14MnMo钢的宽板拉伸试验[J].1994-2011China Academic Journal Electronic Publishing House.Http://www.cnki.net: 24~27.
    [35].朱林,凌纯,刘刚. 10MnNiCrMoV钢宽板拉伸试验研究[J].材料开发与应用.2009,Vol 24(No.6):6~8.
    [36].余海燕,鲍立.塑性变形中变形模式对TRIP钢相变诱发塑性效应的影响[J].中国科技论文在线. 2010,Vol.5(No.8): 633~636.
    [37].单体坤,张卫刚等.应力状态对TRIP钢残余奥氏体稳定性的影响[J].上海交通大学学报. 2006,Vol 40(No.10):1691~1693.
    [38].余海燕.复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究[D].上海:上海交通大学,2005.
    [39].孙明军.冷轧硅钢板得多轴力学行为研究[D].辽宁:辽宁科技大学,2007.
    [40].孙颖.镁合金薄板成型性的双向原位拉伸评价方法[D].辽宁:辽宁科技大学,2009.
    [41].王鑫.双轴拉伸下取向硅钢薄板的力学行为研究[D].辽宁:辽宁科技大学,2009.
    [41]. SEW 094.具有较高屈服极限的冷加工合金冷轧钢带和钢板以及热作用(烘烤硬化)后附加硬化的钢带和钢板[S].
    [42]. JISG 3135-1986.Cold Rolled High Strength Steel Sheets With Improved Formability For Automobile Structural[S].
    [43].徐惟诚,徐卫星.测试条件对BH钢影响程度的研究[J].理化试验-物理分册.2004,40(3):114.
    [44].赵九州,B.C.De Cooman.低碳钢应变时效过程模拟[J].金属学报,2002,Vol 38(1):27~30.
    [45].张继成. TRIP钢烘烤硬化机理研究:[D].上海:上海大学,2007.
    [46]. A.K. De, S. Vandeputte, and B.C.De Cooman. Kinetics of Strain Aging in Bake Hardening Ultra Low Carbon Steel- a Comparison with Low Carbon Steel[J].Journal of Materials Engineering and Performance.2001,Vol 10(5): 567~575.
    [47]. A.K. De, B.C.De Cooman.Carbon Distribution Between Matrix,Grain Boundaries and Dislocations in Ultra Low Carbon Bake-Hardenable Steels[J].Feature.2001:31~37.
    [48].吴瑞镛.时效双向钢加工硬化规律及其机理[J].西北建筑工程学院学报.1995(1):49~53.
    [49].戚军.十字形试件数值优化设计[D]:哈尔滨工业大学硕士学位论文.哈尔滨:哈尔滨工业大学,2004.
    [50].吴向东.不同加载路径下各向异性板料塑性变形行为的研究[D]:北京航空航天大学博士学位论文.北京:北京航天大学,2004.
    [51].王颖晖,方岱宁.功能材料双轴拉伸十字试件的优化设计[J].力学学报,2002,3(45):705~710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700