几类Volterra泛函微方程数值方法的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛函微分方程(FDEs)在自动控制、生物学、医学、化学、人口学、经济学等众多领域有着广泛应用,其理论和算法研究具有无可置疑的重要性,近三十年来,Volterra泛函微分方程(VFDEs),特别是其重要子类——延迟微分方程(DDEs)的算法理论研究得到了众多学者的高度关注,取得了大量研究成果.例如在DDEs数值方法线性稳定性研究领域,Barwell、Watanabe、Zennaro、Spijker、in’t Hout、Bellen、Jackiewicz、刘明珠、匡蛟勋、田红炯、张诚坚及胡广大等人作了大量工作,其中主要成果可参见Bellen和Zennaro及匡蛟勋的专著;DDEs数值方法非线性稳定性研究始于1989年Torelli及1992年Bellen和Zennaro的工作,1999年,黄乘明、李寿佛等人在BIT发表的论文指出Torelli稳定性是一个仅有极少数低阶方法才能满足的过于苛刻的概念,并提出了一个新的更为合理的稳定性概念,在此基础上,使得DDEs数值方法非线性稳定性研究得以蓬勃发展。尽管当时的研究仍局限于常延迟、等步长、线性插值及负的Lipschitz常数,但研究对象几乎遍及包括线性多步法和Runge-Kutta方法在内的一切常用算法,获得了大量新的数值稳定性结果。VFDEs数值方法的基于经典Lipschitz条件的收敛性研究已获得大量成果,例如可参见李寿佛1997年的专著,关于DDEs数值方法的经典收敛性研究可参见Oberle、Pesch、Bellen、Zennaro、Tavernini、Arndt、Enright、Feldstein、Neves、Karoui、Vaillancourt、Baker和Paul等人的工作。然而这些收敛性理论仅适用于非刚性问题,不适用于刚性问题。非线性刚性DDEs数值方法的收敛性研究始于张诚坚等人1997的工作,他们提出了Runge-Kutta方法的D-收敛概念,并证明了若干隐式Runge-Kutta方法能满足这一要求。其后,黄乘明等人从他们提出的新的更为合理的数值稳定性概念出发,获得了关于隐式Runge-Kutta方法和一般线性方法的大量D-收敛性结果,近年来,李寿佛在《中国科学》等刊物上发表一系列论文,进一步建立了一般的非线性刚性VFDEs的稳定性理论及其数值方法(包括Runge-Kutta方法和一般线性方法)的B-稳定性与B-收敛性理论,后者统称为数值方法的B-理论,可视为Dahlquist、Butcher、Frank及李寿佛等人所建立的刚性常微分方程数值方法的B-理论的进一步推广,应当指出,这里所建立的新理论比文献中已有的理
Functional differential equations(FDEs) arise widely in the fields of control theory, biology, medicine, chemistry, economics and so on. It is meaningful to investigate the theory and application of numerical methods for FDEs. In recent 30 years, the theory of computational methods for Vloterra FDEs(VFDEs), especially for delay differential equations(DDEs), has been widely discussed by many authors and a great deal of results have been found. As to the linear stability analysis of numerical methods for DDEs, we refer to the works of Barwell, Watanabe, Zennaro, Spijker, in't Hout, Bellen, Jackiewicz, Liu mingzhu, Kuang jiaoxun, Tian hongjiong, Zhang chengjian, Hu guangda and so on. The main results can be found in the monograph of Bellen and Zennaro or Kuang. Nonlinear stability analysis of numerical methods for DDEs originated with Torelli(in 1989) and Bellen and Zennare(in 1992). In 1999, Huang and Li et al. pointed out that the requirements of Torelli's stability are so strong that only a few methods with low order satisfy the conditions and put forward a newly reasonable stability concept. On the basis of the new concept, the study of nonlinear numerical stabilty for DDEs has been developed vigorously. Though the study limited to constant delay, fixed step, linear interpolation and negative Lipschitz constant at that time, the research object contained almost the commonly used numerical methods for DDEs and a great deal of new stability results had been obtained. Convergence of numerical methods for DDEs is another important issue and lots of results based on the classical Lipschitz condition can be found. As to the case of VFDEs, we refer to the momograph of Li(in 1997). For the case of DDEs, we refer to the papers of Oberle, Pesch, Bellen, Zennaro, Tavernini, Arndt, Enright, Feldstein, Neves, Karoui, Vaillancourt, Baker and Paul etc. However, the above results are only suitable to nonstiff DDEs, however, which are not suitable to stiff DDEs. Convergence analysis of numerical methods for stiff DDEs originated from the works of Zhang et al. in 1997. They introduced the concept of D-convergence and proved that several implicit
引文
[1] J. K. Hale. Theory of functional differential equations, springer-verlag, New York, 1977.
    [2] 郑祖庥.泛函微分方程理论.安徽教育出版社,合肥,1992.
    [3] 李森林,温立志.泛函微分方程.湖南科学技术出版社,长沙,1985.
    [4] Y. Kuang. Delay differential equations with applications in population dynamics. Academic press, New York, 1993.
    [5] 秦元勋,刘永清,王联,郑祖庥.带有时滞的动力系统的运动稳定性(第二版).科学出版社,北京,1989.
    [6] R. D. Driver. Ordinary and delay differential equations. Springer-Verlag, New York, 1977.
    [7] G. A. Bocharov, F. A. Rihan. Numerical modelling in biosciences with delay differential equations. J. Comput. Appl. Math., 2000, 125: 183-199.
    [8] A. Iserles. On the generalized pantograph functional-differential equations. Euro. J. Appl. Math., 1993, 4: 1-38.
    [9] 李寿佛.刚性微分方程算法理论.湖南科学技术出版社,长沙,1997.
    [10] 袁兆鼎,费景高,刘德贵。刚性常微分方程初值问题的数值解法.科学出版社,北京,1987.
    [11] J. D. Lambert. Numerical methods for ordinary differential equations. Wiley, Chichester, 1991.
    [12] J. C. Butcher. The Numerical analysis of ordinary differential equations. John Wiley, Chichester, New York, Brisbane, 1987.
    [13] E. Hairer, S. P. Norsett, G. Wanner. Solving ordinary differential equations Ⅰ, Nonstiff Problems. Springer, Berlin, 1993.
    [14] E. Hairer, G. Wanner. Solving ordinary differential equations Ⅱ, Stiff and Differential Algebraic Problems. Springer, Berlin, 1993.
    [15] V. L. Barwell. Special stability problems for functional equations. BIT, 1975, 15: 130-135.
    [16] D. S. Watanabe, M. G. Roth. The stability of difference formulas for delay differential equations. SIAM. J. Numer. Anal., 1985, 22: 132-145.
    [17] H. J. Tian, J. X. Kuang. The numerical stability of linear multistep methods for delay differential equations with many delays. SIAM J. Numer. Anal., 1996, 33: 883-889.
    [18] M. Z. Liu, M. N. Spijker. The stability of the θ-methods in the numerical solution of delay differential equations[J]. IMA J. Numer. Anal., 1990, 10: 31-48.
    [19] Zennaro M. P-stability properties of Runge-Kutta methods for delay differential equations[J]. Numer. Math., 1986, 49: 305-318.
    [20] in't Hout K J. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J]. BIT, 1992, 32: 634-649.
    [21] in't Hout K. J. The stability of θ-methods for systems of delay differential equations[J]. Appl. Numer.Math., 1994, 10: 323-334.
    [22] in't Hout K. J. Stability analysis of Runge-Kutta methods for systems of delay differential equations[J]. IMA J. Numer. Anal., 1997, 17: 17-27.
    [23] Koto T. A stability properties of A-stable natural Runge-Kutta methods for systems of delay differential equations[J]. BIT, 1994, 34: 262-267.
    [24] Tian H J, Kuang J X. The stability of linear multistep methods for systems of delay differential equations[J]. Numer. Mtah. J. Chinese Univ., 1995, 4: 10-16.
    [25] 张诚坚.泛函微分方程数值解的稳定性与D-收敛性[D].长沙:湖南大学博士学位论文,1998.
    [26] Bellen A, Maset S. Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems[J]. Numer. Math., 2000, 84: 351-374.
    [27] Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations[J]. Numer. Math., 1984, 43: 389-396.
    [28] Hu G D, Mitsui T. Stability of linear delay differential systems with matrices having common eigenvectors[J]. Japan J. Indust. Appl. Math., 1996, 13: 487-494.
    [29] Bellen A, Zennaro M. Numerical methods for delay differential equations[M]. Oxford: Clarendon Press, 2003.
    [30] 匡蛟勋.泛函微分方程的数值处理[M].北京:科学出版社,1999.
    [31] Torelli L. Stability of numerial methods for delay differential equations[J]. J. Comput. Appl. Math., 1989, 25: 15-26.
    [32] Bellen A, Zennaro M. Strong contractivity properties of numerical methods for ordinary and delay differential equations[J]. Appl. Numer. Math., 1992, 9: 321-346.
    [33] in't Hout K J. A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods[J]. SIAM J. Numer. Anal., 1996, 33: 1125-1134.
    [34] Zennaro M. Contractivity of Runge-Kutta methods with respect to forcing term[J]. Appl.Numer.math., 1993, 10:321-345.
    [35] Huang C M, Fu H Y, Li S F, Chen G N. Stability analysis of Runge-Kutta methods for nonlinear delay differential equations[J]. BIT, 1999, 39: 270-280.
    [36] C. M. Huang, H. Y. Fu, S. F. Li, G. N. Chen. Stability and error analysis of one-lag methods for nonlinear delay differential equations. J. Comput. Appl. Math., 1999, 103: 263-279.
    [37] C. M. Huang, S. F. Li, H. Y. Fu, G. N. Chen. Nonlinear stability of general linear methods for delay differential equations. BIT, 2002, 42: 380-392.
    [38] C. J. Zhang, G. Sun. The discrite dynamics of nonlinear infinite-delay-differential equations. Appl. Math. Letters, 2002, 15: 521-5260
    [39] C. J. Zhang, G. Sun. Nonlinear stability of variable stepsize Runge-Kutta methods applied to infinite-delay-differential equations. Math. Comput. Modelling, 2004, 39: 495-503.
    [40] C. J. Zhang, S. Vandewalle. Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization. J. Comput. Appl. Math., 2004, 164-165: 797-814.
    [41] C. J. Zhang, S. Vandewalle. Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J. Numer. Anal., 2004, 24: 193-214.
    [42] C. J. Zhang. Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations. J. Comput. Math., 2002, 20: 583-590.
    [43] L. P. Wen, S. F. Li. Stability of theoretical solution and numerical solution of nonlinear differential equations with piecewise delays. J. Comput. Math., 2005, 23: 393-400.
    [44] 王文强,李寿佛.非线性变延迟微分方程单支方法的数值稳定性.计算数学,2002,24:417-430.
    [45] 王晚生,李寿佛.非线性中立型延迟微分方程稳定性分析.计算数学,2004,26:303-314.
    [46] 王晚生,李寿佛.求解变延迟微分方程的一类线性多步方法的收缩性.高等学校计算数学学报,2004,26:214-221.
    [47] 余越昕,李寿佛.非线性中立型延迟微分方程Runge-Kutta方法的稳定性.系统仿真学报,2005,17(1):49-52.
    [48] 余越昕,李寿佛.延迟微分方程单支方法的非线性稳定性.数学杂志,2005,25(1):59-66.
    [49] 余越昕,文立平,李寿佛.非线性比例延迟微分方程线性θ-方法的渐近稳定性.系统仿真学报,2005,17(3):604-605.
    [50] 余越昕,文立平.一类线性多步法关于变延迟微分方程的渐近稳定性.长 沙电力学院学报(自然科学版)2003,18(3):4-6.
    [51] 余越昕,李寿佛.变延迟微分方程隐式Euler法的收缩性[J].湘潭大学自然科学学报,2004,26(2):112-115.
    [52] 余越昕,文立平.非线性积分微分方程单支θ-方法的稳定性分析[J].江西师范大学学报(自然科学版),2005,29(2):153-155.
    [53] Oberle H J, Pesch H J. Numerical treatment of delay differential equations by Hermite interpolation[J]. Numer. Math., 1981, 37: 235-255.
    [54] Arndt H. Numerical solution of retarded initial value problems: local and global error and stepsize control[J]. Numer. Math., 1984, 43: 343-360.
    [55] Baker C T H, Paul C A H. Parallel continuous Runge-Kutta methods and vanishing lag delay differentail equations[J]. Adv. Comput. Math., 1993, 1: 367-394.
    [56] Baker C T H, Paul C A H. A global convergence theorem for a class of parallel continuous explicit Runge-Kutta methods and vanishing lag delay differentail equations[J]. SIAM J. Numer. Anal., 1996, 33: 1559-1576.
    [57] Bellen A. One-step collocation for delay differential equations[J]. J. Comput. Appl. Math., 1984, 10: 275-283.
    [58] Bellen A, Zennaro M. Numerical solution of delay differential equations by nuiform corrections to an implicit Runge-Kutta method[J]. Numer. Math., 1985, 47: 301-316.
    [59] Enright W H, Hayashi H. Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods[J]. SIAM J. Numer. Anal., 1998, 35: 572-585.
    [60] Feldstein A, Neves K W. High order methods for state-dependent delay differential equations with nonsmooth solutions[J]. SIAM J. Numer. Anal., 1984, 21: 844-863.
    [61] Karoui A, Vaillancourt R. Computer solutions of state-dependent delay differential equations[J]. Comput. Math. Appl., 1994, 27: 37-51.
    [62] Karoui A, Vaillancourt R. A numerical method for vanishing-lag delay differential equations[J]. Appl. Numer. Math., 1995, 17: 383-395.
    [63] Tavernini L. One-step methods for the numerical solution of Volterra functional differential equations[J]. SIAM J. Numer. Anal., 1978, 15: 1039-1052.
    [64] Zhang C J, Zhou S Z. Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations[J]. J. Comput. Appl. Math., 1997, 85: 225-237. for stiff delay differential equations. J.Comput.Math., 2001, 19:259-268.
    [66] C.M.Huang, G.N.Chen, S.F.Li, H.Y.Fu. D-convergence of general linear methods for stiff delay differential equations. Comput.Math.Appl., 2001, 41:727-639.
    [67] C.M.Huang, S.F.Li, H.Y.Fu, G.N.Chen. D-convergence of one-leg methods for stiff delay differential equations. J.Comput.Math., 2001, 19:601-606.
    [68] Z.Jackiewicz. The numerical solution of Volterra functional differential equations of neutral type. SIAM J.Numer.Anal., 1981, 18:615-626.
    [69] Z.Jackiewicz. Adams methods for neutral functional differential equations. Nu- mer.Math., 1982, 39:221-230.
    [70] Z. Jackiewicz. One-step methods of any order for neutral functional differential equations. SIAM J.Numer.Anal., 1984, 21:486-511.
    
    [71] Z.Jackiewicz. Quasilinear multistep methods and variable step predictor- corrector methods for neutral functional differential equations. SIAM J.Numer.Anal., 1986, 23:423-452.
    [72] Z.Jackiewicz. Variable-step variable-order algorithm for the numerical solution of neutral functional differential equations. Appl.Numer.Math., 1987, 3:317-329.
    [73] Z. Jackiewicz, E.Li. The numerical solution of neutral functional differential equations by Adams predictor-corrector methods. Appl.Numer.Math., 1991, 8:477- 491.
    [74] A.Bellen, Z.Jackiewicz, M.Zennaro. Stability analysis of one-step methods for neutral delay-differential equations. Numer.Math., 1988, 52:605-619.
    [75] J.X.Kuang, J.X.Xiang, H.J.Tian. The asymptotic stability of one-parameter methods for neutral differential equations. BIT, 1994, 34:400-408.
    [76] T.Koto. A stability property of A-stable collocation based Runge-Kutta methods for neutral differential equations. BIT, 1995, 35:855-859.
    [77] T.Koto. NP-stability of Runge-Kutta methods based on classical quadrature. BIT, 1997, 37:870-884.
    [78] G.Da Hu,T.Mitsui. Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT, 1995, 35:504-515.
    [79] C.J.Zhang, S.Z.Zhou. The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay differential equations. Science in China(Series A), 1998, 41:504-515.
    [80] C.J.Zhang, S.Z.Zhou. Stability analysis of LMMs for systems of neutral multidelay-differential equations. Computers Math.Appl., 1999, 38:113-117. multidelay-differential equations[J]. Computers Math.Appl., 1999, 38:113-117.
    
    [81] Huang C M, Chang Q S. Linear stability of general linear methods for systems of neutral delay differential equations[J]. Appli.Math.Letter, 2001, 14:1017-1021.
    
    [82] Bellen A, Guglielmi N, Zennaro M. On the contractivity and asymptotic stability of systems of delay differential equations of neutral type[J]. BIT, 1999, 39:1-24.
    
    [83] Liu Y. Numerical solution of implicit neutral functional differential equations[J]. SIAM J.Numer.Anal., 1999, 36:516-528.
    
    [84] Bellen A, Guglielmi N, Zennaro M. Numerical stability of nonlinear delay differential equations of neutral type[J]. J.Comput.Appl.Math., 2000, 125:251-263.
    
    [85] Vermiglio R, Torelli L. A stable numerical approach for implicit non-linear neutral delay differential equations[J]. BIT, 2003, 43:195-215.
    
    [86] Brunner H, Lambert J D. Stability of numerical methods for Volterra integrod-ifferential equations[J]. Computing, 1974, 12:75-89.
    
    [87] Brunner H. The approximate solution of initial-value problems for general Volterra integro-differential equations [J]. Computing, 1988, 40:125-137.
    
    [88] Matthys J. A-stable linear multistep methods for Volterra integro-differential equations[J]. Numer.Math., 1976, 27:85-94.
    
    [89] Jackiewicz Z, Bakke V. Stability analysis of reducible quadrature methods for Volterra integral equations of the first kind[J]. Integral Equations, 1985, 9:243- 249.
    
    [90] Jackiewicz Z, Bakke V. Stability analysis of reducible quadrature methods for Volterra integral equations of the second kind[J]. Numer.Math., 1985, 47:159-173.
    
    [91] Jackiewicz Z. Global error estimation in the numerical solution of integro-differential equations by Euler methods.[J] Zastos.Math., 1984, 18:487-501.
    
    [92] Jackiewicz Z, Kwapisz M. Convergence of multistep methods for Volterra integro-differential equations[J]. Ann.Polon.Math., 1983, 43:177-185.
    
    [93] Tang T, Yuan W. The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation[J]. Math.Comput., 1990, 54:155- 168.
    
    [94] Makroglou A. Extended backward differentiation methods in the numerical solution of neutral Volterra integro-differential equations[J]. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30:1515-1530.
    
    [95] Ford N J, Baker C T H, Roberts J A. Nonlinear Volterra integro-differential equations stability and numerical stability of θ-methods [J]. J Integral Equation
    [97] C. T. H. Baker, N. J. Ford. Stability properties of a scheme for the approximate solution of a delay integro-differential equation. Appl. Numer. Math., 1992, 9: 357-370.
    [98] C. T. H. Baker, A. Tang. Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays. Appl. Numer. Math. 1997, 24: 153-173.
    [99] H. Brunner. The numerical solution of neutral Volterra integro-differential equations with delay arguments. Ann. Numer. Math., 1994, 1: 309-322.
    [100] W. H. Enrighi, M. Hu. Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay. Appl. Numer. Math., 1997, 24: 175-190.
    [101] J. J. Zhao, Y. Xu, M. Z. Liu. Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system. Appl. Math. Comput., 2005, 167: 1062-1079.
    [102] T. Koto. Stability of Runge-Kutta methods for delay integro-differential equations. J. Comput. Appl. Math., 2002, 145: 483-492.
    [103] T. Koto. Stability of θ-methods for delay integro-differential equations. J. Comput. Appl. Math., 2003, 161: 393-404.
    [104] S. F. Li. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations. Science in China(Series A), 2003, 46: 662-674.
    [105] S. F. Li. B-theory of general linear methods for stiff Volterra functional differential equations. Appl. Numer. Math., 2005, 53: 57-72.
    [106] S. F. Li. Stability Analysis of Solutions to Nonlinear Stiff Volterra Functional Differential Equations in Banach Spaces. Science in China(Ser.A), 2005, 48: 372-387.
    [107] 樊华.泛函微分方程数值方法B-理论在刚性延迟微分方程数值分析中的应用.湘潭大学硕士学位论文,湘潭,2005.
    [108] 刘红良.泛函微分方程数值方法的B-理论在刚性积分微分方程数值分析中的应用.湘潭大学硕士学位论文,湘潭,2005.
    [109] G. Dahlquist. G-stability is equivalent to A-stability. BIT, 1978, 18: 384-401.
    [110] K. Burrage, J. C. Butcher. Stability creteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal., 1979, 16: 46-57.
    [111] K. Burrage, J. C. Butcher. Non-linear stability of a general class of differential equation methods. BIT, 1980 20: 185-203.
    [112] 李寿佛.单支方法及线性多步法的稳定性准则.湘潭大学自然科学学报, SIAM J. Numer. Anal., 1979, 16: 46-57.
    [111] Burrage K, Butcher J C. Non-linear stability of a general class of differential equation methods[J]. BIT, 1980 20: 185-203.
    [112] 李寿佛.单支方法及线性多步法的稳定性准则[J].湘潭大学自然科学学报,1987,9:21-27.
    [113] 黄乘明,李寿佛.θ-方法的非线性渐近稳定性[J].高等学校计算数学学报,2000,22:335-340.
    [114] Li S F. Stability and B-convergence of general linear methods[J]. J. Comput. Appl. Math., 1989, 28: 281-296.
    [115] Burrage K. High order algebraically stable multisep Runge-Kutta methods[J]. SIAM J. Numer. Anal., 1987, 24: 106-115.
    [116] Li S F. B-convergence properties of multistep Runge-Kutta methods[J]. Math. Comput., 1994, 62: 565-575.
    [117] Li S F. Stability and B-convergence properties of multistep Runge-Kutta methods[J]. Math. Comput., 2000, 69: 1481-1504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700