苯巴比妥的认知功能评估及其疗效与ABCB1基因多态性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是一种常见的神经系统疾病,全球约有0.4-0.7%的人口患有癫痫。苯巴比妥是世界上应用最广泛的抗癫痫药物之一,对部分性发作和全面性发作均有疗效;其半衰期长、服药方便和价格低廉。但是,长期以来困扰临床医生、患者及家属的,是源于苯巴比妥对认知功能的影响。我们采用多中心、大样本的病例对照研究,通过神经心理学量表对正在接受苯巴比妥治疗的癫痫患者进行检测,评估苯巴比妥治疗癫痫患者的认知功能。
     尽管近年来不断有新的AEDs问世,在癫痫治疗上取得了进步,但仍有20%-30%的患者对各种抗癫痫药物不敏感成为耐药性癫痫,苯巴比妥亦不例外。本研究应用分子流行病学方法,探讨ABCB1基因多态性在回、汉族癫痫患者中的分布特点及其与耐药的相关性,以及该多态性与苯巴比妥脑脊液和血药浓度及其比值的关联。
     第一部分中国农村地区全身强直.阵挛发作癫痫患者的认知功能评估目的评价中国农村地区未经规范治疗的全身强直-阵挛发作(GTCS)的癫痫患者
     的认知功能的状况。
     方法采用数字广度测验、言语流畅性测验、听觉词语测验及数字划消测验对144名GTCS的癫痫患者和144名健康对照进行认知功能评定。
     结果GTCS的癫痫患者的注意力及计算能力较差,并有瞬间语言记忆、自发的语言运动能力、思维组织能力及干扰抑制能力的下降p<0.001)。
     结论未经规范治疗的GTCS的癫痫患者存在广泛的认知功能障碍。抗癫痫药物的不规范使用是认知功能损害的主要影响因素之一。
     目的中国农村地区苯巴比妥治疗惊厥性癫痫是有效的,虽然没有正规的认知功能的评估,但很少出现认知功能及行为障碍。这项研究目的是对苯巴比妥治疗中国农村地区癫痫患者的认知功能的评估。
     方法对中国农村五省区的144例惊厥性癫痫患者及144名健康者为对照。癫痫组患者采用单药苯巴比妥治疗12个月。在基线、3、6和12个月分别对癫痫患者及健康者进行一组神经心理测试,包括MMSE (Mini Mental State Examination)、HDRS (Hamilton Depression Rating Scale)、DST (digit span test)、 AVLT(auditory verbal learning test)、DCT (digit cancellation test)。在随访结束时评估苯巴比妥的效果。
     结果在12个月的随访中,填写认知功能评分及心理测试量表。完成随访的癫痫患者为136(94.4%)例,健康者为137(95.1%)人。两组均显示在数字广度和数字划消测验有改善。然而,在言语流畅性方面,苯巴比妥组显示比对照组有更好的改善,两组比较有显著性差异(P=0.012)。
     结论苯巴比妥治疗惊厥性癫痫患者未见认知功能障碍,对认知功能的改善源于其抗癫痫作用,但长期影响有待于进一步研究。
     目的研究ABCB1基因的多态性在回、汉族癫痫患者中分布及与苯巴比妥疗效的相关性。
     方法收集应用苯巴比妥治疗的回、汉族癫痫患者的临床资料,分为回、汉族癫痫耐药组和回、汉族癫痫控制有效组,并采集患者静脉血。应用SNaPshot SNP分型技术检测ABCB1基因G1199A(rs2229109)、C1236T(rs1128503)、C3435T (rs1045642)和G2677T/A (rs2032582)与MRP2基因C-24T (rs717620)、 G1249A(rs2273697)和C3972T(rs3740066)的基因型。用SHEsis软件对ABCB1基因C1236T(rs1128503)、C3435T(rs1045642)和G2677T/A(rs2032582)进行单体型推断。应用病例对照研究,分析ABCB1基因多态性在回、汉族癫痫患者中的分布特点,通过Logistic回归模型评估各基因型与癫痫耐药发生风险的相关程度,并计算比数比(OR)及95%可信区间(CI)。
     结果共入选回、汉族癫痫患者184例,回族62人,汉族122人。其中,回族耐药组32例,汉族耐药组62例;回族控制组30例,汉族控制组60例。1.回、汉族癫痫患者在ABCB1基因G1199A(rs2229109)、C3435T(rs1045642)、 G2677T/A(rs2032582)和C1236T(rsl128503)、MRP2C-24T(rs717620)、G1249A (rs22736397)和C3972T (rs3740066)等7个位点,其各等位基因分布频率及各基因型分布频率未见差异。2.MRP2的多态性与苯巴比妥疗效未见关联。3.在汉族患者中,ABCB1基因C3435T(rs1045642)的CC基因型在耐药组中的分布频率较高,TT基因型在控制组中分布频率较高(p=0.0047)。Logistic回归模型分析提示CC基因型是癫痫耐药的独立危险因素,CC基因型发生癫痫耐药的危险性是TT基因型的9.751倍(OR=9.751,95%CL:2.762-34.420, p=0.000), CT基因型发生癫痫耐药的危险性是TT基因型的5.291倍(OR=5.291,95%CL:0.052-17.770,p=0.007)0回族患者亦有这种趋势(p=0.075),但无统计学差异。回、汉族C等位基因分布频率均在耐药组中较高,T等位基因分布频率均在控制组中较高(P值分别为p=0.033和p=0.003)。4.在汉族患者中,ABCB1基因G2677T/A(rs2032582)的GG基因型在癫痫耐药组的分布频率较高,TT基因型在汉族控制组的分布频率较高(p=0.034)。Logistic回归模型分析提示GG基因型是癫痫耐药的独立危险因素,GG基因型发生癫痫耐药的危险性是TT基因型的10.577倍(OR=10.577,95%CL:2.571-43.518, p=0.001), GA基因型发生癫痫耐药的危险性是TT基因型的4.380倍(OR=4.380,95%CL:1.105-17.355,p=0.036); GT基因型发生耐药的危险性是TT基因型的4.032倍(OR=4.032,95%CL:1.193-13.631, p=0.025)。5. ABCB1基因C3435T(rs1045642)、G2677T/A(rs2032582)和C1236T (rs1128503)所构建的单体型中,汉族癫痫患者CGT单体型在耐药组中的分布频率较高,TTT单体型在控制组中的分布频率较高(p=0.015)。Logistic回归模型分析提示,CGT单体型是癫痫耐药的独立危险因素,CGT发生癫痫耐药的危险性是TTT单体型的3.483倍(OR=3.483,95%CL:1.782-6.808, p=0.000).6. Logistic回归模型分析提示饮酒、发作频率、服用AEDs时间及全面性发作是发生癫痫耐药的独立危险因素。癫痫耐药与性别、年龄、回、汉族、首发年龄、病程、高热惊厥、吸烟和发病距吃药时间等无关联。
     结论ABCB1基因的多态性在回、汉族癫痫患者中的分布无差异;ABCB1基因C3435T位点CC基因型、G2677T/A位点的GG基因型和CGT单体型与汉族癫痫耐药显著相关;回族癫痫患者未显示与ABCB1基因的SNPs关联。
     目的了解脑脊液、血苯巴比妥浓度及其比值与ABCB1基因的多态性的的关联。
     方法采用反相高效液相色谱法(RP-HPLC)检测79例癫痫患者的脑脊液、血苯巴比妥浓度,采用SNaPshot SNP分型技术检测入组癫痫患者ABCB1基因的C1236T、G2677T/A和C3435T的位点的基因型。计算CSF/S P浓度比值,分析该比值与各基因型的相关性。
     结果1.在ABCB1基因C1236T位点,CC基因型、CT基因型和TT基因型中,未发现S PB浓度、CSF PB浓度以及与CSF/S PB浓度比值具有相关性(p>0.05)。2.在ABCB1基因G2677T/A位点,AA基因型、GA基因型和GG基因型GT基因型、TA基因型和TT基因型中,未发现S PB浓度、CSFPB浓度以及与CSF/S PB浓度比值具有相关性(p>0.05)。3.在ABCB1基因C3435T位点,CC基因型、CT基因型和TT基因型中,未发现S PB浓度、CSF PB浓度以及与CSF/S PB浓度比值具有相关性(p>0.05)。4.在ABCB1基因C3435T、 G2677T/A和C1236T位点所构建的单体型,CA、CGC、CGT和TTT单体型中,未发现S PB浓度、CSF PB浓度以及与CSF/S PB浓度比值具有相关性(p>0.05)。
     结论脑脊液、血清苯巴比妥浓度及其比值未发现与ABCB1基因的多态性相关,还需扩大样本进一步验证本实验结果。
Epilepsy is one of the most frequent neurologic disorders, affecting approximately0.4-0.7%of the world population. Phenobarbital (PB) on the partial seizures and generalized seizures is the most widely used antiepileptic drug (AED) in the world. PB has long half-life, taking the convenience and low prices. However, long plagued clinicians, patients and their families, is derived from phenobarbital on cognitive function. Therefore, we use multi-center, large sample of case-control study by questionnaire on neuropsychological testing in patients with epilepsy, phenobarbital treatment assessment of cognitive function in patients with epilepsy.
     Although in recent years, there have been the advent of new AEDs in the treatment of epilepsy made progress, but still20%-30%of patients on a variety of antiepileptic drugs is not sensitive to a resistant epilepsy. Phenobarbital is no exception, there are also pharmacoresistant problem. The application of molecular epidemiological methods to explore the ABCB1gene polymorphism of distribution in the Hui and Han people with epilepsy and its correlation with drug resistance and the polymorphism of phenobarbital concentration in cerebrospinal fluid,serum and the ratio of the association.
     Objective To evaluate the cognitive function in untreated patients with generalized tonic-clonic seizure (GTCS).
     Materials and Methods144patients with GTCS and144normal controls were evaluated with a battery of neuropsychologic tests, which comprises Digit Span Test, Verbal Fluency Test, Auditory Verbal Learning Test and Digit Cancellation Test.
     Results Patients with GTCS performed worse of general cognitive deficits, such as verbal memory, episodic memory, verbal learning capacity, visual spatial memory, attention, and calculative ability(p<0.001).
     Conclusion The cognitive function of untreated patients with GTCS is widely impaired. Unstandardized treatment with anti-epileptic drug is the main impact factor of cognitive function impairment.
     Objective A study in rural China confirmed that phenobarbital was effective in controlling convulsive seizures with few cognitive or behavioral adverse effects, although no formal psychometric testing was undertaken. This study was designed to evaluate the effects of phenobarbital treatment on cognition and mood in people with epilepsy in rural China.
     Materials and Methods144people with convulsive seizures and144healthy controls were recruited from five sites in rural China. The group of people with epilepsy was treated with phenobarbital monotherapy for12months. At baseline,3,6and12months, cases and controls were evaluated with a battery of neuropsychological tests, comprising the Mini Mental State Examination, the Hamilton Depression Rating Scale, a digit span test, a verbal fluency test, an auditory verbal learning test and a digit cancellation test. Efficacy of phenobarbital was evaluated at the end of follow-up for those with epilepsy.
     Results In the12months of follow-up, complete and psychological tests of cognitive function score scale. Complete the follow-up of136patients with epilepsy (94.4%) patients,137healthy (95.1%) people. Both groups were displayed in the DST and the DCT test improved. However, in the AVLT, the phenobarbital group than the control group showed better improvement in both groups had significant difference (p=0.012).
     Conclusion Phenobarbital treatment did not impair cognitive function of patients with convulsive seizures, improvement of cognitive function due to its antiepileptic effect, but long-term effects need further study.
     Objective To study frequencies of polymorphisms in ABCB1and association of these polymorphisms with phenobarbital response in Hui and Han people with epilepsy.
     Materials and Methods We collected clinical data of phenobarbital treatment Hui and Han in epilepsy patients, classified into the Han drug-resistant group, drug responsive group and Hui drug-resistant group, drug responsive group and collected blood of patients. SNaPshot SNP genotyping was employed to genotype of detecting ABCB1gene G1199A (rs2229109), C1236T (rs1128503), C3435T (rs1045642) and G2677T/A (rs2032582) and the MRP2gene C-24T (rs717620), G1249A (rs2273697) and C3972T (rs3740066).Haplotypes were reconstructed to ABCB1gene C1236T (rs1128503), C3435T (rs1045642) and G2677T/A (rs2032582) by SHEsis programs.Application of case-control study, we analyzed ABCB1genetic polymorphism of frequency in the Hui and Han patients with epilepsy.Logistic regression models assessed by the genotype and the risk of epilepsy, the relevance of drug resistance, and calculate the odds ratio (OR) and95%confidence intervals (CI).
     Results184people with epilepsy were recruited, including32cases of Hui drug-resistant group, the Han group of62patients with drug resistance; effective control of30patients of Hui and Han control group of60patients effectively.1. The distribution of its allele frequency and the genotype was no different with Hui and Han patients with epilepsy in the ABCB1G1199A (rs2229109), C3435T (rs1045642), G2677T/A (rs2032582) and C1236T (rs1128503) and the MRP2C-24T (rs717620), G1249A (rs22736397) and C3972T (rs3740066).2. MRP2polymorphisms were no association with the efficacy of phenobarbital.3. In Han epilepsy patients, ABCB1C3435T (rs1045642) of the CC genotype of frequency distribution in drug-resistant group was higher than in the control group, and TT genotype of frequency distribution in the control group was higher than in drug-resistant group ((p=0.0047)). Logistic regression analysis showed that the CC genotype was epilepsy pharmacoresistance of an independent risk factor. CC genotype of the risk of epilepsy pharmacoresistance was been9.751times by the TT genotype (OR=9.751,95%CL:2.762-34.420. p=0.000).CT genotype happened the risk of epilepsy pharmacoresistance was been5.291times by the TT genotype (OR=5.291,95%CL:0.052-17.770,p=0.007). Hui epilepsy patients had trend (p=0.075), no significant difference. Hui and Han C allele frequencies were higher in the drug-resistant group, T allele frequency was higher in the control groups.4. In Han epilepsy patients, ABCB1G2677T/A (rs2032582) of the GG genotype of frequency distribution was high in drug-resistant group. TT genotype of the frequency distribution was high in Han control group (p=0.034). Logistic regression analysis showed that GG genotype was independent risk factor for epilepsy pharmacoresistance. GG genotype was happened the risk of epilepsy pharmacoresistance was been10.577times by the TT genotype (OR=10.577,95%CL:2.571-43.518, p=0.001).GA genotypes happened the risk of epilepsy pharmacoresistance was been4.380times by the TT genotype (OR=4.380,95%CL:1.105-17.355, p=0.036).GT genotype happened the risk of epilepsy pharmacoresistance was been4.032times by the TT genotype (OR=4.032,95%CL:1.193-13.631, p=0.025). Hui epilepsy patients had not statistically significant at this site.5. Haplotype were constructed by ABCBlgene C3435T (rs1045642), G2677T/A (rs2032582) and C1236T (rs1128503).In the Han patients with epilepsy, CGT haplotype was the frequency distribution high in the drug-resistant group. TTT haplotype was the frequency distribution high in the control group (p=0.015) Logistic regression analysis revealed that CGT haplotype was an independent risk factor for epilepsy pharmacoresistance. CGT happened risk of epilepsy pharmacoresistance was been3.483times by the TTT haplotype (OR=3.483,95%CL:1.782-6.808,p=0.000). Hui patients with epilepsy had trend (p=0.068), but not significantly.6. Logistic regression analysis revealed that alcohol, seizure frequency, time taking AEDs and generalized seizures was happened epilepsy pharmacoresistance of independent risk factors. Epilepsy pharmacoresistance had no associate with sex, age, nationality, starting age, duration, febrile seizures, smoking, medication and time from the onset.
     Conclusions
     1. ABCB1gene polymorphism was the frequency distribution no difference in the Hui and Han patients with epilepsy.
     2. ABCB1gene C3435T loci CC genotypes, G2677T/A loci GG genotype and CGT haplotype was significantly associated with epilepsy pharmacoresistance in Han epilepsy patients. Hui epilepsy patients did not show associated with SNPs of ABCB1gene.
     Objective Understand the ABCB1gene polymorphisms between cerebrospinal fluid (CSF), serum(S) concentrations of phenobarbital and the ratio of the association.
     Materials and Methods By reversed-phase high performance liquid chromatography (RP-HPLC) detected of cerebrospinal fluid and serum concentrations of phenobarbital in79patients with epilepsy. SNaPshot SNP genotyping detected ABCB1gene C1236T, G2677T/A and C3435T loci genotypes in patients with epilepsy. We calculated CSF/S PB concentration ratio, to analyze the ratio of the correlation with the genotype.
     Results1. CC genotype, CT genotype and TT genotype were not found S PB concentration, CSF PB concentration and with the CSF/S PB concentration Ratio correlated in ABCB1gene C1236T loci (p>0.05).2. AA genotype, GA genotype and GG genotype GT genotype, TA genotype and TT genotype were not found S PB concentration, CSFPB concentration and with the CSF/S PB concentration Ratio correlated in ABCB1gene G2677T/A loci (p>0.05).3. CC genotype, CT genotype and TT genotype were not found S PB concentration, CSF PB concentration and with the CSF/S PB concentration Ratio correlated in ABCB1gene C3435T loci (p>0.05).4. CAC, CGC, CGT and TTT haplotype, not found in S PB concentration, CSF PB concentration and with the CSF/S PB concentration ratio of correlated in ABCB1gene C3435T, G2677T/A and C1236T loci constructing haplotype (p>0.05). Conclusions ABCB1gene polymorphisms in cerebrospinal fluid, serum
     concentrations of phenobarbital and the CSF/S PB Ratio was no correlation, need to expand the sample to further verify the experimental results.
引文
[1]Kale, R. Global Campaign Against Epilepsy:the treatment gap[J]. Epilepsia 2002; 43 Suppl 6:31-33.
    [2]Meinardi, H., Scott, R.A., Reis, R., et al. The treatment gap in epilepsy:the current situation and ways forward[J]. Epilepsia 2001; 42:136-149.
    [3]Sander, J.W.Shorvon, S.D. Incidence and prevalence studies in epilepsy and their methodological problems:a review[J]. J Neurol Neurosurg Psychiatry 1987; 50:829-839.
    [4]Brodie, M.J.Kwan, P. Phenobarbital:a drug for the 21st century?[J]. Epilepsy Behav 2004; 5:802-803.
    [5]Brodie, M.J.Kwan, P. Staged approach to epilepsy management[J]. Neurology 2002; 58:S2-8.
    [6]Ding, D., Hong, Z., Wang, W.Z., et al. Assessing the disease burden due to epilepsy by disability adjusted life year in rural China[J]. Epilepsia 2006; 47:2032-2037.
    [7]Meador, K.J. Cognitive outcomes and predictive factors in epilepsy [J]. Neurology 2002; 58:S21-26.
    [8]Aldenkamp, A.P., Overweg, J., Gutter, T., et al. Effect of epilepsy, seizures and epileptiform EEG discharges on cognitive function[J]. Acta Neurol Scand 1996; 93:253-259.
    [9]Titze, K., Koch, S., Helge, H., et al. Prenatal and family risks of children born to mothers with epilepsy:effects on cognitive development[J]. Dev Med Child Neurol 2008; 50:117-122.
    [10]Lee, G.Y., Brown, L.M.Teyler, T.J. The effects of anticonvulsant drugs on long-term potentiation (LTP) in the rat hippocampus[J]. Brain Res Bull 1996; 39:39-42.
    [11]Hermann, B., Seidenberg, M., Bell, B., et al. The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function[J]. Epilepsia 2002; 43:1062-1071.
    [12]Martin, R., Vogtle. L., Gilliam, F., et al. What are the concerns of older adults living with epilepsy?[J]. Epilepsy Behav 2005; 7:297-300.
    [13]Kalviainen, R., Aikia. M., Helkala. E.L., et al. Memory and attention in newly diagnosed epileptic seizure disorder[J]. Seizure 1992; 1:255-262.
    [14]Dodrill, C.B. Progressive cognitive decline in adolescents and adults with epilepsy[J]. Prog Brain Res 2002; 135:399-407.
    [15]Adab, N., Kini, U., Vinten, J., et al. The longer term outcome of children born to mothers with epilepsy[J]. J Neurol Neurosurg Psychiatry 2004; 75:1575-1583.
    [16]Goode, D.J., Penry, J.K.Dreifuss, F.E. Effects of paroxysmal spike-wave on continuous visual-motor performance [J]. Epilepsia 1970; 11:241-254.
    [17]Binnie, C.D. Cognitive impairment during epileptiform discharges:is it ever justifiable to treat the EEG?[J]. Lancet Neurol 2003; 2:725-730.
    [18]Meador, K.J., Loring, D.W., Vahle, V.J., et al. Cognitive and behavioral effects of lamotrigine and topiramate in healthy volunteers[J]. Neurology 2005; 64:2108-2114.
    [19]Sillanpaa, M., Jalava, M., Kaleva, O., et al. Long-term prognosis of seizures with onset in childhood[J]. N Engl J Med 1998; 338:1715-1722.
    [20]Kanner, A.M. Depression in epilepsy:a frequently neglected multifaceted disorder[J]. Epilepsy Behav 2003; 4 Suppl 4:11-19.
    [21]Koch, S., Titze, K., Zimmermann, R.B., et al. Long-term neuropsychological consequences of maternal epilepsy and anticonvulsant treatment during pregnancy for school-age children and adolescents[J]. Epilepsia 1999; 40:1237-1243.
    [22]LaJoie, J.Moshe, S.L. Effects of seizures and their treatment on fetal brain[J]. Epilepsia 2004; 45 Suppl 8:48-52.
    [23]Kantola-Sorsa, E., Gaily, E., Isoaho, M., et al. Neuropsychological outcomes in children of mothers with epilepsy[J]. J Int Neuropsychol Soc 2007; 13:642-652.
    [24]Gaily, E., Kantola-Sorsa, E.Granstrom, M.L. Intelligence of children of epileptic mothers[J]. J Pediatr 1988; 113:677-684.
    [25]Hiilesmaa, V.K. Pregnancy and birth in women with epilepsy [J]. Neurology 1992; 42:8-11.
    [26]Dodrill, C.B. Correlates of generalized tonic-clonic seizures with intellectual, neuropsychological, emotional, and social function in patients with epilepsy[J]. Epilepsia 1986; 27:399-411.
    [27]Bornstein, R.A., Pakalnis, A., Drake, M.E., Jr., et al. Effects of seizure type and waveform abnormality on memory and attention[J]. Arch Neurol 1988; 45:884-887.
    [28]Vermeulen. J.Aldenkamp, A.P. Cognitive side-effects of chronic antiepileptic drug treatment:a review of 25 years of research[J]. Epilepsy Res 1995; 22:65-95.
    [29]Hellstrom. B.Barlach-Christoffersen, M. Influence of phenobarbital on the psychomotor development and behaviour in preschool children with convulsions[J]. Neuropadiatrie 1980; 11:151-160.
    [30]Farwell, J.R., Lee, Y.J., Hirtz, D.G., et al. Phenobarbital for febrile seizures--effects on intelligence and on seizure recurrence[J]. N Engl J Med 1990; 322:364-369.
    [31]Sulzbacher, S., Farwell, J.R., Temkin, N., et al. Late cognitive effects of early treatment with phenobarbital [J]. Clin Pediatr (Phila) 1999; 38:387-394.
    [32]Tonekaboni, S.H., Beyraghi, N., Tahbaz, H.S., et al. Neurocognitive effects of phenobarbital discontinuation in epileptic children[J]. Epilepsy Behav 2006; 8:145-148.
    [33]MacLeod, C.M., Dekabian, A.S.Hunt, E. Memory impairment in epileptic patients:selective effects of phenobarbital concentration [J]. Science 1978; 202:1102-1104.
    [34]Gallassi, R., Morreale, A., Di Sarro, R., et al. Cognitive effects of antiepileptic drug discontinuation[J]. Epilepsia 1992; 33 Suppl 6:S41-44.
    [35]Vining, E.P., Mellitis, E.D., Dorsen, M.M., et al. Psychologic and behavioral effects of antiepileptic drugs in children:a double-blind comparison between phenobarbital and valproic acid[J]. Pediatrics 1987; 80:165-174.
    [36]Calandre, E.P., Dominguez-Granados, R., Gomez-Rubio, M., et al. Cognitive effects of long-term treatment with phenobarbital and valproic acid in school children[J]. Acta Neurol Scand 1990; 81:504-506.
    [37]de Silva, M., MacArdle, B., McGowan, M., et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy[J]. Lancet 1996; 347:709-713.
    [38]Heller, A.J., Chesterman, P., Elwes, R.D., et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy:a randomised comparative monotherapy trial[J]. J Neurol Neurosurg Psychiatry 1995; 58:44-50.
    [39]Chen, Y.J., Kang, W.M.So, W.C. Comparison of antiepileptic drugs on cognitive function in newly diagnosed epileptic children:a psychometric and neurophysiological study[J]. Epilepsia 1996; 37:81-86.
    [40]Wang, W.Z., Wu, J.Z., Ma, G.Y., et al. Efficacy assessment of phenobarbital in epilepsy:a large community-based intervention trial in rural China[J]. Lancet Neurol 2006; 5:46-52.
    [41]Biedler, J.L. Genetic aspects of multidrug resistance[J]. Cancer 1992; 70:1799-1809.
    [42]Rosenberg, M.F., Callaghan, R., Ford, R.C., et al. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis[J]. J Biol Chem 1997; 272:10685-10694.
    [43]Sisodiya, S.M., Lin, W.R., Harding, B.N., et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy [J]. Brain 2002; 125:22-31.
    [44]Marie, J.P., Zittoun, R.Sikic, B.I. Multidrug resistance (mdrl) gene expression in adult acute leukemias:correlations with treatment outcome and in vitro drug sensitivity [J]. Blood 1991; 78:586-592.
    [45]Morrow, C.S.Cowan, K.H. Mechanisms and clinical significance of multidrug resistance[J]. Oncology (Williston Park) 1988; 2:55-63,66-58.
    [46]Rizzi, M., Caccia, S., Guiso, G., et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance[J]. J Neurosci 2002; 22:5833-5839.
    [47]Dombrowski, S.M., Desai, S.Y., Marroni, M., et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy [J]. Epilepsia 2001; 42:1501-1506.
    [48]Sisodiya, S.M., Martinian, L., Scheffer, G.L., et al. Major vault protein, a marker of drug resistance, is upregulated in refractory epilepsy[J]. Epilepsia 2003; 44:1388-1396.
    [49]Hoffmeyer, S., Burk, O., von Richter, O., et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo[J]. Proc Natl Acad Sci U S A 2000; 97:3473-3478.
    [50]Hitzl, M., Drescher, S., van der Kuip, H., et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells[J]. Pharmacogenetics 2001; 11:293-298.
    [51]Siddiqui, A., Kerb, R., Weale, M.E., et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1 [J]. N Engl J Med 2003; 348:1442-1448.
    [52]Zimprich, F., Sunder-Plassmann. R., Stogmann. E., et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy[J]. Neurology 2004; 63:1087-1089.
    [53]Hung, C.C., Tai, J.J., Lin, C.J., et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response[J]. Pharmacogenomics 2005; 6:411-417.
    [54]Sills, G.J., Mohanraj, R., Butler, E., et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment[J]. Epilepsia 2005; 46:643-647.
    [55]Kim, Y.O., Kim, M.K., Woo, Y.J., et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics[J]. Seizure 2006; 15:67-72.
    [56]Shahwan, A., Murphy, K., Doherty, C., et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy:an analysis of multiple SNPs in an Irish population[J]. Epilepsy Res 2007; 73:192-198.
    [57]Dahan, A.Amidon, G.L. MRP2 mediated drug-drug interaction:indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting[J]. Int J Pharm 2010; 386:216-220.
    [58]Vlaming, M.L., van Esch, A., Pala, Z., et al. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo[J]. Mol Cancer Ther 2009; 8:3350-3359.
    [59]Sun, N., Sun, X., Chen, B., et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer [J]. Cancer Chemother Pharmacol 2010; 65:437-446.
    [60]Kwan, P.Brodie, M.J. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia 2005; 46:224-235.
    [61]Yang, Z.H.Liu, X.D. P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro [J]. Epilepsy Res 2008; 78:40-49.
    [62]Basic, S., Hajnsek, S., Bozina, N., et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy[J]. Seizure 2008; 17:524-530
    [1]Kwan, P.Brodie, M.J. Neuropsychological effects of epilepsy and antiepileptic drugs[J]. Lancet 2001; 357:216-222.
    [2]Meador, K.J. Cognitive outcomes and predictive factors in epilepsy[J]. Neurology 2002; 58:S21-26.
    [3]Aldenkamp, A.P.Bodde, N. Behaviour, cognition and epilepsy[J]. Acta Neurol Scand Suppl 2005; 182:19-25.
    [4]Conway, A.R., Kane, M.J., Bunting, M.F., et al. Working memory span tasks:A methodological review and user's guide[J]. Psychon Bull Rev 2005; 12:769-786.
    [5]Troyer, A.K., Moscovitch, M., Winocur, G., et al. Clustering and switching on verbal fluency:the effects of focal frontal- and temporal-lobe lesions[J]. Neuropsychologia 1998; 36:499-504.
    [6]Crossen, J.R.Wiens, A.N. Comparison of the Auditory-Verbal Learning Test (AVLT) and California Verbal Learning Test (CVLT) in a sample of normal subjects[J]. J Clin Exp Neuropsychol 1994; 16:190-194.
    [7]MA, Taylor The fundamentals of clinical neuropsychiatry, New York:Oxford University Press,1999;357-358
    [8]Cormack, F., Cross, J.H., Isaacs, E., et al. The development of intellectual abilities in pediatric temporal lobe epilepsy[J]. Epilepsia 2007; 48:201-204.
    [9]Shannon, H.E.Love, P.L. Effects of antiepileptic drugs on learning as assessed by a repeated acquisition of response sequences task in rats[J]. Epilepsy Behav 2007; 10:16-25.
    [10]DeFelipe, J., Segura, T., Arellano, J.I., et al. Neuropathological findings in a patient with epilepsy and the Parry-Romberg syndrome[J]. Epilepsia 2001; 42:1198-1203.
    [11]Berg, A.T., Langfitt, J.T., Testa, F.M., et al. Global cognitive function in children with epilepsy:a community-based study[J]. Epilepsia 2008; 49:608-614.
    [12]Gokcay, A., Celebisoy, N., Gokcay, F., et al. Cognitive functions evaluated by P300 and visual and auditory number assays in children with childhood epilepsy with occipital paroxysms (CEOP)[J]. Seizure 2006; 15:22-27.
    [13]Briellmann, R.S., Wellard, R.M.Jackson, G.D. Seizure-associated abnormalities in epilepsy:evidence from MR imaging[J]. Epilepsia 2005; 46:760-766.
    [14]Elger, C.E., Helmstaedter. C.Kurthen, M. Chronic epilepsy and cognition[J]. Lancet Neurol 2004; 3:663-672.
    [15]Rzezak, P., Fuentes, D., Guimaraes, C.A., et al. Frontal lobe dysfunction in children with temporal lobe epilepsy[J]. Pediatr Neurol 2007; 37:176-185.
    [16]Prevey, M.L., Delaney, R.C., Cramer, J.A., et al. Complex partial and secondarily generalized seizure patients:cognitive functioning prior to treatment with antiepileptic medication. VA Epilepsy Cooperative Study 264 Group[J]. Epilepsy Res 1998; 30:1-9.
    [17]Titze, K., Koch, S., Helge, H., et al. Prenatal and family risks of children born to mothers with epilepsy:effects on cognitive development[J]. Dev Med Child Neurol 2008; 50:117-122.
    [18]Dodrill, C.B. Progressive cognitive decline in adolescents and adults with epilepsy[J]. Prog Brain Res 2002; 135:399-407.
    [19]Hendriks, M.P., Aldenkamp, A.P., Alpherts, W.C., et al. Relationships between epilepsy-related factors and memory impairment[J]. Acta Neurol Scand 2004; 110:291-300.
    [20]Goode, D.J., Penry, J.K.Dreifuss, F.E. Effects of paroxysmal spike-wave on continuous visual-motor performance[J]. Epilepsia 1970; 11:241-254.
    [21]Binnie, C.D. Cognitive impairment during epileptiform discharges:is it ever justifiable to treat the EEG?[J]. Lancet Neurol 2003; 2:725-730.
    [22]Meador, K.J., Loring, D.W., Vahle, V.J., et al. Cognitive and behavioral effects of lamotrigine and topiramate in healthy volunteers [J]. Neurology 2005; 64:2108-2114.
    [23]Seidenberg, M., Hermann, B., Wyler, A.R., et al. Neuropsychological outcome following anterior temporal lobectomy in patients with and without the syndrome of mesial temporal lobe epilepsy[J]. Neuropsychology 1998; 12:303-316.
    [24]Sillanpaa, M., Jalava, M., Kaleva, O., et al. Long-term prognosis of seizures with onset in childhood[J]. N Engl J Med 1998; 338:1715-1722.
    [25]Kanner, A.M.Nieto, J.C. Depressive disorders in epilepsy[J]. Neurology 1999; 53:S26-32.
    [26]Trimble, M.R. Anticonvulsant drugs and cognitive function:a review of the literature[J]. Epilepsia 1987; 28 Suppl 3:S37-45.
    [27]Haverkamp, F., Hanisch. C., Mayer, H., et al. Evidence of a specific vulnerability for deficient sequential cognitive information processing in epilepsy[J]. J Child Neurol 2001; 16:901-905.
    [28]Kalviainen, R., Aikia, M., Helkala, E.L., et al. Memory and attention in newly diagnosed epileptic seizure disorder[J]. Seizure 1992; 1:255-262.
    [29]Fisher, R.S., Vickrey, B.G., Gibson, P., et al. The impact of epilepsy from the patient's perspective Ⅱ:views about therapy and health care[J]. Epilepsy Res 2000; 41:53-61.
    [30]Helmstaedter, C., Kurthen, M., Lux, S., et al. Chronic epilepsy and cognition:a longitudinal study in temporal lobe epilepsy[J]. Ann Neurol 2003; 54:425-432.
    [31]Corcoran, R.Thompson, P. Epilepsy and poor memory:who complains and what do they mean?[J]. Br J Clin Psychol 1993; 32 (Pt 2):199-208.
    [32]de Boer, H.M., Mula, M.Sander, J.W. The global burden and stigma of epilepsy[J]. Epilepsy Behav 2008; 12:540-546.
    [33]Seidenberg, M., Pulsipher, D.T.Hermann, B. Cognitive progression in epilepsy [J]. Neuropsychol Rev 2007; 17:445-454.
    [34]Kanner, A.M. Epilepsy and mood disorders[J]. Epilepsia 2007; 48 Suppl 9:20-22.
    [35]Stefan, H. [Medication compliance in epilepsy][J]. Nervenarzt 2008; 79:1446-1447.
    [36]Dodrill, C.B. Correlates of generalized tonic-clonic seizures with intellectual, neuropsychological, emotional, and social function in patients with epilepsy[J]. Epilepsia 1986; 27:399-411.
    [37]Helmstaedter, C. Cognitive outcome of status epilepticus in adults[J]. Epilepsia 2007; 48 Suppl 8:85-90.
    [38]Martin, R., Vogtle, L., Gilliam, F., et al. What are the concerns of older adults living with epilepsy?[J]. Epilepsy Behav 2005; 7:297-300.
    [39]Piazzini, A., Canevini, M.P., Turner, K., et al. Elderly people and epilepsy: cognitive function[J]. Epilepsia 2006; 47 Suppl 5:82-84.
    [1]Scott, R.A., Lhatoo, S.D.Sander, J.W. The treatment of epilepsy in developing countries:where do we go from here?[J]. Bull World Health Organ 2001; 79:344-351.
    [2]Wang, W.Z., Wu, J.Z., Wang, D.S., et al. The prevalence and treatment gap in epilepsy in China:an ILAE/IBE/WHO study[J]. Neurology 2003; 60:1544-1545.
    [3]Kale, R.Perucca, E. Revisiting phenobarbital for epilepsy [J]. BMJ 2004; 329:1199-1200.
    [4]Wang, W., Wu, J., Dai, X., et al. Global campaign against epilepsy:assessment of a demonstration project in rural China[J]. Bull World Health Organ 2008; 86:964-969.
    [5]Salmon, D.P., Riekkinen, P.J., Katzman, R., et al. Cross-cultural studies of dementia. A comparison of mini-mental state examination performance in Finland and China[J]. Arch Neurol 1989; 46:769-772.
    [6]Hamilton, M. Rating depressive patients[J]. J Clin Psychiatry 1980; 41:21-24.
    [7]WHO. Epilepsy management at a primary health level:Protocol for a demonstration project in the People's Republic of China 2000, Geneva, WHO.
    [8]Thompson, P.J., Baxendale, S.A., Duncan, J.S., et al. Effects of topiramate on cognitive function[J]. J Neurol Neurosurg Psychiatry 2000; 69:636-641.
    [9]Conway, A.R., Kane, M.J., Bunting, M.F., et al. Working memory span tasks:A methodological review and user's guide[J]. Psychon Bull Rev 2005; 12:769-786.
    [10]Troster, A.I., Fields, J.A., Testa, J.A., et al. Cortical and subcortical influences on clustering and switching in the performance of verbal fluency tasks [J]. Neuropsychologia 1998; 36:295-304.
    [11]Taylor, M. The fundamentals of clinical neuropsychiatry, New York:Oxford University Press.1999; 357-358.
    [12]Callahan CD, J.B.J.B. The clinical utility of the Rey Auditory-Verbal Learning Test in medical rehabilitation.[J]. Journal of Clinical Psychology in Medical Settings 1994; 1:261-268.
    [13]Guo QH, Chen RY, Hong Z, et al. Comparison for cognitive functions between Chinese elderly and Americans[J]. Chinese Mental Health Journal 2003; 17:731-733.
    [14]Guo QH, Hong Z, Yu H. et al. Research on identify method of mild cognitive impairment[J]. Chinese Journal of Clinical Psychology 2004; 12:60-62.
    [15]Guo QH, Lu JC, Hong Z, et al. Research for difference between neurodegenerative and vascular mild cognitive impairment with neuropsychological assessment[J]. Chinese Journal of Clinical Psychology 2005; 13:405-407.
    [16]Zeger, S.L.Liang, K.Y. Longitudinal data analysis for discrete and continuous outcomes[J]. Biometrics 1986; 42:121-130.
    [17]Ding, D., Hong, Z., Chen, G.S., et al. Primary care treatment of epilepsy with phenobarbital in rural China:cost-outcome analysis from the WHO/ILAE/IBE global campaign against epilepsy demonstration project[J]. Epilepsia 2008; 49:535-539.
    [18]Kwan, P.Brodie, M.J. Phenobarbital for the treatment of epilepsy in the 21st century:a critical review[J]. Epilepsia 2004; 45:1141-1149.
    [19]Loring, D.W.Meador, K.J. Cognitive side effects of antiepileptic drugs in children[J]. Neurology 2004; 62:872-877.
    [20]Hermann, B., Meador, K.J., Gaillard, W.D., et al. Cognition across the lifespan: antiepileptic drugs, epilepsy, or both?[J]. Epilepsy Behav 2010; 17:1-5.
    [21]Meador, K.J., Loring, D.W., Moore, E.E., et al. Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults[J]. Neurology 1995; 45:1494-1499.
    [22]Feksi, A.T., Kaamugisha, J., Sander, J.W., et al. Comprehensive primary health care antiepileptic drug treatment programme in rural and semi-urban Kenya. ICBERG (International Community-based Epilepsy Research Group)[J]. Lancet 1991; 337:406-409.
    [23]Pal, D.K., Das, T., Chaudhury, G., et al. Randomised controlled trial to assess acceptability of phenobarbital for childhood epilepsy in rural India[J]. Lancet 1998; 351:19-23.
    [24]Banu, S.H., Jahan, M., Koli, U.K., et al. Side effects of phenobarbital and carbamazepine in childhood epilepsy:randomised controlled trial[J]. BMJ 2007; 334:1207.
    [25]Placencia, M., Sander, J.W., Shorvon, S.D., et al. Antiepileptic drug treatment in a community health care setting in northern Ecuador:a prospective 12-month assessment[J]. Epilepsy Res 1993; 14:237-244.
    [26]Aldenkamp, A.Arends, J. The relative influence of epileptic EEG discharges, short nonconvulsive seizures, and type of epilepsy on cognitive function[J]. Epilepsia 2004; 45:54-63.
    [27]Kent, G.P., Schefft, B.K., Howe, S.R., et al. The effects of duration of intractable epilepsy on memory function[J]. Epilepsy Behav 2006; 9:469-477.
    [28]McCagh, J., Fisk, J.E.Baker, G.A. Epilepsy, psychosocial and cognitive functioning[J]. Epilepsy Res 2009; 86:1-14.
    [29]Wesnes, K.A., Edgar, C., Dean, A.D., et al. The cognitive and psychomotor effects of remacemide and carbamazepine in newly diagnosed epilepsy[J]. Epilepsy Behav 2009; 14:522-528.
    [30]Chisholm, D. Cost-effectiveness of first-line antiepileptic drug treatments in the developing world:a population-level analysis[J]. Epilepsia 2005; 46:751-759.
    [1]Siddiqui, A., Kerb, R., Weale, M.E., et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1[J]. N Engl J Med 2003; 348:1442-1448.
    [2]Soranzo, N., Cavalleri, G.L., Weale, M.E., et al. Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene[J]. Genome Res 2004; 14:1333-1344.
    [3]Hung, C.C., Tai, J.J., Lin, C.J., et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response[J]. Pharmacogenomics 2005; 6:411-417.
    [4]Seo, T., Ishitsu, T., Ueda, N., et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients[J]. Pharmacogenomics 2006; 7:551-561.
    [5]Ebid, A.H., Ahmed, M.M.Mohammed, S.A. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients:a gene polymorphism perspective study[J]. Ther Drug Monit 2007; 29:305-312.
    [6]Hung, C.C., Jen Tai, J., Kao, P.J., et al. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses[J]. Pharmacogenomics 2007; 8:1151-1158.
    [7]Kwan, P., Baum, L., Wong, V., et al. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese[J]. Epilepsy Behav 2007; 11:112-117.
    [8]Kwan, P., Wong, V., Ng, P.W., et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese[J]. Pharmacogenomics 2009; 10:723-732.
    [9]Vahab, S.A., Sen, S., Ravindran, N., et al. Analysis of genotype and haplotype effects of ABCB1 (MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population[J]. Drug Metab Pharmacokinet 2009; 24:255-260.
    [10]Szoeke, C., Sills, G.J., Kwan, P., et al. Multidrug-resistant genotype (ABCB1) and seizure recurrence in newly treated epilepsy:data from international pharmacogenetic cohorts[J]. Epilepsia 2009; 50:1689-1696.
    [11]Lakhan, R., Misra, U.K., Kalita, J., et al. No association of ABCB1 polymor-phisms with drug-refractory epilepsy in a north Indian population[J]. Epilepsy Behav 2009; 14:78-82.
    [12]Kim, D.W., Lee, S.K., Chu, K., et al. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy[J]. Epilepsy Res 2009; 84:86-90.
    [13]Ozgon, G.O., Bebek, N., Gul, G., et al. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey[J]. Eur Neurol 2008; 59:67-70.
    [14]Dericioglu, N., Babaoglu, M.O., Yasar, U., et al. Multidrug resistance in patients undergoing resective epilepsy surgery is not associated with C3435T polymorphism in the ABCB1 (MDR1) gene[J]. Epilepsy Res 2008; 80:42-46.
    [15]Shahwan, A., Murphy, K., Doherty, C., et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy:an analysis of multiple SNPs in an Irish population[J]. Epilepsy Res 2007; 73:192-198.
    [16]Dahan, A.Amidon, G.L. MRP2 mediated drug-drug interaction:indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting[J]. Int J Pharm 2010; 386:216-220.
    [17]Vlaming, M.L., van Esch, A., Pala, Z., et al. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrpl) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo[J]. Mol Cancer Ther 2009; 8:3350-3359.
    [18]Sun, N., Sun, X., Chen, B., et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer[J]. Cancer Chemother Pharmacol 2010; 65:437-446.
    [19]Sills, G.J., Mohanraj, R., Butler, E., et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment[J]. Epilepsia 2005; 46:643-647.
    [20]Kwan, P.Brodie, M.J. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy [J]. Epilepsia 2005; 46:224-235.
    [21]Beydoun, A., Uthman, B.M., Kugler, A.R., et al. Safety and efficacy of two pregabalin regimens for add-on treatment of partial epilepsy [J]. Neurology 2005; 64:475-480.
    [22]Petrovski, S., Szoeke, C.E., Sheffield. L.J., et al. Multi-SNP pharmacogenomic classifier is superior to single-SNP models for predicting drug outcome in complex diseases[J]. Pharmacogenet Genomics 2009; 19:147-152.
    [23]Beghi, E.Tognoni. G. Prognosis of epilepsy in newly referred patients:a multicenter prospective study. Collaborative Group for the Study of Epilepsy[J]. Epilepsia 1988; 29:236-243.
    [24]Schmidt, D. Drug treatment of epilepsy:options and limitations[J]. Epilepsy Behav 2009; 15:56-65.
    [25]Shi, Y.Y.He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci[J]. Cell Res 2005; 15:97-98.
    [26]Li, Z., Zhang, Z., He, Z., et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers:update of the SHEsis [J]. Cell Res 2009; 19:519-523.
    [27]Hopkins, A., Garman, A.Clarke, C. The first seizure in adult life. Value of clinical features, electroencephalography, and computerised tomographic scanning in prediction of seizure recurrence [J]. Lancet 1988; 1:721-726.
    [28]Cleland, P.G., Mosquera, I., Steward, W.P., et al. Prognosis of isolated seizures in adult life[J]. Br Med J (Clin Res Ed) 1981; 283:1364.
    [29]Kim, R.B., Leake, B.F., Choo, E.F., et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans[J]. Clin Pharmacol Ther 2001; 70:189-199.
    [30]Ameyaw, M.M., Regateiro, F., Li, T., et al. MDR1 pharmacogenetics:frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity[J]. Pharmacogenetics 2001; 11:217-221.
    [31]Tang, K., Ngoi, S.M., Gwee, P.C., et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations [J]. Pharmacogenetics 2002; 12:437-450.
    [32]Chowbay, B., Cumaraswamy, S., Cheung, Y.B., et al. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients [J]. Pharmacogenetics 2003; 13:89-95.
    [33]Lazarowski, A., Sevlever, G., Taratuto, A., et al. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy[J]. Pediatr Neurol 1999; 21:731-734.
    [34]Dombrowski, S.M., Desai, S.Y., Marroni, M., et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy[J]. Epilepsia 2001; 42:1501-1506.
    [35]Rizzi, M., Caccia, S., Guiso, G, et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance[J]. J Neurosci 2002; 22:5833-5839.
    [36]Sisodiya, S. Drug resistance in epilepsy:not futile, but complex?[J]. Lancet Neurol 2003; 2:331.
    [37]Loscher, W. Animal models of intractable epilepsy[J]. Prog Neurobiol 1997; 53:239-258.
    [38]Bodo, A., Bakos, E., Szeri, F., et al. The role of multidrug transporters in drug availability, metabolism and toxicity[J]. Toxicol Lett 2003; 140-141:133-143.
    [39]Regesta, G.Tanganelli, P. Clinical aspects and biological bases of drug-resistant epilepsies[J]. Epilepsy Res 1999; 34:109-122.
    [40]Potschka, H. Transporter hypothesis of drug-resistant epilepsy:challenges for pharmacogenetic approaches[J]. Pharmacogenomics 2010; 11:1427-1438.
    [41]Ueda, K., Clark, D.P., Chen, C.J., et al. The human multidrug resistance (mdrl) gene. cDNA cloning and transcription initiation[J]. J Biol Chem 1987; 262:505-508.
    [42]Chen, C.J., Clark, D., Ueda, K., et al. Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins[J]. J Biol Chem 1990; 265:506-514.
    [43]Eid, H., Bodrogi, I., Csokay, B., et al. Multidrug resistance of testis cancers:the study of clinical relevance of P-glycoprotein expression [J]. Anticancer Res 1996; 16:3447-3452.
    [44]Burgio, D.E., Gosland, M.P.McNamara a, P.J. Effects of P-glycoprotein modulators on etoposide elimination and central nervous system distribution[J]. J Pharmacol Exp Ther 1998; 287:911-917.
    [45]Ambudkar, S.V., Dey, S., Hrycyna, C.A., et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter[J]. Annu Rev Pharmacol Toxicol 1999; 39:361-398.
    [46]Brinkmann, U.Eichelbaum, M. Polymorphisms in the ABC drug transporter gene MDR1[J]. Pharmacogenomics J 2001; 1:59-64.
    [47]Fromm, M.F. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans[J]. Adv Drug Deliv Rev 2002; 54:1295-1310.
    [48]Loscher, W.Schmidt, D. New horizons in the development of antiepileptic drugs: the search for new targets[J]. Epilepsy Res 2004; 60:77-159.
    [49]Loscher, W.Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs[J]. J Pharmacol Exp Ther 2002; 301:7-14.
    [50]Schmidt, D.Loscher, W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia 2005; 46:858-877.
    [51]Schinkel, A.H., Wagenaar, E., Mol, C.A., et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs[J]. J Clin Invest 1996; 97:2517-2524.
    [52]Brandt, C., Bethmann, K., Gastens, A.M., et al. The multidrug transporter hypothesis of drug resistance in epilepsy:Proof-of-principle in a rat model of temporal lobe epilepsy[J]. Neurobiol Dis 2006; 24:202-211.
    [53]Potschka, H.Loscher, W. Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain[J]. Neuroreport 2001; 12:2387-2389.
    [54]Potschka, H., Fedrowitz, M.Loscher, W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier:evidence from microdialysis experiments in rats[J]. Neurosci Lett 2002; 327:173-176.
    [55]Loscher, W.Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases[J]. Prog Neurobiol 2005; 76:22-76.
    [56]Cucullo, L., Hossain, M., Rapp, E., et al. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs[J]. Epilepsia 2007; 48:505-516.
    [57]Sisodiya, S.M., Lin, W.R., Harding, B.N., et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy [J]. Brain 2002; 125:22-31.
    [58]Hoffmeyer, S., Burk, O., von Richter, O., et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo[J]. Proc Natl Acad Sci U S A 2000; 97:3473-3478.
    [59]Fung, K.L.Gottesman, M.M. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function[J]. Biochim Biophys Acta 2009; 1794:860-871.
    [60]Bialecka, M., Hnatyszyn, G., Bielicka-Cymerman, J., et al. [The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy][J]. Neurol Neurochir Pol 2005; 39:476-481.
    [61]Tan, N.C., Heron, S.E., Scheffer. I.E., et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy[J]. Neurology 2004; 63:1090-1092.
    [62]Sai, K., Saito, Y., Itoda, M., et al. Genetic variations and haplotypes of ABCC2 encoding MRP2 in a Japanese population[J]. Drug Metab Pharmacokinet 2008; 23:139-147.
    [63]Basic, S., Hajnsek, S., Bozina, N., et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy[J]. Seizure 2008; 17:524-530.
    [64]Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity[J]. Science 2007; 315:525-528.
    [65]Sanchez, M.B., Herranz, J.L., Leno, C., et al. Genetic factors associated with drug-resistance of epilepsy:relevance of stratification by patient age and aetiology of epilepsy[J]. Seizure 2010; 19:93-101.
    [66]Bournissen, F.G., Moretti, M.E., Juurlink, D.N., et al. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs:a meta-analysis[J]. Epilepsia 2009; 50:898-903.
    [67]Daly, M.J., Rioux, J.D., Schaffner, S.F., et al. High-resolution haplotype structure in the human genome[J]. Nat Genet 2001; 29:229-232.
    [68]Haerian, B.S., Lim, K.S., Mohamed, E.H., et al. Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy [J]. Seizure 2011.
    [69]Zimprich, F., Sunder-Plassmann, R., Stogmann, E., et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy [J]. Neurology 2004; 63:1087-1089.
    [70]Kim, Y.O., Kim, M.K., Woo, Y.J., et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics[J]. Seizure 2006; 15:67-72.
    [1]Sills, G.J., Mohanraj, R., Butler, E., et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment[J]. Epilepsia 2005; 46:643-647.
    [2]Kwan, P.Brodie, M.J. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia 2005; 46:224-235.
    [3]Beydoun, A., Uthman, B.M., Kugler, A.R., et al. Safety and efficacy of two pregabalin regimens for add-on treatment of partial epilepsy [J]. Neurology 2005; 64:475-480.
    [4]Shahwan, A., Murphy, K., Doherty, C, et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy:an analysis of multiple SNPs in an Irish population[J]. Epilepsy Res 2007; 73:192-198.
    [5]Patil, K.M.Bodhankar, S.L. Simultaneous determination of lamotrigine, phenobarbitone, carbamazepine and phenytoin in human serum by high-performance liquid chromatography[J]. J Pharm Biomed Anal 2005; 39:181-186.
    [6]Chen, C.J., Chin, J.E., Ueda, K., et al. Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells[J]. Cell 1986; 47:381-389.
    [7]Allikmets, R., Gerrard, B., Hutchinson, A., et al. Characterization of the human ABC superfamily:isolation and mapping of 21 new genes using the expressed sequence tags database[J]. Hum Mol Genet 1996; 5:1649-1655.
    [8]Ambudkar, S.V., Kimchi-Sarfaty, C., Sauna, Z.E., et al. P-glycoprotein:from genomics to mechanism[J]. Oncogene 2003; 22:7468-7485.
    [9]Szakacs, G., Paterson, J.K., Ludwig, J.A., et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov 2006; 5:219-234.
    [10]Lazarowski, A., Sevlever, G., Taratuto, A., et al. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy[J]. Pediatr Neurol 1999; 21:731-734.
    [11]Dombrowski, S.M., Desai, S.Y., Marroni, M., et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy[J]. Epilepsia 2001; 42:1501-1506.
    [12]Rizzi, M., Caccia, S., Guiso. G. et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance[J]. J Neurosci 2002; 22:5833-5839.
    [13]Sisodiya, S. Drug resistance in epilepsy:not futile, but complex?[J]. Lancet Neurol 2003; 2:331.
    [14]Loscher, W. Animal models of intractable epilepsy[J]. Prog Neurobiol 1997; 53:239-258.
    [15]Zimprich, F., Sunder-Plassmann, R., Stogmann, E., et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy [J]. Neurology 2004; 63:1087-1089.
    [16]Loscher, W.Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs[J], J Pharmacol Exp Ther 2002; 301:7-14.
    [17]Ueda, K., Clark, D.P., Chen, C.J., et al. The human multidrug resistance (mdrl) gene. cDNA cloning and transcription initiation[J]. J Biol Chem 1987; 262:505-508.
    [18]Chen, C.J., Clark, D., Ueda, K., et al. Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins[J]. J Biol Chem 1990; 265:506-514.
    [19]Gottesman, M.M., Pastan, I.Ambudkar, S.V. P-glycoprotein and multidrug resistance[J]. Curr Opin Genet Dev 1996; 6:610-617.
    [20]Burgio, D.E., Gosland, M.P.McNamara a, P.J. Effects of P-glycoprotein modulators on etoposide elimination and central nervous system distribution[J]. J Pharmacol Exp Ther 1998; 287:911-917.
    [21]Ambudkar, S.V., Dey, S., Hrycyna, C.A., et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter[J]. Annu Rev Pharmacol Toxicol 1999; 39:361-398.
    [22]Brinkmann, U.Eichelbaum, M. Polymorphisms in the ABC drug transporter gene MDR1[J]. Pharmacogenomics J 2001; 1:59-64.
    [23]Kourea, H.P., Cordon-Cardo, C., Dudas, M., et al. Expression of p27(kip) and other cell cycle regulators in malignant peripheral nerve sheath tumors and neurofibromas:the emerging role of p27(kip) in malignant transformation of neurofibromas[J].Am J Pathol 1999; 155:1885-1891.
    [24]Loscher, W.Schmidt, D. New horizons in the development of antiepileptic drugs: the search for new targets[J]. Epilepsy Res 2004; 60:77-159.
    [25]Schmidt, D.Loscher, W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia 2005; 46:858-877.
    [26]Siddiqui, A., Kerb. R., Weale. M.E., et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1[J]. N Engl J Med 2003; 348:1442-1448.
    [27]Hung, C.C., Tai, J.J., Lin, C.J., et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response[J]. Pharmacogenomics 2005; 6:411-417.
    [28]Bialecka, M., Hnatyszyn, G, Bielicka-Cymerman, J., et al. [The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy][J]. Neurol Neurochir Pol 2005; 39:476-481.
    [29]Tan, N.C., Heron, S.E., Scheffer, I.E., et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy [J]. Neurology 2004; 63:1090-1092.
    [30]Smith, J.Osikowicz, G. Abbott AxSYM random and continuous access immunoassay system for improved workflow in the clinical laboratory [J]. Clin Chem 1993; 39:2063-2069.
    [31]A., H. Luminal bei Epilepsie.[J]. Munch Med Wochenschr 1912;59:1907-9.
    [32]Brodie, M.J.French, J.A. Management of epilepsy in adolescents and adults[J]. Lancet 2000; 356:323-329.
    [33]World Health Organization. Initiative of support to people with epilepsy[J]. Geneva:WHO 1990.
    [34]MacDonald, R.L., Rogers, C.J.Twyman, R.E. Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture[J]. J Physiol 1989; 417:483-500.
    [35]Rogawski, M.A.Porter, R.J. Antiepileptic drugs:pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds[J]. Pharmacol Rev 1990; 42:223-286.
    [36]Twyman, R.E., Rogers, C.J.Macdonald, R.L. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital[J]. Ann Neurol 1989; 25:213-220.
    [37]Basic, S., Hajnsek, S., Bozina, N., et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy[J]. Seizure 2008; 17:524-530.
    [1]Hauser, W.A., Annegers, J.F.Kurland, L.T. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota:1935-1984[J]. Epilepsia 1993; 34:453-468.
    [2]Duncan, J.S., Sander, J.W., Sisodiya, S.M., et al. Adult epilepsy[J]. Lancet 2006; 367:1087-1100.
    [3]Hartz, A.M., Notenboom, S.Bauer, B. Signaling to P-glycoprotein-A new therapeutic target to treat drug-resistant epilepsy?[J]. Drug News Perspect 2009; 22:393-397.
    [4]Elger, C.E.Schmidt, D. Modern management of epilepsy:a practical approach[J]. Epilepsy Behav 2008; 12:501-539.
    [5]Schmidt, D.Loscher, W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia 2005; 46:858-877.
    [6]Tishler, D.M., Weinberg, K.I., Hinton, D.R., et al. MDR1 gene expression in brain of patients with medically intractable epilepsy[J]. Epilepsia 1995; 36:1-6.
    [7]Schinkel, A.H., Smit, J.J., van Tellingen, O., et al. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs[J]. Cell 1994; 77:491-502.
    [8]Loscher, W.Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family[J]. NeuroRx 2005; 2:86-98.
    [9]Komar, A.A. Silent SNPs:impact on gene function and phenotype[J]. Pharmacogenomics 2007; 8:1075-1080.
    [10]Mickley, L.A., Lee, J.S., Weng, Z., et al. Genetic polymorphism in MDR-1:a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors [J]. Blood 1998; 91:1749-1756.
    [11]Hoffmeyer, S., Burk, O., von Richter, O., et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo[J]. Proc Natl Acad Sci U S A 2000; 97:3473-3478.
    [12]Brinkmann, U.,Roots, I.Eichelbaum, M. Pharmacogenetics of the human drug-transporter gene MDR1:impact of polymorphisms on pharmacotherapy[J]. Drug Discov Today 2001; 6:835-839.
    [13]Fung, K.L.Gottesman. M.M. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function[J]. Biochim Biophys Acta 2009; 1794:860-871.
    [14]Hitzl, M., Drescher, S., van der Kuip, H., et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells[J]. Pharmacogenetics 2001; 11:293-298.
    [15]Mosyagin, I., Runge, U., Schroeder, H.W., et al. Association of ABCB1 genetic variants 3435C>T and 2677G>T to ABCB1 mRNA and protein expression in brain tissue from refractory epilepsy patients[J]. Epilepsia 2008; 49:1555-1561.
    [16]Loscher, W., Klotz, U., Zimprich, F., et al. The clinical impact of pharmacogenetics on the treatment of epilepsy[J]. Epilepsia 2009; 50:1-23.
    [17]Kim, R.B., Leake, B.F., Choo, E.F., et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans[J]. Clin Pharmacol Ther 2001; 70:189-199.
    [18]Ameyaw, M.M., Regateiro, F., Li, T., et al. MDR1 pharmacogenetics:frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity [J]. Pharmacogenetics 2001; 11:217-221.
    [19]Tang, K., Ngoi, S.M., Gwee, P.C., et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations [J]. Pharmacogenetics 2002; 12:437-450.
    [20]Chowbay, B., Cumaraswamy, S., Cheung, Y.B., et al. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients [J]. Pharmacogenetics 2003; 13:89-95.
    [21]Vahab, S.A., Sen, S., Ravindran, N., et al. Analysis of genotype and haplotype effects of ABCB1(MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population[J]. Drug Metab Pharmacokinet 2009; 24:255-260.
    [22]Fellay, J., Marzolini, C., Meaden, E.R., et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1:a pharmacogenetics study[J]. Lancet 2002; 359:30-36.
    [23]Teodori, E., Dei, S., Martelli, C., et al. The functions and structure of ABC transporters:implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR)[J]. Curr Drug Targets 2006; 7:893-909.
    [24]Cucullo, L., Hossain, M., Rapp. E., et al. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs[J]. Epilepsia 2007; 48:505-516.
    [25]王焕明,谭启富.血-脑屏障与癫痫[J].医学研究生学报1999;12:260-263.
    [26]秦开宇,武士京,常津.血脑屏障上P-糖蛋白与耐药性癫痫关系的研究进展[J].生物医学进展.2007;17:123-125.
    [27]陈英辉,赵永波.P-糖蛋白在多药耐药的K562细胞转运苯妥英纳与卡马西平中的作用[J].生物化学与生物物理进展.2008;35:1425-1429.
    [28]Zhang, C., Kwan, P., Zuo, Z., et al. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein[J]. Life Sci 2010; 86:899-905.
    [29]Rizzi, M., Caccia, S., Guiso, G, et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance[J]. J Neurosci 2002; 22:5833-5839.
    [30]van Vliet, E.A., van Schaik, R., Edelbroek, P.M., et al. Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats[J]. J Pharmacol Exp Ther 2007; 322:141-147.
    [31]Schmidt, D.Loscher, W. New developments in antiepileptic drug resistance:an integrative view[J]. Epilepsy Curr 2009; 9:47-52.
    [32]Bankstahl, J.P., Kuntner, C., Abrahim, A., et al. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET[J]. J Nucl Med 2008; 49:1328-1335.
    [33]Potschka, H., Baltes, S.Loscher, W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats[J]. Epilepsy Res 2004; 58:85-91.
    [34]Potschka, H., Volk, H.A.Loscher, W. Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats[J]. Neuroreport 2004; 15:1657-1661.
    [35]van Vliet, E.A., van Schaik, R., Edelbroek, P.M., et al. Development of tolerance to levetiracetam in rats with chronic epilepsy[J]. Epilepsia 2008; 49:1151-1159.
    [36]van Vliet, E.A., Edelbroek, P.M.Gorter, J.A. Improved seizure control by alternating therapy of levetiracetam and valproate in epileptic rats[J]. Epilepsia 2010; 51:362-370.
    [37]Chen, X.C., Huang. S.P.Wang, X.Y. [Effect of astrocytes with different degrees of proliferation on multidrug resistance gene expression in rats with epilepsy][J]. Zhongguo Dang Dai Er Ke Za Zhi 2010; 12:908-911.
    [38]Siddiqui, A., Kerb, R., Weale, M.E., et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1 [J]. N Engl J Med 2003; 348:1442-1448.
    [39]Zimprich, F., Sunder-Plassmann, R., Stogmann, E., et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy [J]. Neurology 2004; 63:1087-1089.
    [40]Soranzo, N., Cavalleri, G.L., Weale, M.E., et al. Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene[J]. Genome Res 2004; 14:1333-1344.
    [41]Ebid, A.H., Ahmed, M.M.Mohammed, S.A. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients:a gene polymorphism perspective study[J]. Ther Drug Monit 2007; 29:305-312.
    [42]Basic, S., Hajnsek, S., Bozina, N., et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy[J]. Seizure 2008; 17:524-530.
    [43]Maleki, M., Sayyah, M., Kamgarpour, F., et al. Association between ABCB1-T1236C polymorphism and drug-resistant epilepsy in Iranian female patients[J]. Iran Biomed J 2010; 14:89-96.
    [44]Simon, C., Stieger, B., Kullak-Ublick, G.A., et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition[J]. Acta Neurol Scand 2007; 115:232-242.
    [45]Lazarowski, A., Czornyj, L., Lubienieki, F., et al. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy [J]. Epilepsia 2007; 48 Suppl 5:140-149.
    [46]Tan, N.C., Heron, S.E., Scheffer, I.E., et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy [J]. Neurology 2004; 63:1090-1092.
    [47]Leschziner, G., Zabaneh, D., Pirmohamed, M., et al. Exon sequencing and high resolution haplotype analysis of ABC transporter genes implicated in drug resistance[J]. Pharmacogenet Genomics 2006; 16:439-450.
    [48]Szoeke, C., Sills, G.J., Kwan, P., et al. Multidrug-resistant genotype (ABCB1) and seizure recurrence in newly treated epilepsy:data from international pharmacogenetic cohorts[J]. Epilepsia 2009; 50:1689-1696.
    [49]Haerian, B.S., Roslan, H., Raymond, A.A., et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy:a systematic review and meta-analysis[J]. Seizure 2010; 19:339-346.
    [50]Seo, T., Ishitsu, T., Ueda, N., et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients [J]. Pharmacogenomics 2006; 7:551-561.
    [51]Kwan, P., Baum, L., Wong, V., et al. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese[J]. Epilepsy Behav 2007; 11:112-117.
    [52]Hung, C.C., Chen, C.C., Lin, C.J., et al. Functional evaluation of polymor-phisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs[J]. Pharmacogenet Genomics 2008; 18:390-402.
    [53]Hajnsek, S., Basic, S.Poljakovic, Z. Utjecaj C3435T polimorfizma MDR1 gena na ucinkovitost medikamentnog lijecenja epilesia[J]. Neurol Croat 2004; 53:69-78.
    [54]Hung, C.C., Tai, J.J., Lin, C.J., et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response[J]. Pharmacogenomics 2005; 6:411-417.
    [55]Hung, C.C., Jen Tai, J.? Kao, P.J., et al. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses[J]. Pharmacogenomics 2007; 8:1151-1158.
    [56]Kwan, P., Wong, V., Ng, P.W., et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese[J]. Pharmacogenomics 2009; 10:723-732.
    [57]Sills, G.J., Mohanraj, R., Butler, E., et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment[J]. Epilepsia 2005; 46:643-647.
    [58]Kim, D.W., Kim, M., Lee, S.K., et al. Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multi drug-resistant epilepsy [J]. Seizure 2006; 15:344-347.
    [59]Kim, Y.O., Kim, M.K., Woo, Y.J., et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics [J]. Seizure 2006; 15:67-72.
    [60]Chen, L., Liu, C.Q., Hu, Y., et al. [Association of a polymorphism in MDR1 C3435T with response to antiepileptic drug treatment in ethic Han Chinese children with epilepsy][J]. Zhongguo Dang Dai Er Ke Za Zhi 2007; 9:11-14.
    [61]Shahwan, A., Murphy, K., Doherty. C., et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy:an analysis of multiple SNPs in an Irish population[J]. Epilepsy Res 2007; 73:192-198.
    [62]Dericioglu, N., Babaoglu, M.O., Yasar, U., et al. Multidrug resistance in patients undergoing resective epilepsy surgery is not associated with C3435T polymorphism in the ABCB1 (MDR1) gene[J]. Epilepsy Res 2008; 80:42-46.
    [63]Ozgon, G.O., Bebek, N., Gul, G, et al. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey[J]. Eur Neurol 2008; 59:67-70.
    [64]Kim, D.W., Lee, S.K., Chu, K., et al. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy[J]. Epilepsy Res 2009; 84:86-90.
    [65]Lakhan, R., Misra, U.K., Kalita, J., et al. No association of ABCB1 polymor-phisms with drug-refractory epilepsy in a north Indian population[J]. Epilepsy Behav 2009; 14:78-82.
    [66]Ufer, M., Mosyagin, I., Muhle, H., et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2-24C>T polymorphism in young and adult patients with epilepsy[J]. Pharmacogenet Genomics 2009; 19:353-362.
    [67]Grover, S., Bala, K., Sharma, S., et al. Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients[J]. Biochimie 2010; 92:1207-1212.
    [68]Cardon, L.R.Palmer, L.J. Population stratification and spurious allelic associa-tion[J]. Lancet 2003; 361:598-604.
    [69]Tan, N.C., Mulley, J.C.Berkovic, S.F. Genetic association studies in epilepsy: "the truth is out there"[J]. Epilepsia 2004; 45:1429-1442.
    [70]French, J.A. Refractory epilepsy:one size does not fit all[J]. Epilepsy Curr 2006; 6:177-180.
    [71]Kasperaviciute, D.Sisodiya, S.M. Epilepsy pharmacogenetics[J]. Pharmacoge-nomics 2009; 10:817-836.
    [72]Kwan, P., Arzimanoglou, A., Berg, A.T., et al. Definition of drug resistant epilepsy:consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies[J]. Epilepsia 2010; 51:1069-1077.
    [73]Baltes, S., Gastens, A.M., Fedrowitz, M., et al. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein[J]. Neuropharmacology 2007; 52:333-346.
    [74]Baltes, S., Fedrowitz, M., Tortos, C.L., et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays[J]. J Pharmacol Exp Ther 2007; 320:331-343.
    [75]Rivers, F., O'Brien, T.J.Callaghan, R. Exploring the possible interaction between anti-epilepsy drugs and multidrug efflux pumps; in vitro observations[J]. Eur J Pharmacol 2008; 598:1-8.
    [76]Patsalos, P.N., Froscher, W., Pisani, F., et al. The importance of drug interactions in epilepsy therapy[J]. Epilepsia 2002; 43:365-385.
    [77]Cascorbi, I. ABC transporters in drug-refractory epilepsy:limited clinical significance of pharmacogenetics?[J]. Clin Pharmacol Ther 2010; 87:15-18.
    [78]Zintzaras, E.Lau, J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches[J]. J Clin Epidemiol 2008; 61:634-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700