微互连高度下Sn-Bi-Ag焊点的界面反应及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品微型化进程的加快,焊点互连间距也随之减小。而由于焊点界面金属间化合物(IMC: Intermetallic Compound)的本征脆性,随着焊点互连高度的降低,焊点的可靠性会受到直接影响。因此,探讨互连高度对于焊点可靠性的影响十分必要。本课题基于此目的,根据国家自然科学基金面上项目《微小互连高度下焊点的界面反应及可靠性研究》,探讨互连间距在100μm、50μm、20μm和10μm的微互连焊点的界面反应及可靠性。
     本文采用精密控制焊点互连高度(SOH: stand-off height)的装置获得100μm、50μm、20μm和10μm四种不同互连高度的焊点,同时对焊点进行老化试验及拉伸试验,并采用环境扫描电镜研究互连高度变化对焊点中界面IMC的组织、形貌、焊料的比例等的影响,分析其对焊点抗拉强度及可靠性的影响。
     研究结果表明,随着焊点互连高度的降低,界面IMC的厚度呈减小趋势,IMC占焊料的比例随之增加;随着老化时间的增加,界面IMC的厚度及其占焊料的比例增加,老化500小时后,互连间距为10μm的焊点中IMC占焊料的比例更是达到100%。
     随着焊点互连间距的减小,焊点所受的最大拉力随之减小,抗拉强度也随之减小。在焊点互连间距为100μm、50μm和20μm时,随着老化时间的增加,焊点所受的最大拉力基本不变,抗拉强度变化也不大,当焊点互连间距为10μm时,焊点的抗拉强度随着老化时间的增长呈递减趋势。
     随着老化时间的增加,互连高度的减小,焊点的断裂也从一侧IMC与焊料的接触面断裂逐渐转为从两侧的IMC与焊料的接触面断裂,最终转为从一侧的Cu6Sn5与Cu3Sn的接触面处断裂。
Miniaturization of electronic products accelerates the process of the stand-off height (SOH) of solder joints decreasing. But due to IMCs (Intermetallic compound) intrinsic brittleness, thicker interfacial IMCs will degrade the reliability of the solder joint. So studying the interfacial reaction and the reliability of the solder joint is very important. This project comes from the National Natural Science Foundation of China, mainly investigate the effect of different SOH (100μm, 50μm, 20μm and 10μm) on the interfacial reaction and reliability.
     In the paper, Sn-4.8Bi-2Ag alloy was used as the lead-free solder. A high-precision device was used to control the SOH of the solder joint between two copper needles. The copper needles were connected by the reflow process. Then the specimens were aged at 150℃for different time. The effect of SOH on the reliability, which reflects by the changes of the intermetallic compound (IMC), such as the organization, morphology and the proportion of interfacial IMC layer were investigated. And the effect of the aging time (100h, 300h, 500h) on the reliability under a fixed SOH was studied too. Tensile test was also used to study the tensile strength of the solder joints.
     It is found that with the decreasing of the SOH, the thickness of interfacial IMC shows a slight decrease trend, and the proportion of interfacial IMC layer increases. When the SOH is 10μm, the proportion of interfacial IMC layer is 100%. With the aging time increasing, the thickness of interfacial IMC gradually increases.
     It is also found that with the stand-off height of the solder joint decreases, the maximum tensile strength of the solder joints decreases. When the SOH of the solder joints are 100μm, 50μm and 20μm, the tensile strength changes a little as the aging time increases. When the SOH is 10μm, tensile strength decreases with the aging time increases. In additional, with the aging time increasing and the SOH reducing, the fracture of the solder joints is firstly observed at one side of the interface between IMC and solder body, then it tends to appear at two sides of the interface between IMC and solder body, and ultimately it occur at the interface between Cu6Sn5 phase and Cu3Sn phase.
引文
[1]曹显,易丹青,王颖等。Sn-Ag基无铅焊料的研究与发展。四川有色金属,2001,3:5-12
    [2]戚琳。Bi对Sn-Ag-Cu无铅钎料合金及接头组织和性能的影响:[硕士学位论文]。大连理工大学,2004
    [3] Zhiheng Huang, Paul P Conway, Erik Jung. Reliability Issues in Pb-Free Solder Joint Miniaturization. Journal of Electronic Materials, 2006, 35(9):1761-177
    [4] M. L. Huang, T. Loeher, A. Ostmann. Low-Cost Electronic Packaging for Tomorrow’s Application, Proc. Microtech 2005, Cambridge, England: IMAPS UK, 2005.
    [5] E. B. Liao, Andrew A. O. Tay, Simon. Fatigue and Bridging Study of High-Aspect-Ratio Multicopper-Column Flip-Chip Interconnects Through Solder Joint Shape Modeling. IEEE Transections on Components and Packaging Technologies, 2006, 29(3):560-569
    [6] C. E. Ho, Y. W. Lin, S. C. Yang. Volume Effect on the Soldering Reaction between SnAgCu Solders and Ni. Proceeding of International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, IEEE 2005
    [7] Ankur Aggarwal. Lead free bonding systems. US Patent, US20050274227
    [8]马鑫,董本霞.无铅钎料发展现状.电子工艺技术. 2002,23(2): 47-52.
    [9] Melugeta Abtew,Guna selvaduray. Lead-free solders in microelectronics. Materials Science and Engineering: A Review,2002(38):55-105
    [10] Weng Yang and Robertw. Messler.J R. Mierostrueture evolution of eutectic Sn-AgSolder joints. J.Eleetron.Mater,1994,23(8):765-772
    [11] Jommi Laine-Ylijoki,HetorSteen,and Asto Forsten. Development and cadidation of a Lead-free alloy for solder paste applications. IEEE Trans Components,Hybridsand Manufacturing Technol,1997, 20:194
    [12] Lilei Ye,Zonghe Lai,Johan Liu and Anders Tholen. Microstructural investigation of Sn-Cu-Ag and Sn-Cu-Ag-B solder joints. Proceedings of 99’International symposium On Electronic Packaging,shanghai, 1999: 28-30
    [13] Masazumi Amagai,MasakoWatanbe,Masaki Omiya. Mechanical characterization of Sn-Ag based lead-free solders. Mieroeleetronics reliability. 2002, (42):951-960
    [14] Seung Wook Yoon, Hyuck Mo Lee. A Thermodynamic Study of Phase Equilibria in the Sn-Bi-Pb Solder System. Calphad. 1998, 22(2): 167-178
    [15] P.J. Shang, Z.Q. Liu, D.X. Li and J.K. Shang. Bi-induced voids at the Cu3Sn/Cu interface ineutectic SnBi/Cu solder joints. Scripta Materialia. 2008, 58: 409-412
    [16] Koichi Fujiwara, Masayoshi Asahi. Characterization of Intermetallic Compound Formation on In_Bi_Sn Solder Bumps Used in Pb-Alloy Josephson Chip Packaging. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1987, Chmt-10(2): 263-266
    [17] Hoe-rok Jung, Hyuk-hwan Kim,Qon-jong Lee. Characterization of Small-Sized Eutectic Sn-Bi Solder Bumps Fabricated using Electroplating. Electronic Materials. 2006, 35(5): 1069-1073
    [18] Yun-hwan Jo, Joo Won Lee, Sun-kyong Seo et al. Demonstration and Characterization of Sn-3.0Ag-0.5Cu/Sn-57Bi-1Ag Combination Solder for 3-D Multistack Packaging. Electronic Materials. 2008, 37(1): 110-117
    [19] C.M.L Wu, M.L.Huang, J.K.L.Lai, Y.C.Chan. Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying. Electronic Materials. 2000, 29(8): 1015-1020
    [20] Jie Zhao, Lin Qi, Lai Wang. Effect of Bi on the kinetics of intermetallics growth in Sn-3Ag-0.5Cu/Cu solder joint. IEEE 2006 Proceedings of HDP'06
    [21] Zu Fang-qiu, Zhou Bing, Li Xian-fen et al. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys. Trans. Nonferrous Met. Soc. China: 2007. 893-897
    [22] Li Guo-yuan, Shi Xun-qing. Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints. Trans. Nonferrous Met. Soc. China: 2006. 739-743
    [23] Tia-Marje Korhonen, Vesa Vuorinen, Jorma K.Kivilahti. Interconnections based on Bi-coated SnAg solder balls. IEEE Transactions on Advanced Packaging. 2001, 24(4): 515-520
    [24] J.Wang, H.S.Liu, L.B.Liu, Z.P.Jin. Interfacial Reaction between Sn-Bi Alloy and Ni Substrate. Electronic Materials. 2006, 35(10): 1842-1847
    [25] M.L.Huang, C.M.L.Wu, J.K.L.Lai, Y.C.Chan. Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging. Electronic Materials. 2000, 29(8): 1021-1026
    [26]杨石强,雷晓娟,李元山等. Sn-20Bi-X无铅焊料的显微组织和物理性能.湖南大学学报. 2007, 34(3): 49-52
    [27]雷晓娟. Sn-Bi系低熔点非共晶无铅焊料的研究: [硕士学位论文].湖南大学. 2007
    [28]曹红燕. Sn_Bi合金体系相图的探索研究.试验技术与管理. 2005, 22(7): 34-36
    [29]谷博等. Sn-Ag-Cu和Sn-Ag-Bi焊料在Ni-P基板上焊点剪切强度的分析.复旦学报. 2006, l 45(4): 501-505
    [30]何鹏,赵智力,钱乙余等.无铅波峰焊Sn_Bi_Ag_Cu钎料焊点剥离机制.中国有色金属学报. 2006, 16(2): 315-321
    [31]曾明,陈正周,沈保罗等. Sn_3_5Ag_2Bi无铅焊料的压入蠕变性能.中国有色金属学报. 2008, 18(4): 620-625
    [32]胡志田,徐道荣. Bi对Sn3.5Ag共晶合金钎料性能的影响.焊接技术. 2006, 35(4): 46-48
    [33] Shen-Jie Wang. Self-formed Reaction Barrier of Cu-Ni-Sn Ternary Compound Layer for UBM of Flip-Chip Solder Bumps. Department of Chemical & Materials Engineering National Central University Chung-Li, Taiwan, 2003
    [34]李魁斌.铜与镍在焊料中的交互作用: [硕士学位论文].台湾国立中央大学化学工程与材料工程研究所. 2005
    [35]黄毅,倒装焊焊点中金属元素迁移及组织演变: [硕士学位论文].哈尔滨工业大学. 2006
    [36] Wu Fengshun, He Mingmin, Wu Yiping. Effect of interfacial IMCs Proportion on the Reliability of Miniature Lead-Free Solder Joint. International Conference on Electronics Packaging Technology. 2006. 773-777.
    [37] Chih-Tang Peng, Chang-Ming Liu, Ji-Cheng Lin. Reliability Analysis and Design for the Fine-Pitch Flip Chip BGA Packaging. IEEE Transections on Components and Packaging Technologies. 2004, 27(4): 684-693
    [38] Chih-Tang Peng, Kuo-Ning Chiang, Terry Ku, Design, Fabrication and Comparison of Lead-Free/Eutectic Solder Joint Reliability of Flip Chip Package. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, 2004. EuroSimE 2004. Proceedings of the 5th International Conference. 2004. 149-156
    [39] Bingzhi Su, Saeed Hareb, Y.C.Lee. Solder Joint Reliability Modeling for a 540-I/O Plastic Ball-Grid-Array Assembly. International Conference on Multichip Modules and High Density Packaging. 1998
    [40] Kim Yong Goh, Jing-en Luan, Tong Yan Tee. Drop Impact Life Prediction Model for Wafer Level Chip Scale Packages. IEEE Packaging Technology Conference. 2005. 58-65.
    [41] Luan, J.E., Tee, T.Y., Ng, H.S. Drop Impact Life Prediction Model for Lead-free BGA packages and Modules. EuroSime Conference Proc. 2005. 559-565.
    [42] C.Bailey, S.Stoyanov, H.Lu.Reliability. Predictions for High Density Packaging Surface & Coatings Technology. 2005, 200: 2181–2186
    [43] M N Islam, Ahmed Sharif, Y C Chan. Effect of Volume in Interfacial Reactionbetween Eutectic Sn-3.5% Ag-0.5% Cu Solder and Cu Metallization in Microelectronic Packaging. Journal of Electronic Materials. 2005, 34(2)
    [44] G.J.Jackson, M.W.Hendriksen, H.Lu and N.N.Ekere. Experimental and Computational Modelling Characterisation of Fine Particle Pb-Free Solder Paste Volumes for Flip Chip Assembly Applications. 2002 SEMI/IEEE IEMT Ahmed
    [45] C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao. Volume Effect on the Soldering Reaction between SnAgCu Solders and Ni. IEEE. 2005
    [46] W K Choi, S K Kang, D Y Shih .A study of the effects of solder volume on the interfacial reactions in solde Joints Using the Differential Scanning Calorimetry Technique. Journal of Electronic Materials. ProQuest Science Journals. 2002, 31(11): 1283~1291
    [47] M. Schaefer, W. Laub, R.A. Fournelle, et al. Proc. Design Reliability Solders Solder Interconnects, eds. R.K. Mahidhara, D.R. Frear, S.M.L. Sastry, K.L. Murty, P.K. Liaw, and W.L. Winterbottom ( Warrendale, PA: TMS, 1997), p. 247
    [48] W Fredriksz. Microstructures and Degradation of Heat Sink Very-Thin Quad Flat Package No-Lead Pb-Free Sn-Ag-Cu Solder Joints after Thermal Aging. Journal of Electronic Materials. 2005, 34(9): 1230
    [49] B. A. Cook, I.E. Anderson, J.L. Harringa. Effect of heat treatment on the electrical resistively of near-eutectic Sn-Ag-Cu Pb-free solder alloys. Journal of Electronic Materials. 2002, 31(11): 1190-1194
    [50] B. A. Cook, I.E. Anderson, J.L. Harringa. Isothermal Aging of Near-Eutectic Sn-Ag-Cu Solder Alloy and Its Effect on Electrical Resistivity. Journal of Electronic Materials. 2003, 32(12): 1384-1391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700