超细晶纯Ti及TiNi合金制备及其组织与力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯Ti不含有害元素,具有良好的生物相容性以及优异的耐腐蚀性能,在生物医学领域显示出巨大应用潜力,但纯Ti由于较低的强度限制了它的广泛应用。近年来,通过大变形(Severe Plastic Deformation, SPD)法细化纯Ti的组织来提高其强度研究已经引起普遍关注。超细晶Ti及Ti合金的组织与力学性能已开展大量研究工作,但超细晶材料的相变行为及其相关性能研究开展较少。TiNi形状记忆合金具有丰富的相变现象、伴随马氏体相变及其逆相变呈现优异的形状记忆和超弹性性能,是目前已获得广泛应用的功能材料之一,超细晶TiNi合金相变行为及其对超弹性和形状记忆效应等性能影响研究已引起人们关注。
     本文选取3级工业纯Ti和富镍Ti-50.7.at%Ni形状记忆合金作为研究对象,采用中温(400℃~500℃)等径弯角挤压(Equal Channel Angular Extrusion, ECAE)工艺制备了大块体超细晶纯Ti及超细晶TiNi材料。并采用ECAE加液氮温度轧制两步大变形法制备高强度超细晶工业纯Ti材料。
     显微分析表明,纯Ti经400℃,8道次ECAE处理后,形成平均晶粒尺寸小于500 nm的亚微米晶组织。经8道次ECAE加液氮温度轧制两步大变形处理后,纯Ti中形成大量尺寸为100 nm~150 nm的位错胞状结构,同时产生明显(0002)织构。
     室温拉伸变形行为分析表明,与高纯0~2级工业纯Ti不同,具有较高杂质含量的3级工业纯Ti经4道次ECAE处理后,其真应力-真应变曲线上应变硬化阶段延长,其塑性变形呈均匀变形和塑性失稳两阶段,颈缩发生在第二阶段。超细晶3级工业纯Ti的抗拉强度和延伸率(ζb=816 MPa,δ=17.8%)均高于目前国际上文献报道ECAE处理超细晶0~2级工业纯Ti。8道次ECAE加液氮温度轧制两步大变形处理超细晶3级工业纯Ti的抗拉强度达1218 MPa,延伸率为12.6%。
     室温和液氮温度压缩试验表明,与粗晶纯Ti相比,8道次ECAE处理超细晶纯Ti的流变应力对温度和应变速率具有较低依赖性,应变速率从1×10-3增加到1×10-1,8道次ECAE处理超细晶纯Ti的应变速率敏感性因子(m)值为0.026,低于粗晶纯Ti的0.056。
     超细晶Ti-50.7.at%Ni合金微观组织研究表明,经500℃,8道次ECAE处理后,微观组织不均匀,除形成大量尺寸为200 nm~300 nm细小晶粒外,仍有少量宽度为100 nm~200 nm的拉长晶粒。超细晶TiNi合金组织较稳定,超细晶粒再结晶长大临界温度为550℃。室温轧制变形处理(累积变形量24%)使超细晶TiNi合金组织稳定性下降。
     透射电镜研究表明,富镍Ti-50.7.at%Ni合金在ECAE挤压前预热处理过程中析出Ti3Ni4相,但亚稳Ti3Ni4相在随后ECAE挤压过程中发生回溶。ECAE过程中引进大量位错缺陷提供富余Ni原子位置及中温Ni原子的热活性两个因素共同作用是导致Ti3Ni4相回溶的机理。
     Ti-50.7.at%Ni合金经ECAE处理后,B2?R相变被诱发,ECAE所诱发的B2?R相变开始温度(Rs)不随ECAE处理道次变化,而且高于同成分粗晶TiNi合金经500℃时效后的B2?R相变开始温度。B2?R相变发生在较宽的温度区间,DSC曲线上呈现馒头状峰。B2?R相变在超细晶粒中不是同时进行,在含有大量位错的超细晶粒内优先发生,不含位错的超细晶粒中不发生B2?R相变。ECAE处理富镍TiNi合金中B2?R相变由ECAE大变形引进内应力场所诱发。
     ECAE处理Ti-50.7.at%Ni合金马氏体相变(R?B19′)峰值温度(Mp)呈阶段性下降。1~2道次ECAE处理大变形累积使Mp温度急剧下降;3~8道次ECAE处理后,Mp温度下降速度减缓。Mp下降规律与ECAE过程累积变形量以及预热过程中发生回复密切相关。
     系统测试超细晶Ti-50.7.at%Ni合金室温超弹性结果表明,拉伸应变为1.5%,4道次ECAE处理超细晶TiNi合金应力-应变曲线呈现完全超弹性,10次加载-卸载循环中超弹性性能稳定,无残余应变;拉伸应变为4%,超细晶TiNi合金中残余应变随循环次数而增加但增大速度远低于固溶态粗晶TiNi合金,10次循环后超细晶TiNi合金累积残余应变仅为0.61%,低于粗晶TiNi合金的1.84%;拉伸应变为6%,超细晶和粗晶TiNi合金中残余应变随循环次数的增加速度几乎相同,10次循环后在超细晶TiNi合金和粗晶TiNi合金中分别有2.66%和2.75%的残余应变;拉伸应变增加到8%,4道次ECAE处理超细晶TiNi合金无室温超弹性。超细晶Ti-50.7.at%Ni合金室温完全超弹性最大应变量不超过4%。
     超细晶Ti-50.7.at%Ni合金形状记忆效应测试表明,4道次ECAE处理超细晶Ti-50.7.at%Ni合金在弯曲应变量<10%时呈现100%的单程形状记忆效应,相同应变量条件下,超细晶Ti-50.7.at%Ni合金记忆性能与固溶处理和500℃时效处理的粗晶Ti-50.7.at%Ni合金相同。
Pure Ti is a promising material in biomedical fields, because of its better biocompatibility, resistant corrosion and without toxic element. But the application of pure Ti is limited for its low strength. In recent decade, improving its strength and refinement of its structure by Severe Plastic Deformation (SPD) has attracted much attention. Lots of investigations on microstructure and mechanical properties of ultrafine-grained (UFG) pure Ti and Ti alloys have been carried out. However phase transformation behavior and properties related to phase transformations of UFG materials are few reported. TiNi shape memory alloy is characterized by multiple phase transformations, superior shape memory effect and super-elasticity associated with forward or reverse martensitic transformations, one of functional materials that have been widely utilized now. Phase transformation behaviors, super-elasticity and shape memory effect of UFG TiNi alloy have attracted much attention recently.
     Commercial pure Ti (Grade 3) and Ni-rich Ti-50.7.at%Ni alloy were selected, and bulk UFG Ti and UFG TiNi alloy were prepared by Equal Channel Angular Extrusion (ECAE) at 400℃and 500℃, respectively. High strength UFG Ti was manufactured by two-step SPD method i.e, ECAE and Cold Rolling (CR) processes at Liquid Nitrogen Temperature (LNT).
     Microscopic analysis indicates that submicron-grained microstructure is obtained in Ti subjected to eight passes ECAE at 400℃, less than 500 nm in size. After eight passes ECAE and CR at LNT, dislocation cell structures with a size of 100 nm~150 nm are formed in UFG Ti, and obvious (0002) texture revealed in XRD results.
     Tensile test at room temperature indicates that after four passes ECAE, strain hardening stage on its true stress-strain curves of UFG Ti (Grade-3) with high mass fraction of impurities is prolonged, and is much larger than that of pure Ti (Grade 0~2). There are two-stage plastic deformation, as uniform deformation and plastic instability on the engineering stress-strain curve, and necking occurred in the second stage. Both ultimate strength and elongation of UFG Ti (Grade 3) after four passes ECAE are higher than those of UFG Ti (Grade 0~2) reported in international articles. After eight passes ECAE and CR at LNT, the ultimate strength of UFG Ti (Grade 3) is improved to 1218 MPa, with an elongation of 12.6%.
     Compressive tests at RT or LNT reveal that the dependency of flow stress on temperature or strain rate of UFG Ti after eight passes ECAE is lower than that of coarse-grained (CG) Ti. At the strain rate range of 1×10-3~1×10-1/s, the strain rate sensitivity (m) of UFG Ti after eight passes ECAE is 0.026, lower than 0.056 of CG Ti.
     Microstructure observation of UFG Ti-50.7.at%Ni alloy indicates that microstructure after eight passes ECAE at 500℃is inhomogeneous, many smaller grains with a size of 200 nm~300 nm and some elongated grains with a size of 100 nm~200 nm were observed. Microstructure of UFG TiNi alloy after eight passes ECAE is stable, and the critical temperature for grains growth is determined as 550℃. Further CR treatment at RT, with an accumulative strain of 24%, the structure stability of UFG TiNi alloy decreased.
     TEM observation reveals that Ti3Ni4 phase precipitated in Ni-rich Ti-50.7.at%Ni alloy during the preheating treatment before each ECAE pass, but metastable Ti3Ni4 phase re-dissolved during sequent ECAE processes. It is suggested that defects and dislocations induced by severe plastic deformation of ECAE process supplies position for surplus Ni atoms and relatively high thermal-activity of Ni atoms at mediate temperature result in the re-dissolution of Ti3Ni4 precipitate.
     B2?R transformation is induced by ECAE process in ECAE treated Ti-50.7.at%Ni alloy. The B2?R transformation starting temperature (Rs) keeps almost unchanged with the increase of ECAE pass number, and higher than that of coarse-grained (CG) TiNi specimen aged at 500℃for 1 hour. After ECAE processes, B2?R transformation with steamed-bread shape exothermal peak took place within a larger temperature range. The appearance of R phase was not accordant in all ultrafine grains. It is observed in some grains where there are lots of dislocations, in contrast, no R phase observed in the grains with few dislocations. It is suggested that B2?R transformation of ECAE processed Ni-rich TiNi alloy is induced by internal stress fields formed during ECAE processes.
     Martensitic transformation (R?B19′) peak temperature (Mp) of Ti-50.7.at%Ni alloy decreases with the pass number of ECAE process in two stages. After 1~2 passes ECAE, the Mp is dramatically lowered for the accumulation of strain. During 3~8 passes ECAE, the Mp decreases slowly with the pass number of ECAE process, which is closely related to accumulative deformation strain imposed by ECAE and recovery or dynamic recovery caused by preheating process before ECAE or during ECAE.
     Super-elasticity behavior test shows that at room temperature, when the tensile strain is 1.5%, UFG Ti-50.7.at%Ni alloy after four passes ECAE shows complete super-elasticity behavior and the super-elasticity keeps stable during loading-unloading cycling for 10 times, no residual strain observed. Tensile strain increases to 4%, the residual strain in UFG TiNi alloy increases with the loading-unloading cycling number, but the increase rate is much lower than that of CG TiNi alloy. After 10 cycles, the residual strain is only 0.61% for UFG TiNi alloy, but 1.84% for CG TiNi alloy. Tensile strain increases to 6%, the increase rate of residual strain with the cycling number is almost the same for UFG TiNi and CG TiNi alloy. After 10 cycles, the residual strains in UFG and CG TiNi alloy are 2.66% and 2.75%, respectively. When the tensile strain increases to 8%, UFG TiNi alloy reveals no super-elasticity behavior. The maximum super elastic strain of UFG Ti-50.7.at%Ni alloy at room temperature is less than 4%.
     Shape memory effect test shows that when the bending deformation strain is smaller than 10%, UFG Ti-50.7.at%Ni alloy after four passes ECAE showes 100% one-way shape memory effect. The shape memory property is comparable to that of CG Ti-50.7.at%Ni alloy solution-treated and aged at 500℃at a same prestrain.
引文
[1]白木,周洁.金属钛的性能、发展与应用.矿业快报. 2003 (5): 1-7
    [2] YiPing, Hdjinanayis, G.C, et al. Appl phys lett. 1990 (67): 4502
    [3]陈长春,孙康,吴人杰.髋关节置换用股骨假体材料的研究与应用.材料导报.1998 (12): 1-5
    [4] Myung Seok Jeon, Woo Sug Yoon, et al. Appl Surf Sci. 2000 (165): 209-216
    [5] Valiev R.Z, Islamgaliev R.K. Mater Sci Forum. 1999 (304-306): 39-52
    [6] Stolyarov V.V, Valiev R.Z. Mater Sci Forum. 1999 (307): 185-190
    [7]赵新奇,徐政,张俊宝.强烈塑性变形方法制备块体金属纳米材料.热处理.2003 (18): 18-21
    [8] S.V.Dobatkin. Mater Sci Forum. 2003 (426-432): 2699-2704
    [9] V.M.Segal. Mat Sci Eng A. 1999 (271): 322-333
    [10] V.M.Segal. Mat Sci Eng A. 1995 (197): 157-164
    [11] R.Z.Valiev, Yuri Estrin, Zenji Horita, et al. JOM. 2006 (4): 33-39
    [12]邓忠民,洪友士,朱晨. SPD纳米材料制备方法及其力学特性.力学进展. 2003 (33): 57-62
    [13]孙成军,顾家琳.压缩变形制备亚微米晶钛合金的研究.材料工程. 1999 (11): 33-36
    [14]冯淦,吕坚,卢柯等.低碳钢超声喷丸表面纳米化的研究.金属学报. 2000 (36): 300-303
    [15] S.L.Zhang, H.N.Chen, Q.H.Lin. J Mater Sci Tech. 2004 (20): 716-718
    [16] Valiev R.Z, Anisenko I.V. Nanostruc Mater. 1999 (12): 35-40
    [17] I.V.Alexandrov, R.Z.Valiev. Scr Mater. 2001 (44): 1605-1608
    [18] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov. Prog in Mater Sci. 2000 (45): 103-189
    [19] R.Z.Valiev, I.V.Alexandrov. Ann Chim Sci Mat. 2002 (27): 3-14
    [20] H.Nakayama, K.Tsuchiya, M.Umemoto. Scr Mater. 2001 (44): 1781-1785
    [21] Pavlov V.A. Phys Met and Metall. 1989 (67): 924
    [22] Rybin V.V. Large plastic deformations and destruction of metals. Moscow: Metallurgical
    [23] G.V.Nurislamova, R.K.Islamgaliev, R.Z.Valiev. Mater Sci Forum. 2006 (503-504): 579-584
    [24] Y.T.Zhu. Mater Sci Forum. 2006 (503-504): 125-132
    [25] Jakub, Oksana Melikhova, Gerhard Brauer, et al. Appl Surf Sci. 2002 (194): 140-144
    [26] A.V.Sergueeva, V.V.Stolyarov, R.Z.Valiev, et al. Scr Mater. 2001 (45): 747-752
    [27] R.Z.Valiev, A.V.Sergueeva, A.K.Mukherjee. Scr Mater. 2003 (49): 669-674
    [28] R.Z.Valiev, A.K.mukherjee. Scr Mater. 2001 (44): 1747-1750
    [29] A.V.Korznikov, G.Tram, O.Dimitrov. Acta Mater. 2001 (49): 663-671
    [30] C.Rentenberger, T.Waitz, H.P.Karnthaler. Scr Mater. 2004 (51): 789-794
    [31] A.V.Sergueeva, C.Song, R.Z.Valiev, et al. Mat Sci Eng A. 2003 (339): 159-165
    [32] T.Waitz, V.Kazykhanov, H.P.Karnthaler. Acta Mater. 2004 (52): 137-147
    [33] S.D.Prokoshkin, I.Yu.Khmelevskaya, S.V.Dobatkin, et al. Acta Mater. 2005 (53): 2703-2714
    [34] V.M.Imayev, G.A.Salishchev, M.R.Shagiev, et al. Scr Mater. 1998 (40): 183-190
    [35] Q.Guo, H.G.Yan, Z.H.Chen, et al. Trans of Nonf Metals Society of China. 2006 (16): 922-926
    [36] Q.Guo, H.G.Yan, Z.H.Chen, et al. Mater Characterization. 2007 (58): 162-167
    [37]孙新军,顾家琳,白秉哲.压缩变形制备亚微米晶钛合金的研究.材料工程. 1999 (11): 33-36
    [38] X.J.Sun, B.Z.Bai, J.L.Gu. Rare Metals. 2000 (19): 101-109
    [39] K.Lu, J.Lv. Mat Sci Eng A. 2004 (375-377): 38-45
    [40] Yoshinori Iwahashi, J.T.Wang, Zenji Horita, et al. Scr Mater. 1996 (35): 143-146
    [41] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Mat Sci Eng A. 2003 (343): 43-50
    [42] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe, et al. Mat Sci Eng A. 2001 (303): 82-89
    [43] K.Tsuchiya, M.Inuzuka, D.Tomus, et al. Mat Sci Eng A. 2006 (438-440): 643-648
    [44] K.Tsuchiya, M.Inuzuka, A.Hosokawa, et al. Mater Sci Forum. 2006 (503-504): 419-424
    [45] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Ann Chim Sci Mat. 2002 (27 ): 77-88
    [46] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Mat Sci Eng A. 2005 (410-411): 386-389
    [47] V.G.Pushin, R.Z.Valiev, Y.T.Zhu, et al. Mater Sci Forum. 2006 (503-504): 539-544
    [48] I.Karaman, H.Ersin Karaca, H.J.Maier, et al. Metall and Mater Trans A. 2003 (34): 2527-2539
    [49] Zhenhua Li, Xianhua Cheng, Qianqian ShangGuan. Mater Lett. 2005 (59): 705-709
    [50] Zhenhua Li, Guoquan Xiang, Xianhua Cheng. Mater and Design. 2006 (27): 324-328
    [51] Xianhua Cheng, Zhenhua Li, Guoquan Xiang. 2007 (28): 2218-2223
    [52] R.Z.Valiev, I.V.Alexandrov. 1999 (12): 35-40
    [53] V.M.Segal. Mat Sci Eng A. 1999 (271): 322-333
    [54] A.Shan, In-Ge Moon, H.S.Ko, et al. Scr Mater. 1999 (41): 353-357
    [55] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Mat Sci Eng A. 2001 (299): 59-67
    [56] H.S.Kim. Mater Research Society. 2002 (1): 172-179
    [57] G.I.Raab, E.P.Soshnikova, R.Z.Valiev. Mat Sci Eng A. 2004 (387-389): 674-677
    [58] Semiatin S L, Delo D P, Shell E B. Acta Mater. 2000 (48): 1841-1851
    [59] H.S.Kim, M.H.Seo, S.I.Hong. Mater Proc Tech. 2001 (113): 622-626
    [60] R.Ye.Lapovok. Mater Sci Forum. 2006 (503-504): 37-44
    [61] W.Q.Cao, A.Godfrey, W.liu, et al. Mat Sci Eng A. 2003 (360): 420-425
    [62] P.L.Sun, C.Y.Yu, P.W.Kao, et al. Scr Mater. 2002 (47): 377-381
    [63] H.Miyamoto, J.Fushimi, T.Mimaki, et al. Mat Sci Eng A. 2005 (405): 221-232
    [64] S.Y.Li, Irene J.Beyerlein, Carl T.Necker, et al. Acta Mater. 2004 (52): 4859-4875
    [65] Koji Neishi, Zenji Horita, Terence G.Langdon. Mat Sci Eng A. 2002 (325): 54-58
    [66] Akihiro Yamashita, Zenji Horita, Terence G.Langdon. Mat Sci Eng A. 2001 (300): 142-147
    [67] Y.M.Wang, E.Ma, R.Z.Valiev, et al. Adva Mater. 2004 (16): 328-331
    [68] Kunihiro Ohashi, Takeshi Fujita, Keiichiro Oh-ishi, et al. Mater Sci Forum. 2003 (426-432): 2637-2642
    [69] M.A.Munoz-Morris, C.Garcia, G.Gonzalez, et al. Mater Sci Forum. 2003 (426-432): 2643-2648
    [70] M.Cabibbo, E.Evangelista, V.Latini, et al. Mater Sci Forum. 2003 (426-432): 2673-2680
    [71] M.Ferry. Mater Sci Forum. 2006 (503-504): 2251-256
    [72] In-Joon Soon, Hiroaki Nakano, Satoshi Oue, et al. Mater Sci Forum. 2006 (503-504): 2487-492
    [73] Marco J.Starink, Shun Cai Wang, Nong Gao, et al. Mater Sci Forum. 2006 (503-504): 937-942
    [74] R.K.Islamgaliev, N.F.Yunusova, R.Z.Valiev. Mater Sci Forum. 2006 (503-504): 585-590
    [75] Zenji Horita, Kiyoshi Matsubara, Koichi Makii. Scr Mater. 2002 (47): 255-260
    [76] K.Matsubara, Y.Miyahara, Z.Horita, et al. Acta Mater. 2003 (51): 3073-3084
    [77] Minoru Furukawa, Yukihide Fukuda, Keiichiro Oh-ishi, et al. Mater Sci Forum. 2003 (426-432): 2711-2716
    [78] Aibin Ma, Suk-won Lim, Yoshinori Nishida, et al. Mater Sci Forum. 2003 (426-432): 2735-2740
    [79] Hiroki Akamatsu, Takayoshi Fujinami, Zenji Horita, et al. Scr Mater. 2001 (44): 759-764
    [80] S.L.Semiatin, D.P.DeLo. Mater and Design. 2000 (21): 311-322
    [81] V.S.Zhernakov, V.V.Latysh, V.V.Stolyarov, et al. Scr mater. 2001 (44): 1771-1774
    [82] D.H.Shin, I.Kim, J.Kim, et al. Acta Mater. 2003 (51): 983-996
    [83] J.Dutkiewicz, J.Kusnierz, W.Maziarz, et al. phys stat sol A. 2005 (202): 2309-2320
    [84] I.P.Semenova, G.I.Raab, L.R.Saitova, et al. Mater Sci Eng A. 2004 (387-389): 805-808
    [85] Y.G.Ko, W.S.Jung, D.H.Shin, et al. Scr Mater. 2003 (48): 197-202
    [86] S.L.Semiatin, V.M.Segal, R.L.Goetz, et al. Scr Metall and Mater. 1995 (33): 535-540
    [87] S.M.L.Sastry, R.N.Mahapatra, D.F.Hasson. Scr Mater. 2000 (42): 731-736
    [88] C.Y.Xie, Z.G.Fan. Mater Sci Forum. 2006 (503-504): 1013-1018
    [89] Joon-Yeon Chang, Jong-Seo Yoon, Gyeung-Ho Kim. Scr Mater. 2001 (45): 347-354
    [90] P.L.Sun, P.W.Kao, C.P.Chang. Scr Mater. 2004 (51): 565-570
    [91] N.Lugo, N.Llorca, J.M.Cabrera, et al. Mater Sci Eng A. 2008 (477): 366-371
    [92] D.H.Shin, I.Kim, J.Kim, et al. Acta Mater. 2003 (51): 983-986
    [93]Koji Neishi, Zenji Horita, Terence G.Langdon. Mater Sci Eng A. 2002 (325): 54-58
    [94] D.H.Shin, I.Kim, J.Kim, et al. Acta Mater. 2003 (51): 983-986
    [95] D.H.Shin, I.Y.Kim, J.Y.Kim, et al. Acta Mater. 2001 (49): 1285-1292
    [96] Minoru Furukawa, Yukihide Fukuda, Keiichiro Oh-ishi, et al. Mater Sci Forum. 2003 (426-432): 2711-2716
    [97] P.L.Sun, P.W.Kao, C.P.Chang. Scr Mater. 2004 (51): 565-570
    [98] Joon-Yeon Chang, Jong-Seo Yoon, Gyeung-Ho Kim. Scr Mater. 2001 (45): 347-354
    [99] Yoshinori Iwahashi, Zenji Horita, Terence G.Langdon, et al. Acta Mater. 1998 (46): 3317-3331
    [100]朱张校等.工程材料(第三版).北京:清华大学出版社. 2001: 1
    [101]辛湘杰等.钛的腐蚀、防护及工程应用.安徽科学技术出版社. 1998: 1
    [102]工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金.中国标准出版社. 1989
    [103] D.H.Shin, I.Kim, J.Kim, et al. Acta Mater. 2003 (51): 983-996
    [104] Guney Guven Yapici, Ibrahim Karaman, Hans J.Maier. Mat Sci Eng A. 2006 (434): 294-302
    [105] A.V.Nagasekhar, Uday Chakkingal, P.Venugopal. Journ Mater Proc Tech. 2006 (173): 53-60
    [106] S.L.Semiatin, V.M.Segal, R.E.Goforth, et al. Metall Mater Trans A. 1999 (30): 1425
    [107] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov. Prog Mater Sci. 2000: 272
    [108] T.C.Lowe. Mater Sci Forum. 2006 (503-504): 355-362
    [109] Y.Y.Wang, P.L.Sun, P.W.Kao, et al. Scr Mater. 2004 (50): 613-617
    [110] O.B.Kulyasova, R.K.Islamgaliev, N.A.Krasiulnikov. Mater Sci Forum. 2006 (503-504): 609-614
    [111] C.S.Lee, H.Margolin. Metall Trans A. 1986 (17): 451
    [112] H.Numakura, M.Koiwa. Metall Sci Tech. 1998 (16): 4
    [113] M.Blicharski, S.Nourbaksh, J.Nutting. Metal Sci. 1979 (13): 516
    [114] J.Kim, I.Kim, D.H.Shin. Scr Mater. 2001 (45): 421
    [115] I.Kim, J.Kim, D.H.Shin, et al. Mater Sci Eng A. 2003 (342): 302-310
    [116] B.Mingler, V.V.Stolyarov, M.Zehetbauer, et al. Mater Sci Forum. 2006 (503-504): 805-810
    [117] Yu.Perlovich, M.Isaenkova, V.Fesenko, et al. Mater Sci Forum. 2006 (503-504): 853-858
    [118] K.T.Park, D.H.Shin. Metall Mater Trans A. 2002 (33):705
    [119] Y.H.Zhao, J.F.Bingert, Y.T.Zhu, et al. Appl Phys Lett. 2008 (92): 081903
    [120] W.Lojkowski. Acta Mater. 1991 (39): 1891
    [121] A.A.Nazarov, A.E.Romanov, R.Z.Valiev. Scrip Mater. 1990 (24): 1929
    [122] Y.M.Wang, E.Ma. Appl Phys Lett. 2003 (83): 15: 3165-3167
    [123] D.Jia, Y.M.Wang, K.T.Ramesh, et al. 2001 (79): 611-613
    [124] Y.M.Wang, M.W.Chen, E.Ma, et al. Nature. 2002 (419): 912-914
    [125] Y.H.Zhao, X.Z.Liao, Y.T.Zhu, et al. Adv Mater. 2006 (18): 2949
    [126] Y.H.Zhao, Y.T.Zhu, X.Z.Liao, et al. Appl Phys Lett. 2006 (89): 121906
    [127] Y.H.Zhao, X.Z.Liao, Y.T.Zhu, et al. Adv Mater. 2006 (18): 2280
    [128] Y.H.Zhao, J.F.Bingert, Y.T.Zhu, et al. Appl Phys Lett. 2008 (92): 081903
    [129] G.He, J.Eckrt, W.Loeser, et al. Nat Mater. 2003 (2): 3
    [130] K.X.Tao, H.Choo, H.Q.Li, et al. Appl Phys Lett. 2007 (90): 101911
    [131] S.Nemat-Naser, W.G.Guo, J.Y.Cheng. Acta Mater. 1999(47): 3705-3715
    [132] J.Dutkiewicz, J.Kusnierz, W.Maziarz, et al. phs stat sol A. 2005 (202): 2309-2320
    [133] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe. Nanostructured Materials. 1999 (11): 947- 954
    [134] H.Mughrabi, H.W.Hoppel, M.Kautz. Fatigue and microstructure of ultrafine-grained metals. Mater Sci Forum. 2006 (503-504): 900-904
    [135] Mughrabi, Heinz Werner. Cyclic Deformation and Fatigue Properties of Ultrafine Grain Size Materials: Current Status and Some Criteria for Improvement of the Fatigue Resistance. Invited lecture at MRS Fall Meeting. Boston, Nov, 2000
    [136] H.W.Hoppel, Z.M.Zhou, M.Kautz. fatigue 2002
    [137] H.J.Maier, P.Gabor, N.Gupta, et al. 2006 (28): 243-250
    [138] M.V.Markushev, C.C.Bampton, M.Yu.Murashkin, et al. Mat Sci Eng A. 1997 (234-246): 927
    [139] A.Yu.Vinogradov, V.V.Stolyarov, S.Hashimoto, et al. Mater Sci Eng A. 2001 (318): 163-173
    [140] Woo-Jin Kim, Chang-Young Hyun, Ho-kyung Kim. Scr Mater. 2006 (54): 1745-1750
    [141] A.Balyanov, J.Kutnyakova, N.A.Amirkhanova, et al. Scr Mater. 2004 (51): 225-229
    [142] Jones DA. Principals and prevention of corrosion. 2nd ed, Upper Saddle River, NJ, US: Prentice-Hall, Inc, 1992
    [143] Johansen NA, Adams GB, Van Rysselberghe P. J Electrochem Sco. 1957 (104): 339
    [144] I.M.Hutchings, Tribology, CRC Press, et al. 1992 (22-25): 205-210
    [145] V.V.Stolyarov, L.Sh.Shuster, M.Sh.Migranov, et al. Mat Sci Eng A. 2004 (371): 313-317
    [146] H.Jiang, Y.T.Zhu, D.P.Butt, et al. Mat Sci Eng A. 2000 (29): 128
    [147] PeiQing La, JiQiang Ma, Yuntian T.Zhu, et al. Acta Mater. 2005 (53): 5167-5173
    [148] E.A.鲍利索娃著,陈石卿译.钛合金金相学.国防工业出版社. 1986:4
    [149] Yuntian Zhu, Terry C.Lowe, Terence G.Langdon. Scr Mater. 2004 (51): 825-830
    [150] V.Latysh, Gy.Krallics, I.Alexandrov, et al. 2006 (6): 262-266
    [151] G.J.Raab, R.Z.Valiev, Y.T.Zhu, et al. Mater Sci Eng A. 2004 (382): 30-34
    [152] Akira Watazu, Ichinori Shigematsu, Aibin Ma, et al. Mater Sci Forum. 2006 (503-504): 717-720
    [153] K.Otsuka, X.Ren. Intermetallics. 1999 (7): 11
    [154] T.B.Masssalski, H.Okamoto, P.R.Subramanian, et al. Binary alloy phase diagrams. ASM International. 1990: 2875
    [155] C.M.Jackson, H.J.Wagner, R.J.Wasilewski. Nasa-SP. 1972: 5110
    [156] J.I. Kim, Y.N.Liu, and S.Miyazaki. Acta Mater. 2004 (52): 487
    [157] Y.M.Zhou, J.Zhang, G.L.Fan, et al, Acta Mater. 2005 (53): 5365
    [158] O.Bojda, G.Eggeler, and A.Dlouhy, Scr Mater. 53 (2005) 99.
    [159] G.Fan, Y.Zhou, W.Chen, et al, Mater Sci Eng A. 438-440 (2006) 622.
    [160] Hwang CM, Meichle M, Salamon MB, et al. Phil Mag A. 1983 (47): 9-30
    [161] Yinong Liu, Melina Blanc, Geraldine Tan, et al. Mater Sci Eng A. 2006 (438-440): 617-621
    [162] C.M.Wayman, I.Cornelis. Scripta Metall. 1972 (6): 115
    [163]徐祖耀等.形状记忆材料.上海:上海交通大学出版社, 2000: 12
    [164] T.Waitz, V.Kazykhanov, H.P.Karnthaler. Acta Mater. 2004 (52): 137-147
    [165] J.I.Kim, Yinong Liu, S.Miyazaki. Acta Mater. 2004 (52): 487-499
    [166] Hwang CM, Meichle M, Salamon MB, et al. Phil Mag A. 1983 (47): 9-30
    [167] Hwang CM, Wayman CM. Scr Metall. 1983 (17): 1449-1453
    [168] H.Morawiec, T.Goryczka, D.Chrobak. Scr Mater. 1996 (35): 485-490
    [169] Jafar Khalil-Allafi, Antonin Dlouhy, Gunther Eggeler. Acta Mater. 2002 (50): 4255- 4274
    [170] J.Khalil Allafi, X.Ren, G.Eggeler. Acta Mater. 2002 (50): 793-803
    [171] Genlian Fan, Wei Chen, Sen Yang, et al. Acta Mater. 2004 (52): 4351-4362
    [172] M.Nishida, T.Honma. Scripta Metall. 1985 (19): 983
    [173] M.Nishida, C.M.Wayman, R.Kainuma, et al. Scripta Metall. 1986 (20): 899
    [174]张一,金嘉陵.金属学报. 1987 (4): 280
    [175] V.J.Kolomyser, V.A.Lobadyuk, L.G.Kandros, et al. Stat Sol. 1961 (1): 87
    [176] T.Saburi, S.Nenno, T.Fukuda, et al. J.Less-Common Met. 1986 (125): 157
    [177] T.Tadaki, Y.Nakata, K.Shimizu, et al. Trans.Japan Inst. Metals. 1986 (27): 731
    [178] T.Saburi, T.Tatsumi, S.Nenno, et al. J.de Phys. 1982 (43): 261
    [179] S.Miyazaki, Y.Ohmi, K.Otsuka, et al. J.de Phys. 1982 (43): 255
    [180] R.Kainuma, M.Matsumoto, T.Honma. Inter. Conf. on Martensitic Trans. Nara, 1986: 717
    [181] T.Saburi, M.Yoshida, S.Nenno, et al. Scr Metall. 1984 (18): 363
    [182] S.Miyazaki, S.Kimura, K.Otsuka, et al. Scr Metall. 1984 (18): 833
    [183] H.Nakayama, K.Tsuchiya, M.Umemoto. Scr Mater. 2001 (44): 1781-1785
    [184] K.E.Inaekyan, S.D.Prokoshkin, V.Brailovski, et al. Mater Sci Forum. 2006 (503-504): 597-602
    [185] S.D.prokoshkin, I.Y.Khmelevskaya, S.V.Dobatkin, et al. Mater Sci Forum. 2006 (503-504): 481-486
    [186] I.Y.Khmelevskaya, I.B.Trubitsyna, S.D.Prokoshkin, et al. Mater Sci Forum. 2003 (426-432): 2765-2770
    [187] I.Karaman, A.V.Kulkarni, Z.P.Luo. Philosophical Magazine. 2005 (85): 1729-1745
    [188] B.kockar, I.Karaman, A.Kulkarni, et al. Journal of Nuclear Materials. 2007 (361): 298-305
    [1] V.M.Segal. Equal Channel Angular Extrusion: from macromechanics to structure formation. Mat Sci Eng A. 1999 (271): 322-333
    [2] V.M.Segal. Materials processing by simple shear. Mat Sci Eng A. 1995 (197): 157-164
    [3] R.Z.Valiev, Yuri Estrin, Zenji Horita, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006 (4): 33-39
    [4] Y.T.Zhu, T.C.Lowe. Observations and issues on mechanisms of grain refinement during ECAP process. Mat Sci Eng A. 2000 (291): 46-53
    [5] V.Latysh, Gy.Krallics, I.Alexandrov, et al. Application of bulk nanostructured materials in medicine. Curr Appl Phys. 2006 (6): 262-266
    [6] Z.G.Fan, C.Y.Xie. Effects of Temperature and Strain Rate on Compressive Mechanical Properties of Ultrafine-grained CP Titanium. Advanced Materials Research. 2007 (26-28): 381-384
    [7] V.V.Stolyarov, L.Sh.Shuster, M.Sh.Migranov, et al. Reduction of friction coefficient of ultrafine-grained CP titanium. Mater Sci Eng A. 2004 (371): 313-317
    [8] A.Yu.Vinogradov, V.V.Stolyarov, S.Hashimoto, et al. Cyclic behavior of ultrafine-grained titanium produced by severe plastic deformation. Mater Sci Eng A. 2001 (318): 163-173
    [9] C.Y.Xie, Z.G.Fan. Microstructure and Phase Transformations of TiNi Alloy processed by Equal Channel Angular Extrusion at Medium Temperature. Mater Sci Forum. 2007 (561-565): 877-880
    [10] Z.G.Fan, C.Y.Xie. Phase transformation behaviors of TiNi alloy after Equal Channel Angular Extrusion. Mater Lett. 2008 (62): 800-803
    [11] Z.G.Fan, C.Y.Xie. Shape Memory Behavior of TiNi Alloy after ECAE Processes. Mater Sci Forum. 2007 (561-565): 2313-2316
    [12] Z.G.Fan, H.Jiang, C.Y.Xie. Super-elasticity Characteristics of TiNi Alloy processed by Equal Channel Angular Extrusion. Jour Rare Metal Mater Eng. (accepted)
    [13]工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金.中国标准出版社. 1989
    [14]唐雪萍,刘震. H13模具钢开发.特钢技术. 2002 (4): 37-42
    [15] S.L.Semiatin, V.M.Segal, R.E.Goforth, et al. Metall Mater Trans A. 1999 (30): 1425-1430
    [16] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe. A two step SPD Processing of ultrafine-grained Titanium, Nanostructured Materials. 1999: 11 (7): 947-954
    [17] A.I.Korshunov, I.I.Vedernikova, L.V.Polyakov, et al. Effects of the number of ECAP passes and ECAP route on the heterogeneity in mechanical properties across the sample from titanium VT1-0. Materials Science Forum. 2006: (503-504): 693-698
    [18] V.V.Latysh, I.P.Semenova, G.H.Salimgareeva, et al. Microstructure and properties of Ti rods produced by multi-step SPD. Materials Science Forum. 2006: (503-504): 763-768
    [19] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Mat Sci Eng A. 2001 (299): 59-67
    [1] V.M.Segal. Materials processing by simple shear. Mater Sci Eng A. 1995 (197): 157-164
    [2] W.Q.Cao, A.Godfrey, W.liu, et al. EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing. Mater Sci Eng A. 2003 (360): 420-425
    [3] P.L.Sun, C.Y.Yu, P.W.Kao, et al. Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion. Scr Mater. 2002 (47): 377-381
    [4] H.Miyamoto, J.Fushimi, T.Mimaki, et al. Dislocation structures and crystal orientations of copper single crystals deformed by equal channel angular pressing. Mater Sci Eng A. 2005 (405): 221-232
    [5] Saiyi Li, Irene J.Beyerlein, Carl T.Necker, et al. Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater. 2004 (52): 4859-4875
    [6] Yinmin Wang, En Ma, R.Z.Valiev, et al. Tough Nanostructured Metals at Cryogenic Temperatures. Advan Mater. 2004: 16 (4): 328-331
    [7] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater Sci Eng A. 2003 (343): 43-50
    [8] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater Sci Eng A. 2001 (303): 82-89
    [9] I.Kim, J.Kim, D.H.Shin, et al. Deformation twins in pure titanium processed by equal channel angular pressing. Scr Mater. 2003 (48): 813-817
    [10] D.H.Shin, I.Kim, J.Kim, et al. Microstructure development during equal channel angular pressing of titanium. Acta Mater. 2003 (51): 983-996
    [11] B.Mingler, V.V.Stolyarov, M.Zehetbauer, et al. TEM investigations of Titanium processed by ECAP followed by cold rolling. Mater Sci Forum. 2006 (503-504): 805-810
    [12] Yu.Perlovich, M.Isaenkova, V.Fesenko, et al. Formation of Texture and Structure in Rods of Copper and Titanium under Equal Channel Angular Pressing. Mater Sci Forum. 2006 (503-504): 853-858
    [13] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe. A two step SPD Processing of Ultrafine-grained Titanium. Nanostructured Materials. 1999: 11 (7): 947- 954
    [14] H.Mughrabi, H.W.Hoppel, M.Kautz. Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr Mater. 2004: 51 (8): 807-812
    [15] Yuntian T.Zhu. Deformation Twins Formed in Nanocrystalline Materials. Mater Sci Forum. 2006 (503-504): 125-132
    [16] D.H.Shin, I.Y.Kim, J.Y.Kim, et al. Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel. Acta Mater. 2001 (49): 1285-1292
    [17] Minoru Furukawa, Yukihide Fukuda, Keiichiro Oh-ishi, et al. An investigation of deformation in aluminum single crystals using Equal Channel Angular Pressing. Mater Sci Forum. 2003 (426-432): 2711-2716
    [18] Inyoung Kim, Won-Sik Jeong, Jongryoul Kim, et al. Deformation structures of pure Ti produced by equal channel angular pressing . Scr Mater. 2001 (45): 575-581
    [19] I.Karaman, G.G.Yapici, Y.I.Chumlyakov, et al. Deformation twinning in difficult-to-work alloys during severe plastic deformation. Mater Sci Eng A. 2005 (410-411): 243-247
    [20] D.H.Shin, I.Y.Kim, J.Y.Kim, et al. Shear strain accommodation during severe plastic deformation of titanium using equal channel angular pressing. Mater Sci Eng A. 2002 (334): 239-245
    [21] Guney Guven Yapici, Ibrahim Karaman, Hans J.Maier. Mechanical flow anisotropy in severely deformed pure titanium. Mater Sci Eng A. 2006 (434): 294-302
    [1] V.V.Latysh, I.P.Semenova, G.H.Salimgareeva, et al. Mater Sci Forum. 2006 (502-504): 763-768
    [2] Z.G.Fan, C.Y.Xie. Mater Sci Forum. 2007 (26-28): 381-384
    [3] W.J.Kim, C.Y.Hyun, H.K.Kim. Scripta Mater. 2006 (54): 1745-1750
    [4] A.Y.Vinogradov, V.V.Stolyarov, S.Hashimoto, et al. Mat Sci Eng A. 2001 (318): 163-167
    [5] Y.T.Zhu, T.C.Lowe, T.G.Langdon. Scripta Mater. 2004 (51): 825-830
    [6] A.V.Nagasekhar, Uday.Chakkingal, P.Venugopal. Jour Mater Proc Tech. 2006 (173): 53-60
    [7] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Mater Sci Eng A. 2001 (299): 59-67
    [8] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe, et al. Mater Sci Eng A. 2001 (303): 82-89
    [9] V.V.Stolyarov, Y.T.Zhu, I.V.Alexandrov, et al. Mater Sci Eng A. 2003 (343): 43-50
    [10] V.Latysh, Gy.Kralics, I.Alexandrov, et al. Application of bulk nanostructured materials in medicine. Curr Appl Phys. 2006 (6): 262-266
    [11] H.Conrad. Mater Sci Eng A. 2003 (341): 216
    [12] H.Conrad, J.Narayan. Acta Mater. 2002 (50): 5067
    [13] K.T.Park, D.H.Shin. Metall Mater Trans A. 2002 (33):705
    [14] W.Lojkowski. Acta Mater. 1991 (39): 1891
    [15] A.A.Nazarov, A.E.Romanov, R.Z.Valiev. Scrip Mater. 1990 (24): 1929
    [16] Y.M.Wang, E.Ma, R.Z.Valiev, et al. Adv Mater. 2004 (16): 4: 328-331
    [17] Y.M.Wang, E.Ma. Appl Phys Lett. 2003 (83): 15: 3165-3167
    [18] Y.M.Wang, M.W.Chen, E.Ma, et al. High tensile ductility in a nanostructured metal. Nature. 2002 (419): 912-914
    [19] Y.H.Zhao, X.Z.Liao, Y.T.Zhu, et al. Adv Mater. 2006 (18): 2949
    [20] Y.H.Zhao, Y.T.Zhu, X.Z.Liao, et al. Appl Phys Lett. 2006 (89): 121906
    [21] Y.H.Zhao, X.Z.Liao, Y.T.Zhu, et al. Adv Mater. 2006 (18): 2280
    [22] Y.H.Zhao, J.F.Bingert, Y.T.Zhu, et al. Tougher ultrafine grain Cu via high-angle boundaries and low dislocation density. Appl Phys Lett. 2008 (92): 081903
    [23] G.He, J.Eckrt, W.Loeser, et al. Nat Mater. 2003 (2): 3
    [24] K.X.Tao, H.Choo, H.Q.Li, et al. Appl Phys Lett. 2007 (90): 101911
    [25] D.Jia, Y.M.Wang, E.Ma, et al. Appl Phys Lett. 2001 (79): 5: 611-613
    [26]束德林.金属力学性能.北京:机械工业出版社. 1999:10
    [27]工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金.中国标准出版社. 1989
    [28] Y.M.Wang, E.Ma, M.W.Chen. Enhanced tensile ductility and toughness in nanostructured Cu. Appl Phys Lett. 2002(80): 13: 2395-2397
    [29] Young Gun Ko, Dong Hyuk Shin, Kyung-Tae Park, et al. An analysis of the strain hardening behavior of ultra-fine grain pure titanium. Scrip Mater. 2006 (54): 1785-1789
    [30] W.Xu, X.Wu, D.Sadedin, et al. Ultrafine-grained titanium of high interstitial contents with a good combination of strength and ductility. Appl Phys Lett. 2008 (92): 011924
    [31] V.M.Segal. Deformation mode and plastic flow in ultra fine grained metal. Mater Sci Eng A.2005 (406): 205-216
    [32] V.Z.Bengus, E.D.Tabachnikova, V.D.Natsik, et al. Low Temp Phys. 2002 (28): 11: 864-874
    [33] S.Nemat-Naser, W.G.Guo, J.Y.Cheng. Acta Mater. 1999(47): 3705-3715
    [34] Y.M.Wang, E.Ma. Mater Sci Eng A. 2004 (375-377): 46-52
    [35] S.Nemet-Nasser, W.G.Guo, J.Y.Cheng. Acta Mater. 1999 (47): 3705-3715
    [36] N.Munroe, X.Tan, H.Gu. Scripta Mater.1997 (36): 1383-1388
    [37] Akhtar A. Metall Trans. 1975 (6): 1105
    [38] Minonishi Y, Morozumi S, Yoshinaga H. Scripta Metall. 1982 (16): 427
    [1] Nakayama.H, Tsuchiya,K, Umemoto.M. Crystal refinement and amorphisation by cold rolling in TiNi shape memory alloys. Scr Mater. 2001 (44): 1781-1785
    [2] Khmelevskaya.I.Yu, Trubitsyna.I.B, Prokoshkin.S.D, et al. Thermomechanical treatment of Ti-Ni-Based shape memory alloys using severe plastic deformation. Mater Sci Forum. 2003 (426-432): 2765-2770
    [3] Inaekyan.K.E, Prokoshkin.S.D, Brailovski.V, et al. Substructure and nanocrystalline structure effects in thermomechanicallly treated Ti-Ni alloys. Mater Sci Forum. 2006 (503-504): 597-602
    [4] Tsuchiya.K, Inuzuka.M, Hosokawa.A, et al. Martensitic transformation and mechanical behavior of TiNi shape memory alloys after severe plastic deformation. Mater Sci Forum. 2006 (503-504): 419-424
    [5] Tsuchiya.K, Inuzuka.M, Tomus.D, et al. Martensitic transformation in nanostructure TiNi shape memory alloy formed via severe plastic deformation. Mater Sci Eng A. 2006 (438-440): 643-648
    [6] Seergueeva.A.V, Song.C, Valiev.R.Z, et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mat Sci Eng A. 2003(339): 159-165
    [7] Waitz.T, Kazykhanov.V, Karnthaler.H.P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004 (52): 137-147
    [8] Prokoshkin.S.D, Khmelevskaya.I.Yu, Dobatkin.S.V, et al. Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys. 2005 (53): 2703-2714
    [9] Prokoshkin.S.D, Khmelevskaya.I.Yu, Dobatkin.S.V, et al. Studies of severe plastic deformation conditions for amorphous and nanocrystalline structures formation in Ti-Ni based alloys. Mater Sci Forum. 2006 (503-504): 481-486
    [10] Pushin.V.G, Korolev.A.V, Kourov.N.I, et al. SPD-induced nanocrystallization of shape memory Ni2MnGa-based and NiTi-based alloys quenched from liquid state. Mater Sci Forum. 2006 (503-504): 545-550
    [11] Rentenberger.C, Waitz.T, Karnthaler.H.P. HRTEM analysis of nanostructureed alloys processed by severe plastic deformation. Scr Mater. 2004 (51): 789-794
    [12] Pushin.V.G, Stolyarov.V.V, Valiev.R.Z, et al. Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation. Ann Chim Sci Mat. 2002 (27): 77-88
    [13] Karaman.I, Karaca.H.Ersin, Maier.H.J, et al. The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion. Metall Mater Trans A. 2003 (34): 2527-2539
    [14] Pushin.V.G, Stolyarov.V.V, Valiev.R.Z, et al. Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation. Mater Sci Eng A. 2005 (410-411): 386-389
    [15] Pushin.V.G, Valiev.R.Z, Zhu.Y.T, et al. Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys. Mater Sci Forum. 2006 (503-504): 539-544
    [16] Kockar.B, Karaman.I, Kulkarni.A, et al. Effect of severe ausforming via equal channel angular extrusion on the shape memory reponse of a NiTi alloy. Jour Nuclear Mater. 2007 (361): 298-305
    [17] Khmelevskaya.I.Yu, Prokoshkin.S.D, Trubitsyna.I.B, et al. Structure and properties of Ti-Ni-based alloys after equal channle angular pressing and high pressure torsion. Mater Sci Eng A. 2008 (481-482): 119-122
    [18] Li Zhenhua, Cheng Xianhua, ShangGuan Qianqian. Effects of heat treatment and ECAE process on transformation behaviors of TiNi shape memory alloy. Mater Lett. 2005 (59):705-709
    [19] Li Zhenhua, Xiang Guoquan, Cheng Xianhua. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Mater and Design. 2006 (27): 324-328
    [20] Cheng Xianhua, Li Zhenhua, Xiang Guoquan. Dry sliding wear behavior of TiNi alloy processed by equal channel angular extrusion. Mater and Design. 2007 (28): 2218-2223
    [21]范志国,谢超英.等通道转角挤压及冷轧法制备超细晶工业纯Ti组织与力学性能.中国有色金属学报. 2007 (17): 6-13
    [22] Kim.I, Kim.J, Shin.D.H, et al. Deformation twins in pure titanium processed by equal channel angular pressing. Scr Mater. 2003 (48): 813-817
    [23]戎咏华.分析电子显微学导论.北京:高等教育出版社. 2006: 10
    [24] Stolyarov.V.V, Zhu.Y.T, Lowe.T.C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mat Sci Eng A. 2001 (303): 82-89
    [25] Stolyarov.V.V, Zhu.Y.T, Alexandrov.I.V, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mat Sci Eng A. 2003 (343): 43-50
    [26]谢超英,赵连城,雷霆权. Ti-50.8.at%Ni形状记忆合金中Ti3Ni4相的析出过程.航空学报. 1991 (12): 7: 395-400
    [27] Mathaudhu.Suveen N, Hartwig.K.Ted. Mater Sci Eng A. 2006 (426): 128-142
    [28] Molodova.X, Gottstein.G, Winning.M, et al. Mater Sic Eng A. 2007 (460-461): 204-213
    [29] Fan Zhiguo, Xie Chaoying. Recrystallization characteristics of TiNi alloy processed by equal channel angular extrusion. Advanced Materials Research. 2007 (26-28): 385-388
    [1]徐祖耀等.形状记忆材料.上海:上海交通大学出版社. 2000: 401-405
    [2] Yumei Zhou, Jian Zhang, Genlian Fan, et al. Acta Mater. 2005 (53): 5365-5377
    [3] J.I.Kim, Yinong Liu, S.Miyazaki. Acta Mater. 2004 (52): 487-499
    [4] T.Waitz, V.Kazykhanov, H.P.Karnthaler. Acta Mater. 2004 (52): 137-147
    [5] D.P.Dautovich, G.R.Purdy. Can Metall. 1965 (4): 129
    [6] D.Bradley, J.Acoust. Soc Am. 1965 (37): 700
    [7] C.M.Wayman, I.Cornelis. Scr Metall. 1972 (6): 115
    [8] H.C.Ling, R.Kaplow. Met Trans A. 1980 (11): 77
    [9] Yinong Liu, Melina Blanc, Geraldine Tan, et al. Effect of ageing on the transformation behaviorof Ti-49.5.at.% Ni. Mater Sci Eng A. 2006 (438-440): 617-621
    [10] Hwang C.M, Meichle M, Salamon MB, et al. Phil Mag A. 1983 (47): 9-30
    [11] Hwang C.M, Wayman C.M. Scr Metall. 1983 (17): 1449-1453
    [12] H.Morawiec, T.Goryczka, D.Chrobak. Scr Mater. 1996 (35): 485-490
    [13] Jafar Khalil-Allafi, Antonin Dlouhy, Gunther Eggeler. Acta Mater. 2002 (50): 4255-4274
    [14] J.Khalil-Allafi, X.Ren, G.Eggeler. Acta Mater. 2002 (50): 793-803
    [15] Genlian Fan, Wei Chen, Sen Yang, et al. Acta Mater. 2004 (52):4351-4362
    [16] G.Fan, Y.Zhou, W.Chen. Precipitation kinetics of Ti3Ni4 in polycrystalline Ni-rich TiNi alloys and its relation to abnormal multi-stage transformation behavior. Mater Sci Eng A. 2006 (438-440): 622-626
    [17] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Ann Chim Sci Mat. 2002 (27): 77-88
    [18] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Mat Sci Eng A. 2005 (410-411): 386-389
    [19] V.G.Pushin, R.Z.Valiev, Y.T.Zhu, et al. Mater Scie Forum. 2006 (503-504): 539-544
    [20] I.Karaman, A.V.Kulkarni, Z.P.Luo. Transformation behavior and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Philosophical Magazine. 2005 (85): 1729-1745
    [21] Zhenhua Li, Xianhua Cheng, Qianqian ShangGuan. Mater Lett. 2005 (59): 705-709
    [22] Zhenhua Li, Guoquan Xiang, Xianhua Cheng. Mater and Design. 2006 (27): 324-328
    [23] W.Tang, R.Sandstrom, B.Sundman, et al. Acta Metall. 1988 (36): 291-297
    [24] S.D.Prokoshkin, I.Yu.Khmelevskaya, S.V.Dobatkin, et al. Alloy compostion, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys. Acta Mater. 2005 (53): 2703-2714
    [25] O.Bojda, G.Eggeler, A.Dlouhy. Scr Mater. 2005 (53): 99-104
    [26] Nishida M, Wayman CM, Honma T. Metall Trans A. 1986 (17): 1505
    [27] M.Murayama, Z.Horita, K.hono. Microstructure of two-phase Al-1.7.at%Cu alloy deformed by equal channel angular pressing. Acta Mater. 2001 (49): 21-29
    [28]许晓嫦,刘志义,党朋等.研究强塑性变形过程中第二相回溶现象的现状及发展趋势.金属热处理. 2005 (30): 4: 1-6
    [29] Zenji Horita, Keiichiro Oh-ishi, Kenji Kaneko. Microstructure control using severe plastic deformation. Sci Tech of Advan Mater. 2006 (7): 649-654
    [30]党朋,许晓嫦,刘志义等.铝合金等径角挤压和多向压缩变形中析出相的回溶研究.材料热处理学报. 2007 (28): 5: 82-85
    [31] X.C.Xv, Z.Y.Liu, Y.T.Li, et al. Evolution of precipitates of Al-Cu alloy during equal channel angular pressing at room temperature. Trans. Nonferrous Met. Soc. China. 2008 (18): 1047-1052
    [32] D.H.Shin, I.Kim, J.Kim, et al. Microstructure development during equal-channel angular pressing of titanium. Acta Mater. 2003 (51): 983-986
    [33] O.V.Mishin, D.Juul Jensen, N.Hansen. Microstructure and boundary populations in materials produced by equal channel angular extrusion. Mater Sci Eng A. 2003 (342): 320-328
    [34] C.Y.Xie, Z.G.Fan. Microstructure and phase transformations of TiNi alloy processed by equal channel angular extrusion at medium temperature. Mater Sci Forum. 2007 (561-565): 877-880
    [35] Srinivasan M. Sivakumar, Michael Oritiz. Comput Methods Appl Mech Eng. 2004 (193): 5177-5194
    [36] A.Korbel, W.Bochniak. Scr Mater. 2004 (51): 755-759
    [37] H.Nakayama, K.Tsuchiya, M.Umemoto. Crystal refinement and amorphisation by cold rolling in TiNi shape memory alloys. Scr Mater. 2001 (44): 1781-1785
    [38] K.Tsuchiya, M.Inuzuka, A.Hosokawa, et al. Martensitic transformation and mechanical behavior of TiNi shape memory alloys after severe plastic deformation. Mater Sci Forum. 2006 (503-504): 419-424
    [39] K.Tsuchiya, M.Inuzuka, D.Tomus, et al. Martensitic deformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Mater Sci Eng A. 2006 (438-440): 643-648
    [40] C.Y.Yu, P.L.Sun, P.W.Kao, et al. Evolution of microstructure during annealing of severely deformed aluminium. Mater Sci Eng A. 2004 (366): 310
    [41] A.V.Sergueeva, C.Song, R.Z.Valiev, et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater Sci Eng A. 2003 (339): 159-165
    [1] C.M.Wayman, Proc. ICOMAT-89, Jap. Inst. Metals. 1987: 645
    [2]徐祖耀等.形状记忆材料.上海:上海交通大学出版社. 2000: 401-405
    [3] K.Otsuka, K.Shimizu. Pseudoelasticity and Shape Memory Effects in Alloys. Inter Met Rev. 1986 (31): 93-114
    [4] J.D.Eisenwasser, L.C.Brown. Pseudoelasticity and the Strain-Memory Effect in Cu-Zn-Sn Alloys. Met Trans. 1972 (3): 1359-1363
    [5] K.Otsuka, H.Sakamoto, K.Shimizu. Successive Stress-Induced Martensitic Transformations and Associated Transformation Pseudoelasticity in Cu-Al-Ni Alloys. Acta Metall. 1979 (27): 585-701
    [6]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社. 2002: 170-171
    [7] Zhi Cheng Li, Xing Ke Zhao, Hong Zhang, et al. Mater Lett. 2003 (57): 1086-1090
    [8] K.Tsuchiya, M.Inuzuka, D.Tomus, et al. Mater Sci Eng A. 2006 (438-440): 643-648.
    [9] Hong-Sheng Ding, Jung-Moo Lee, Bup-Ro Lee, et al. Mater Sci Eng A. 2007 (444): 265-270
    [10] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Ann Chim Sci Mat. 2002 (27): 77-88
    [11] Y.F.Zheng, B.M.Huang, L.C.Zhao, et al. Mater Sci Eng A. 2000 (279): 25-35
    [12] V.G.Pushin, V.V.Stolyarov, R.Z.Valiev, et al. Mat Sci Eng A. 2005 (410-411): 386-389
    [13] V.G.Pushin, R.Z.Valiev, Y.T.Zhu, et al. Mater Sci Forum. 2006 (503-504): 539-544
    [14] A.V.Sergueeva, C.Song, R.Z.Valiev, et al. Mater Sci Eng A. 2003 (339): 159-165
    [15] V.G.Pushin, A.V.Korolev, N.I.Kourov, et al. Mater Sci Eng A. 2006 (503-504): 545-550
    [16] Zhenhua Li, Xianhua Cheng, Qianqian ShangGuan. Mater Lett. 2005 (59): 705-709
    [17] Zhenhua Li, Guoquan Xiang, Xianhua Cheng. Mater and Design. 2006 (27): 324-328
    [18] Zhiguo Fan, Chaoying Xie. Mater Lett. 2008 (62): 800-803
    [19] I.Karman, H.E.Karaca, Z.P.Luo et al. Metall Mater Trans A. 2003 (34): 2527-2539
    [20] B.Kockar, I.Karaman, A.Kulkarni, et al. Jour of Nucl Mater. 2007 (361): 298-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700