原子力显微镜成像与纳米操作控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自问世以来,原子力显微镜(Atomic Force Microscope,AFM)已经逐步发展成为微/纳米领域成像和操作的基本工具,在生物、材料、化学以及物理等学科得到了广泛应用,被研究者称为纳米科技的“眼”和“手”。因此,它的研究进展在整个微/纳米领域中起着举足轻重的作用,近年来已经成为微/纳米研究领域的关键问题之一,其突破将有可能为微/纳米领域的研究带来新的发展契机。
     虽然原子力显微镜已经在微纳米领域得到广泛应用,但其相关技术远未发展成熟。具体而言,当前的原子力显微镜系统还存在以下方面的一些问题:(1)在成像方面,由于原子力显微镜系统复杂的非线性特性,它的实验结果往往重复性不高;此外,该系统存在操作复杂、系统带宽窄、扫描速度慢以及对噪声干扰敏感等缺点,这些问题妨碍了它得到更进一步的应用。(2)在纳米操作方面,一般的原子力显微镜不能直接应用于纳米操作,需要对其硬件和软件环境进行相应的改进之后才能完成纳米操作任务。在纳米定位方面,虽然原子力显微镜使用的管式压电扫描驱动器具有纳米级的分辨率,但是由于其迟滞特性,碗状的运动耦合误差以及其他不确定性,使得将探针针尖准确定位到指定位置来实现纳米操作十分困难。因此,当前基于原子力显微镜的纳米操作效率和成功率非常低下。
     综上所述,原子力显微镜在成像以及纳米操作中仍然有许多问题亟待解决。在国家自然科学基金等项目的资助下,论文对国内外原子力显微镜相关领域的研究现状进行了全面分析;在此基础上,论文针对原子力显微镜成像与纳米操作的一些关键问题展开了深入研究。
     (1)原子力显微镜系统建模与仿真。由于原子力显微镜系统的复杂性,很难对其全部的动力学特性进行机理建模。因此,论文通过实验手段对系统的各个部件进行了标定和建模,主要包括压电扫描器、激光接收器以及放大器等;对悬臂梁以及探针针尖—样品之间的相互作用力进行了机理模型分析。基于上述完整模型,在Matlab/Simulink环境中搭建了轻敲原子力显微镜仿真平台,通过对原子力显微镜中推拉迟滞和双稳态两种非线性现象的仿真,证明了该仿真平台的有效性。
     (2)基于继电反馈的原子力显微镜比例积分(Proportional Integral,PI)控制器参数自整定。原子力显微镜在组件以及扫描速度发生变化时,通常需要对PI控制器的参数进行反复调整,这给操作者带来了很大的困难。为了提高系统的易用性,本文利用继电反馈方法对原子力显微镜的PI参数进行自整定。具体而言,受到继电反馈的激励,原子力显微镜系统会产生极限环。根据极限环的信息,可以辨识得到系统的临界增益和周期,然后利用Ziegler-Nichols公式对PI参数进行整定。实验表明,这种基于继电反馈的方法能够辨识出各种组件变化对系统带来的改变;并且根据扫描速度适当调整PI参数后,系统不会出现振荡现象。
     (3)轻敲原子力显微镜H_∞控制器设计与仿真。针对原子力显微镜系统带宽窄,对噪声干扰敏感等缺点,论文设计了H_∞鲁棒控制器。具体而言,针对压电陶瓷和悬臂梁模型,本文利用H_∞混合灵敏度设计方法,通过引入误差、控制量以及输出的权值函数对所要设计的控制器性能指标进行量化,从而使得设计的控制器能有效地阻尼系统的共振频率。通过对各种样品进行跟踪仿真测试表明:H_∞鲁棒控制器能够较好地跟踪各种波形,并且它可以使针尖与样品间的作用力维持在几十个纳牛左右;此外,该控制器相对PI控制器具有更好的噪声抑制作用,对于模型不确定性也有良好的鲁棒性。
     (4)压电扫描管精确定位探针研究。探针纳米定位是纳米操作的关键技术之一。针对管式压电扫描器对探针进行纳米定位的问题,论文提出了一种分步定位的方法,实现了纳米级别的定位精度。其主要步骤如下:(a)针对驱动器的迟滞现象,首先对标定光栅进行成像,并通过特征点提取和分析可以得到迟滞回线;利用曲线拟合的方法,计算出所需要补偿的电压,从而实现迟滞特性的有效补偿;(b)对于其他误差如结构误差和耦合误差等,利用探针对标定样品进行压印,通过压印图像可以计算期望位置与实际位置的误差,通过补偿该误差可以实现探针的粗定位;(c)对于热漂移以及粗定位的误差,使用局部扫描的方法来估计颗粒的中心位置,从而实现精确定位。
     (5)由于一般原子力显微镜并不具备直接纳米操作的功能,论文搭建了开放式的纳米操作平台,主要采用RTLinux系统来保证实时性,该纳米操作系统具有良好的开发接口,可以非常方便地完成多种纳米操作。论文通过纳米刻画、压印及推动等实验,证实了该原子力显微镜纳米操作系统的有效性。
Since the invention of the Atomic Force Microscope (AFM), it has been widely utilized to explore the research in the fields of biology, material, chemistry as well as physics. Consequently, as one of the most powerful instruments for nano-imaging and nano-manupulation, AFM and its related technologies are regarded as the "eyes" and "hands" of nano-technology. Hence, the AFM research developments are of vital importance to micro/nano systems and have gained lots of attention across the world. True advancements in AFM instrumentation may lead to a breakthrough for the entire micro/nano research area.
     Although AFM systems have been widely utilized in practice, the related technologies are still far from satisfaction. Specifically, there still exist some challenging problems in current AFM systems: (1) As an imaging tool, AFM based experiments are usually difficult to repeat due to its complex nonlinearities; besides, AFM is more difficult to use than other microscopes; furthermore, the scanning speed of AFM is usually very slow due to its narrow bandwidth. All those drawbacks hinder its further applications for nano-imaging. (2) When an AFM is used for nano-manipulation, it requires some modifications on its hardware and software structure. Particularly, the widely employed piezo-tube scanner is not able to position the tip precisely due to its hysteresis, cross-coupling and other uncertainties. This is one of the main reasons why AFM based nano-manipulation is still of low efficacy and success ratio.
     Funded by National Natural Science Fundations, this dissertation conducts a thorough survey of AFM related research topics and recent progresses. Based on that, the dissertation focuses on some of those challenging yet key problems, aiming to improve the imaging and manupulation performance of AFM systems.
     (1) Modeling and Simulation of AFM Systems.
     Generally, it is extremely complicated to model all the dynamics of AFM systems based on first principles. For a better understanding of AFM systems, in this dissertation all components of AFM systems are modeled or calibrated experimentally, including the piezo-scanner, photo-diode, and high voltage amplifier. For the atomic interactions between the tip and the sample, and the cantilever dynamics, a theoretical modeling and analysis is given. Based on those models, a virtual tapping-mode AFM is constructed in Matlab/Simulink environment. To prove its validity, the classical approach-retract force curve and bi-stable phenomena are explored.
     (2) Relay Based Auto Tuning of AFM PI Parameters.
     It is well known that the tuning of AFM PI parameters is a tedious and complicated procedure, especially when some components or the scanning speed are changed. In this dissertation, a relay controller is employed to excite AFM systems, resulting in a stable limit cycle. The amplitude and frequency of the limit cycle are then used to identify the system critical point. Based on Ziegler-Nichols formula, initial PI parameters will be obtained. When the scanning speed is changed, the PI parameters will be adjusted accordingly to avoid possible system oscillations. Experimental results show that the proposed approach can indentify the system variation due to changes of the components. Moreover, better sample topography image can be achieved after auto-tuning the control gains with a fast scanning speed.
     (3) H_∞Controller Design and Simulation for Tapping Mode AFM.
     To enhance the noise rejection, the bandwidth and hence the scanning speed of the system, an H_∞controller is designed for tapping mode AFM. Specifically, based on mixed sensitivity method, proper weighting functions are chosen to scale the system error, control input and system output such that the controller is able to damp the resonance frequency of AFM system and eliminate the possible vibration during high speed operation. Several simulated samples are scanned using the H_∞controller. Simulation results show the controller is more capable of tracking those samples and has smaller interaction forces compared to PI algorithm. Besides, the controller is of superior performance considering the noise rejection and robustness against model uncertainty.
     (4) Nano-Positioning of Tip by Utilizing Piezo-Tube Scanner.
     Tip nano-positioning is one of the key factors to the success of AFM based nano-manipulation. To alleviate the positioning error caused by piezo-hysteresis, cross-couping and other uncertainties, the following method is proposed: (a) To compensate for the hysteresis of the piezo-tube, the voltage-displacement relation is obtained from image of calibrated gratings. The inverse voltage is computed to compensate the positioning error. (b) For cross-coupling and structural errors, etc, the tip is used to indent the sample, and the true tip positions are estimated from the indentation points matrix. The positioning error will be compensated according to the differences between the desired tip positions and true tip positions. After that, the tip can be positioned roughly around the desired position. (c) The local scanning method is employed to refine the positioning error, which may also come from thermal drift or other uncertainties. Experimental results show that precise nano-positioning can be achieved using this method.
     (5) Construction of AFM Based Nano-Manipulation Platform.
     Based on the tip nano-positioning techniques, an AFM system is modified into a nano-manipulation platform. RTLinux is employed to ensure real-time control of the platform. Besides, the platform is easy to integrate new nano-manipulation applications and enables access to real-time cantilever deflection signals. The dissertation conducts various experiments including nano-imprint, indentation and manipulation to prove its validity.
引文
[1]R.P.Feynman.There's Plenty of Room at the Bottom.California Institute of Technology,Engineering and Science Magazine,1960,ⅩⅩⅢ(5)
    [2]G.Binnig,H.Rohrer,C.Gerber,et al.Surface Studies by Scanning Tunneling Microscopy.Physical Review Letters,1982,49:57-61
    [3]D.Sarid.Scanning Force Microscopy.New York:Oxford University Press,1994
    [4]F.J.Giessibl.Advances in.Atomic Force Microscopy.Reviews of Modern Physics,2003,75(3):949-983
    [5]G.Binnig,C.Quate and C.Gerber.Atomic Force Microscopy.Physical Review Letters 1986,56:930-933
    [6]白春礼.扫描隧道显微术及其应用.上海:上海科技出版社,1991
    [7]J.P.Salvetat,A.J.Kulik,J.M.Bonard,et al.Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes.Advanced Materials,1999,11(2):161-165
    [8]G.W.Marshall,M.Balooch,R.R.Gallagher,et al.Mechanical Properties of the Dentinoenamel Junction:AFM Studies of Nanohardness,Elastic Modulus,and Fracture.Journal of Biomedical Materials Research,2001,54(1):87-95
    [9]F.Dimitrios,S.Simon,M.A.Shirley,et al.Imaging and Manipulation of Biological Structures with the AFM.Micron,2002,33(4):385-397
    [10]D.Ansehnetti,J.Fritz,B.Smith,et al.Single Molecule DNA Biophysics with Atomic Force Microscopy.Single Molecules,2000,1(1):53-58
    [11]吴惠萌,宋延林,赵彤,等.超高密度信息存储材料及技术研究进展.自然科学进展,2002,12(12):1246-1252
    [12]E.B.Cooper,S.R.Manalis and H.Fang.Terabit-Per-Square-Inch-Data Storage with the Atomic Force Microscope.Applied Physics Letters,1999,75(22):3566-3568
    [13]P.Vettiger,G.Cross and M.Despont.The "Millipede'-Nanotechnology Entering Data Storage.IEEE Transactions on Nanotechnology,2002,1(1):39-55
    [14]M.Despont,U.Drechsler and R.Yu.Wafer-Scale Microdevice Transfer-Interconnect:Its Application in an AFM-Based Data-Storage System.Journal of Microelectromechanical Systems,2004,13(6):895-901
    [15] S. Hosaka. SPM Based Recording toward Ultrahigh Density Recording with Trillion Bits/Inch2. IEEE Transactions on Magnetics, 2001, 37(2): 855-859
    
    [16] S. W. Park, H. T. Soh, C. F. Quate, et al. Nanometer-Scale Lithography at High Scanning Speeds with the Atomic-Force Microscope Using Spin on Glass. Applied Physics Letters,1995, 67(16): 2415-2417
    
    [17] M. Zhang, D. Bullen and S. W. Chung. A MEMS Nanoplotter with High-Density Parallel Dip-Pen Nanolithography Probe Arrays. Nanotechnology, 2002, 13: 212-217
    
    [18] C. H. Chiou and G B. Lee. A Micromachined DNA Manipulation Platform for the Stretching and Rotation of a Single DNA Molecule. Journal of Micromechanics and Microengineering, 2005, 15(1): 109-117
    
    [19] H. Xie, J. Vitard, S. Haliyo, et al. Calibration and Nonlinearity Compensation for Force Application in AFM Based Nanomanipulation. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008:4024-4029
    
    [20] 周晓峰.基于PZT的微定位系统:[博士学位论文].杭州:浙江大学,2004
    
    [21] K. K. Leang and A. J. Fleming. High-Speed Serial-Kinematic AFM Scanner: Design and Drive Considerations. In: Proceedings of the 2008 American Control Conference, Seattle,Washington, USA, 2008: 3188-3193
    
    [22] J. A. Harley and T. W. Kenny. A High-Stiffness Axial Resonant Probe for Atomic Force Microscopy. Journal of Microelectromechanical Systems, 2001, 10(3): 434-441
    
    [23] D. C. Jiles and D. L. Atherton. Theory of Ferromagnetic Hysteresis. Journal of Magnetism and Magnetic Materials, 1986, 61: 48-60
    
    [24] I. D. Mayergoyz. Mathematical Models of Hysteresis. New York: Springer-Verlag, 1991
    
    [25] P. Ge and M. Jouaneh. Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuator. Precision Engineering, 1997, 20(2): 99-111
    
    [26] H. T. Banks, A. J. Kurdila and G. Webb. Identification of Hysteretic Control Influence Operators Representing Smart Actuators. Mathematical Problems in Engineering, 1997,3(4): 287-328
    
    [27] W. Galinaitis and R. Rogers. Control of a Hysteretic Actuator Using Inverse Hysteresis Compensation. Mathematics and Control in Smart Structures, 1998, 3323: 267-277
    
    [28] B. D. Coleman and M. L. Hodgdon. A Constitutive Relation for Rate Independent Hysteresis in Ferromagnetically Soft Materials. International Journal of Engineering Science,1986,24(6):897-919
    [29]X.Tan.Control of Smart Actuators:[Dissertation].University of Maryland,College Park,2002
    [30]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究:[博士学位论文].长春:中科院长春光学精密机械与物理研究所,2000
    [31]X.Zhao and Y.Tan.Modeling Hysteresis and Its Inverse Model Using Neural Networks Based on Expanded Input Space Method.IEEE Transactions on Control Systems Technology,2008,16(3):484-490
    [32]D.Y.Abramovitch,S.B.Andersson,L.Y.Pao,et al.A Tutorial on the Mechanisms,Dynamics,and Control of Atomic Force Microscopes.In:Proceedings of the 2007American Control Conference,New York City,USA,2007:3488-3502
    [33]T.Ando.Control Techniques in High-Speed Atomic Force Microscopy.In:Proceedings of the 2008 American Control Conference,Seattle,Washington,USA,2008:3194-3200
    [34]Q.Zou,K.K.Leang,E.Sadoun,et al.Control Issues in High-Speed AFM for Biological Applications:Collagen Imaging Example.Asian Journal of Control,2004,6(2):164-178
    [35]Y.Wu and Q.Zou.Robust-Inversion-Based 2DOF-Control Design for Output Tracking:Piezoelectric Actuator Example.In:Proceedings of the 2007 IEEE Conference on Decision and Control,New Orleans,LA,USA,2007:2451-2457
    [36]Y.Yan,Y.Wu,Q.Zou,et al.An Integrated Approach to Piezoactuator Positioning in High-Speed Atomic Force Microscope Imaging.Review of Scientific Instruments,2008,79(7):073704
    [37]K.S.Kim,Q.Zou and C.Su.Iteration-Based Scan-Trajectory Design and Control with Output-Oscillation Minimization:Atomic Force Microscope Example.In:Proceedings of the 2007 American Control Conference,New York City,USA,2007:4227-4233
    [38]Y.Wu and Q.Zou.lterative Control Approach to Compensate for the Hysteresis and the Vibrational Dynamics Effects of Piezo Actuators.In:Proceedings of the 2006 American Control Conference,Minneapolis,Minnesota,USA,2006:424-430
    [39]K.S.Kim,Z.Lin,P.Shrotriya,et al.Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM for Biological Applications.In:Proceedings of the 2007 IEEE Conference on Automation Science and Engineering,Scottsdale,USA,2007:219-224
    [40]S.Tien,Q.Zou and S.Devasia.Control of Dynamics-Coupling Effects in Piezo-Actuator for High-Speed AFM Operation.In:Proceedings of the 2004 American Control Conference, Boston, Massachusetts, 2004: 3116-3121
    
    [41] K. S. Kim and Q. Zou. Model-Less Inversion-Based Iterative Control for Output Tracking: Piezo Actuator Example. In: Proceedings of the 2008 American Control Conference,Seattle, Washington, USA, 2008: 2710-2715
    
    [42] D. Croft, G. Shedd and S. Devasia. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application. ASME Journal of Dynamic Systems, Measurement and Control, 2001, 123(35): 35-43
    
    [43] D. Croft and S. Devasia. Vibration Compensation for High Speed Scanning Tunneling Microscopy. Review of Scientific Instruments, 1999, 70(12): 4600-4605
    
    [44] D. Croft, S. Stilson and S. Devasia. Optimal Tracking of Piezo-Based Nanopositioners.Nanotechnology, 1999, 10: 201-208
    
    [45] A. Daniele, S. Salapaka, M. V. Salapaka, et al. Piezoelectric Scanners for Atomic Force Microscopes: Design of Lateral Sensors, Identification and Control. In: Proceedings of the 1999 American Control Conference, San Diego, California, USA, 1999: 253-257
    
    [46] Y. Li and J. Bechhoefer. Feedforward Control of a Closed-Loop Piezoelectric Translation Stage for Atomic Force Microscope. Review of Scientific Instruments, 2007, 78(1):013702
    
    [47] B. Graffel, F. M(?)ller, A.-D. M(?)ller, et al. Feedforward Correction of Nonlinearities in Piezoelectric Scanner Constructions and Its Experimental Verification. Review of Scientific Instruments, 2007, 78(5): 053706
    
    [48] Y. Zhang, Y. Fang, X. Zhou, et al. Image-Based Hysteresis Modeling and Compensation for Piezo-Scanner Utilized in AFM. In: Proceedings of the 2007 IEEE International Conference on Nanotechnology, Hong Kong, China, 2007: 90-95
    
    [49] Y. Zhang, Y. Fang, X. Zhou, et al. Image-Based Hysteresis Modeling and Compensation for an AFM Piezo-Scanner. Asian Journal of Control, 2009, 11(2): 166-174
    
    [50] G. Schitter, F. Allgower and A. Stemmer. A New Control Strategy for High-Speed Atomic Force Microscopy. IEEE Transactions on Nanotechnology, 2004, 15: 108-114
    
    [51] G. Schitter, A. Stemmer and F. Allgower. Robust 2DOF-Control of a Piezoelectric Tube Scanner for High Speed Atomic Force Microscopy. In: Proceedings of the 2003 American Control Conference, Denver, Colorado, USA, 2003: 3720-3725
    
    [52] A. Sebastian, M. V. Salapaka and J. P. Cleveland. Robust Control Approach to Atomic Force Microscopy. In: Proceedings of the 2003 IEEE Conference on Decision and Control,Maui, Hawaii, USA, 2003: 3443-3444
    [53] G Schitter, P. Menold, H. F. Knapp, et al. High Performance Feedback for Fast Scanning Atomic Force Microscopes. Review of Scientific Instruments, 2001, 72(8): 3320-3327
    
    [54] Y. Seo, C. S. Choi, S. H. Han, et al. Real-Time Atomic Force Microscopy Using Mechanical Resonator Type Scanner. Review of Scientific Instruments, 2008, 79(10):103703
    
    [55] B. Bhikkaji and S. O. Moheimani. Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning. IEEE/ASME Transactions on Mechatronics,2008, 13(5): 530-537
    
    [56] N. Kodera, H. Yamashita and T. Ando. Active Damping of the Scanner for High-Speed Atomic Force Microscopy. Review of Scientific Instruments, 2005, 76(5): 053708
    
    [57] D. R. Sahoo, P. Agarwal and M. V. Salapaka. Transient Force Atomic Force Microscopy:A New Nano-Interrogation Method. In: Proceedings of the 2007 American Control Conference, New York City, USA, 2007: 2135-2140
    
    [58] K. E. Rifai, O. E. Rifai and K. Youcef-Toumi. Modeling and Control of AFM-Based Nano-Manipulation Systems. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 157-162
    
    [59] O. E. Rifai and K. Youcef-Toumi. Dynamics of Contact-Mode Atomic Force Microscopes.In: Proceedings of the 2000 American Control Conference, Chicago, Illinois, USA, 2000:2118-2122
    
    [60] P. Gleyzes, P. K. Kuo and A. C. Boccara. Bistable Behavior of a Vibrating Tip near a Solid Surface. Applied Physics Letters, 1991, 58: 2989
    
    [61] M. Ashhab, M. Salapaka, M. Dahleh, et al. Dynamical Analysis and Control of Microcantilevers. Automatica, 1999, 35(10): 1663-1670
    
    [62] O. Sahin and A. Atalar. Analysis of Tip-Sample Interaction in Tapping-Mode Atomic Force Microscope Using an Electrical Circuit Simulator. Applied Physics Letters, 2001,78(19): 2937-2975
    
    [63] Y. Chen, X. Li, X. Zhou, et al. Analysis of Vibrating Mode Scanning Polarization Force Microscope. Review of Scientific Instruments, 2004, 75(11): 4721-4726
    
    [64] M. Marth, D. Maier, J. Honerkamp, et al. A Unifying View on Some Experimental Effects in Tapping-Mode Atomic Force Microscopy. Journal of Applied Physics, 1999, 85(10):7030-7037
    
    [65] R. Garcia and A. S. Paulo. Attractive and Repulsive Tip-Sample Interaction Regimes in Tapping-Mode Atomic Force Microscopy. Physical Review B, 1999, 60(7): 4961-4967
    [66] J. Melcher, S. Hu and A. Raman. VEDA: A Web-Based Virtual Environment for Dynamic Atomic Force Microscopy. Review of Scientific Instruments, 2008, 79(6): 061301
    
    [67] J. Polesel-Maris and S. Gauthier. A Virtual Dynamic Atomic Force Microscope for Image Calculations. Journal of Applied Physics, 2005, 97(4): 044903-044909
    
    [68] A. Sebastian, M. V. Salapaka, D. J. Chen, et al. Harmonic Analysis Based Modeling of Tapping-Mode AFM. In: Proceedings of the 1999 American Control Conference, San Diego, California, USA, 1999: 232-236
    
    [69] M. Gauthier, R. Perez, T. Arai, et al. Interplay between Nonlinearity, Scan Speed,Damping, and Electronics in Frequency Modulation Atomic-Force Microscopy. Physical Review Letters, 2002, 89(14): 146104
    
    [70] S. I. Lee, W. Howell, A. Raman, et al. Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: Comparison between Theory and Experiment.Physical Review B, 2002, 66: 115409
    
    [71] P. Girard, M. Ramonda and R. Arinero. Dynamic Atomic Force Microscopy Operation Based on High Flexure Modes of the Cantilever. Review of Scientific Instruments, 2006,77(9): 096105
    
    [72] A. Raman, J. Melcher and R. Tung. Cantilever Dynamics in Atomic Force Microscopy.Nanotoday, 2008, 3(1): 20-27
    
    [73] T. Trevethan, M. Watkins, L. N. Kantorovich, et al. Controlled Manipulation of Atoms in Insulating Surfaces with the Virtual Atomic Force Microscope. Physical Review Letters,2007, 98(2): 028101
    
    [74] D. M. Eigler and E. K. Schweizer. Positioning Single Atoms with a Scanning Tunnelling Microscope Nature, 1990, 344: 524-526
    
    [75] D. M. Schaefer, R. Reifenberger, A. Patil, et al. Fabrication of Two-Dimensional Arrays of Nanometer-Size Clusters with the Atomic Force Microscope. Applied Physics Letters,1995,66: 1012-1014
    
    [76] T. Junno, K. Deppert, L. Montelius, et al. Controlled Manipulations of Nanoparticles with an Atomic Force Microscope. Applied Physics Letters, 1995, 66: 3627-3629
    
    [77] L. T. Hansen, A. Kuhle, A. H. S(?)rensen, et al. A Technique for Positioning Nanoparticles Using an Atomic Force Microscope. Nanotechnology, 1998, 9: 337-342
    
    [78] R. L. Hollis, S. Salcudean and D. W. Abraham. Toward a Tele-Nanorobotic Manipulation System with Atomic Scale Force Feedback and Motion Resolution. In: Proceedings of the 1990 IEEE International Conference Micro Electro Mechanical Systems, 1990: 115-119
    [79]M.Sitti.Teleoperated and Automatic Nanomanipulation Systems Using AFM Probes.In:Proceedings of the 2003 IEEE Conference on Decision and Control,Maul,Hawaii,USA,2003:2118-2123
    [80]M.Sitti and H.Hashimoto.Controlled Pushing of Nanoparticles:Modeling and Experiments.IEEE/ASME Transactions on Mechatronics,2000,5(2):199-211
    [81]M.Guthold,M.Falvo and W.G.Matthews.Controlled Manipulation of Molecular Samples with the Nanomanipulator.IEEE/ASME Transactions on Mechatronics,2000,5(2):189-198
    [82]Z.Liu,Y.Yang,Y.Qu,et al.Vibration-Mode Based Real-Time Nanoimaging and Nanomanipulation.In:Proceedings of the 2007 IEEE International Conference on Nanotechnology,Hong Kong,2007:515-519
    [83]L.Liu,Y.Luo,N.Xi,et al.Sensor Referenced Real-Time Videolization of Atomic Force Microscopy for Nanomanipulations.IEEE/ASME Transactions on Mechatronics,2008,13(1):76-85
    [84]J.Park,K.Kwon,J.Bang,et al.Development of a Precision Indentation and Scratching System with a Tool Force and Displacement Control Module.Review of Scientific Instruments,2007,78(4):045102
    [85]田孝军,王越超,刘连庆,等.具有三维力反馈的原子力显微镜纳米操作系统.仪器仪表学报,2006,27(7):661-665
    [86]J.Lu,H.Li,H.An,et al.Nano-Manipulation of Single DNA Molecules Based on Atomic Force Microscopy.In:Proceedings of the 2005 IEEE Conference on Engineering in Medicine and Biology,Shanghai,China,2005:7478-7480
    [87]Y.Gan.A Review of Techniques for Attaching Micro- and Nanoparticles to a Probe's Tip for Surface Force and near-Field Optical Measurements.Review of Scientific Instruments,2007,78(8):081101
    [88]H.Hashimoto and M.Sitti.Challenge to Micro/Nanomanipulation Using Atomic Force Microscope.in:Proceedings of the 1999 International Symposium on Micromechatronics and Human Science,1999:35-42
    [89]田孝军.基于原子力显微镜的机器人化纳米操作系统研究[博士学位论文].沈阳:中国科学院沈阳自动化研究所,2006
    [90]B.Mokaberi and A.Requicha.Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation.IEEE Transactions On Automation Science and Engineering,2008,5(2):197-206
    [91]E.Tranvouez,E.Boer-Duchemin,G.Comtet,et al.Active Drift Compensation Applied to Nanorod Manipulation with an Atomic Force Microscope.Review of Scientific Instruments.2007,78(11):115103
    [92]J.Israelachvili.Intermolecular and Surface Forces.San Diego:Academic Press,1992
    [93]罗熙淳.基于分子动力学的微纳米加工表面形成机理研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2002
    [94]A.Tafazzoli,C.Pawashe and M.Sitti.Force-Controlled Microcontact Printing Using Microassembled Particle Templates.In:Proceedings of the 2006 IEEE Conference on Robotics and Automation,Florida,USA,2006:263-268
    [95]R K.Hansma,G.Schitter,G.E.Fantner,et al.High-Speed Atomic Force Microscopy.Science,2006,314(5799):601-602
    [96]H.Torun,J.Sutanto,K.K.Sarangapani,et al.A Micromachined Membrane-Based Active Probe for Biomolecular Mechanics Measurement.Nanotechnology,2007,18(16):165303
    [97]K.Molhave,T.Wich,A.Kortschack,et al.Pick-and-Place Nanomanipulation Using Microfabricated Grippers.Nanotechnology,2006,17:2434-2441
    [98]L.Dong,F.Arai and T.Fukuda.3D Nanoassembly of Carbon Nanotubes through Nanorobotic Manipulations.In:Proceedings of the 2002 IEEE International Conference on Robotics and Automation,Washington,USA,2002:1477-1482
    [99]A.S.Nain,C.Amon and M.Sitti.Proximal Probes Based Nanorobotic Drawing of Polymer Micro/Nanofibers.IEEE Transactions on Nanotechnology,2006,5(5):499-510
    [100]L.Dong,X.Tao,L.Zhang,et al.Nanorobotic Spot Welding:Controlled Metal Deposition with Attogram Precision from Copper-Filled Carbon Nanotubes.Nano Letters,2007,7(1):58-63
    [101]C.D.Onal and M.Sitti.Visual Servoing-Based Autonomous 2-D Manipulation of Microparticles Using a Nanoprobe.IEEE Transactions on Control Systems Technology,2007,15(5):842-852
    [102]S.-G.Kim and M.Sitti.Task-Based and Stable Telenanomanipulation in a Nanoscale Virtual Environment.IEEE Transactions on Automation Science and Engineering,2006,3(3):240-247
    [103]胡寿松.自动控制原理(第四版).北京:科学出版社,2001
    [104]R V.Overschee and B.D.Moor.N4sid:Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems.Automatica,1994,30(1):75-93
    [105]P.V.Overschee and B.D.Moor.A Unifying Theorem for Three Subspace System Identification Algorithms.Automatica,1995,31(12):1853-1864
    [106]S.Salapaka,A.Sebastian,J.P.Cleveland,et al.High Bandwidth Nano-Positioner:A Robust Control Approach.Review of Scientific Instruments,2002,73(9):3232-3241
    [107]http://www.asylumresearch.com/
    [108]D.Y.Abramovitch,S.Hoen and R.Workman.Semi-Automatic Tuning of PID Gains for Atomic Force Microscopes.In:Proceedings of the 2008 American Control Conference,Seattle,Washington,USA,2008:2684-2689
    [109]K.J.Astrom and T.Hagglund.Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins.Automatica,1984,20(5):645-651
    [110]A.Leva.PID Autotuning Algorithm Based on Relay Feedback.Control Theory and Applications,IEE Proceedings D,1993,140(5):328-338
    [111]H.Jih-Jenn.Automatic Tuning of the PID Controller for Servo Systems Based on Relay Feedback.In:Proceedings of the 2000 26th Annual Conference of the IEEE Industrial Electronics Society,2000:1445-1450
    [112]T.O'Mahony.PID Tuning Software:A Practical Review.In:Proceedings of the 2006 Irish Signals and Systems Conference,2006.IET,2006:409-414
    [113]G.Zames and B.A.Francis.Feedback,Minimax Sensitivity,and Optimal Robustness.IEEE Transactions on Automatic Control,1983,AC-28(5):585-600
    [114]D.-W.Gu,P.H.Petkov and M.M.Konstantinov.Robust Control Design with Matlab.New York:Springer,2005
    [115]M.Barabanov.A Linux Based Real-Time Operating System:[Dissertation].New Mexico:New Mexico Institute of Mining and Technology,1997
    [116]魏永明,骆刚,姜君.LinuX设备驱动程序.北京:中国电力出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700